1932

Abstract

This article describes my involvement in the development of genetics as an essential tool in the integrated study of plant biology. My research comes from a strong background in plant genetics based on my education as a plant breeder at Wageningen University and collaborations with plant physiologists and molecular geneticists in Wageningen and the wider scientific community. It initially involved the isolation and physiological characterization of mutants defective in biosynthesis or mode of action of plant hormones, photoreceptors and traits such as flowering time in both and tomato. I also generated a genetic map of . Subsequently, the exploitation of natural variation became a main area of interest, including the molecular identification of underlying genetic differences. The integration of various disciplines and the adoption of as a main model species contributed strongly to the impressive progress in our knowledge of plant biology over the past 40 years.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-071720-111039
2021-06-17
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/arplant/72/1/annurev-arplant-071720-111039.html?itemId=/content/journals/10.1146/annurev-arplant-071720-111039&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    1001 Genomes Consort 2016. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–91
    [Google Scholar]
  2. 2. 
    Aarts MGM, Dirkse WG, Stiekema WJ, Pereira A. 1993. Transposon tagging of a male sterility gene in Arabidopsis. Nature 363:715–17
    [Google Scholar]
  3. 3. 
    Ahmad M, Cashmore AR. 1993. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–66
    [Google Scholar]
  4. 4. 
    Alcázar R, García AV, Parker JE, Reymond M 2009. Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. PNAS 106:334–39
    [Google Scholar]
  5. 5. 
    Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Koornneef M 1999. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. PNAS 96:4710–17
    [Google Scholar]
  6. 6. 
    Alonso-Blanco C, Koornneef M. 2000. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:22–29
    [Google Scholar]
  7. 7. 
    Arabidopsis Genome Initiat 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–15
    [Google Scholar]
  8. 8. 
    Assunção AGL, Herrero E, Lin Y-F, Huettel B, Talukdar S et al. 2010. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. PNAS 107:10296–301
    [Google Scholar]
  9. 9. 
    Bentsink L, Jowett J, Hanhart CJ, Koornneef M 2006. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. PNAS 103:17042–47
    [Google Scholar]
  10. 10. 
    Debeaujon I, Léon-Kloosterziel KM, Koornneef M. 2000. Influence of the testa on seed dormancy, germination and longevity in Arabidopsis. Plant Physiol 122:403–14
    [Google Scholar]
  11. 11. 
    El-Assal SED, Alonso-Blanco C, Peeters AJM, Raz V, Koornneef M 2001. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat. Genet. 29:435–40
    [Google Scholar]
  12. 12. 
    Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM. 1992. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–61
    [Google Scholar]
  13. 13. 
    Jansen RC, Van Ooijen JW, Stam P, Lister C, Dean C. 1995. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor. Appl. Genet. 91:33–37
    [Google Scholar]
  14. 14. 
    Jensen J, Jørgensen JH. 1975. The barley chromosome 5 linkage map. II. Extension of the map with four loci. Hereditas 80:17–26
    [Google Scholar]
  15. 15. 
    Jongsma M, Koornneef M, Zabel P, Hille J. 1987. Tomato protoplast DNA isolation: physical linkage and recombination of exogenous DNA sequencies. Plant Mol. Biol. 8:383–89
    [Google Scholar]
  16. 16. 
    Karssen CM. 2002. Germination, dormancy and red tape. Seed Sci. Res. 12:203–16
    [Google Scholar]
  17. 17. 
    Karssen CM, Brinkhorst-van der Swan DLC, Breekland AE, Koornneef M. 1983. Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157:158–65
    [Google Scholar]
  18. 18. 
    Keurentjes JJB, Fu J, de Vos CHR, Lommen A, Hall RD et al. 2006. The genetics of plant metabolism. Nat. Genet. 38:842–49
    [Google Scholar]
  19. 19. 
    Koncz C. 2006. Dedication: George P. Rédei: Arabidopsis geneticist and polymath. Plant Breed. Rev. 26:1–23
    [Google Scholar]
  20. 20. 
    Koornneef M. 1981. The complex syndrome of ttg mutants. Arabidopsis Inf. Serv. 18:45–51
    [Google Scholar]
  21. 21. 
    Koornneef M, Barbaro A, van der Veen JH. 1977. Nongerminating, gibberellic acid responsive mutants in Arabidopsis thaliana. Arabidopsis Inf. Serv. 14:14–17
    [Google Scholar]
  22. 22. 
    Koornneef M, Cone JW, Dekens RG, O'Herne-Robers EG, Spruit CJP, Kendrick RE. 1985. Photomorphogenic responses of long hypocotyl mutants of tomato. J. Plant Physiol. 120:2153–65
    [Google Scholar]
  23. 23. 
    Koornneef M, Hanhart CJ. 1984. The localization of two ABA-insensitivity genes. Arabidopsis Inf. Serv. 21:5–10
    [Google Scholar]
  24. 24. 
    Koornneef M, Hanhart CJ, Jongsma M, Toma I, Weide R et al. 1986. Breeding of a tomato genotype readily accessible to genetic manipulation. Plant Sci 45:201–8
    [Google Scholar]
  25. 25. 
    Koornneef M, Hanhart CJ, van der Veen JH. 1991. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229:57–66
    [Google Scholar]
  26. 26. 
    Koornneef M, Meinke DW. 2010. The development of Arabidopsis as a model plant. Plant J 61:909–21
    [Google Scholar]
  27. 27. 
    Koornneef M, Reuling G, Karssen CM. 1984. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol. Plant. 61:377–83
    [Google Scholar]
  28. 28. 
    Koornneef M, Rolff E, Spruit CJ. 1980. Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z. Pflanzenphysiol. 100:147–60
    [Google Scholar]
  29. 29. 
    Koornneef M, van Diepen JAM, Hanhart CJ, Kieboom-de Waart AC, Martinelli L et al. 1989. Chromosomal instability in cell- and tissue cultures of tomato haploids and diploids. Euphytica 43:179–86
    [Google Scholar]
  30. 30. 
    Koornneef M, van Eden J, Hanhart CJ, DeJongh AMM. 1983. Genetic fine-structure of the GA-1 locus in the higher plant Arabidopsis thaliana (L.) Heynh. Genet. Res. 41:57–68
    [Google Scholar]
  31. 31. 
    Koornneef M, van Eden J, Hanhart CJ, Stam P, Braaksma FJ, Feenstra WJ. 1983. Linkage map of Arabidopsis thaliana. J. Hered. 74:265–72
    [Google Scholar]
  32. 32. 
    Kubo H, Peeters AJM, Aarts MGM, Pereira A, Koornneef M. 1999. ANTHOCYANINLESS 2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. Plant Cell 11:1217–26
    [Google Scholar]
  33. 33. 
    Laibach F. 1943. Arabidopsis thaliana (L.) Heynh. als Objekt für genetische und entwicklungsphysiologische Untersuchungen. Botan. Arch. 44:439–55
    [Google Scholar]
  34. 34. 
    Leonelli S. 2007. Arabidopsis, the botanical Drosophila: from mouse cress to model organism. Endeavour 31:34–38
    [Google Scholar]
  35. 35. 
    Magnien E, Bevan M, Planqué K. 1992. A European ‘BRIDGE’ project to tackle a model plant genome. Trends Biotechnol 10:12–15
    [Google Scholar]
  36. 36. 
    Meyerowitz EM. 2001. Prehistory and history of Arabidopsis research. Plant Physiol 125:15–19
    [Google Scholar]
  37. 37. 
    Parks BM, Shanklin J, Koornneef M, Kendrick RE, Quail PH. 1989. Immunochemically detectable phytochrome is present at normal levels but is photochemically nonfunctional in the hy 1 and hy 2 long hypocotyl mutants of Arabidopsis. Plant Mol. Biol. 12:425–37
    [Google Scholar]
  38. 38. 
    Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM et al. 1999.. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–61
    [Google Scholar]
  39. 39. 
    Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM et al. 2016. 50 years of Arabidopsis research: highlights and future directions. New Phytol 209:921–44
    [Google Scholar]
  40. 40. 
    Somerville C. 1989. Arabidopsis blooms. Plant Cell 1:1131–35
    [Google Scholar]
  41. 41. 
    Somerville C, Koornneef M. 2002. A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet. 3:883–89
    [Google Scholar]
  42. 42. 
    Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T et al. 2000. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell 6:791–802
    [Google Scholar]
  43. 43. 
    Stam P. 1993. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–44
    [Google Scholar]
  44. 44. 
    Sun T, Goodman HM, Ausubel FM. 1992. Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell 4:119–28
    [Google Scholar]
  45. 45. 
    van der Schaar W, Alonso-Blanco C, Léon-Kloosterziel KM, Jansen RC, van Ooijen JW et al. 1997. QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity 79:190–200
    [Google Scholar]
  46. 46. 
    van Wordragen MF, Weide RL, Coppoolse E, Koornneef M, Zabel P. 1996. Tomato chromosome 6: a high resolution map of the long arm and construction of a composite integrated marker-order map. Theor. Appl. Genet. 92:1065–72
    [Google Scholar]
  47. 47. 
    Wijnker E, Velikkakam James G, Ding J, Becker F, Klasen JR et al. 2013. The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. eLife 2:e01426
    [Google Scholar]
  48. 48. 
    Zeevaart JAD. 2009. My journey from horticulture to plant biology. Annu. Rev. Plant Biol. 60:1–19
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-071720-111039
Loading
/content/journals/10.1146/annurev-arplant-071720-111039
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error