1932

Abstract

The periderm acts as armor protecting the plant's inner tissues from biotic and abiotic stress. It forms during the radial thickening of plant organs such as stems and roots and replaces the function of primary protective tissues such as the epidermis and the endodermis. A wound periderm also forms to heal and protect injured tissues. The periderm comprises a meristematic tissue called the phellogen, or cork cambium, and its derivatives: the lignosuberized phellem and the phelloderm. Research on the periderm has mainly focused on the chemical composition of the phellem due to its relevance as a raw material for industrial processes. Today, there is increasing interest in the regulatory network underlying periderm development as a novel breeding trait to improve plant resilience and to sequester CO. Here, we discuss our current understanding of periderm formation, focusing on aspects of periderm evolution, mechanisms of periderm ontogenesis, regulatory networks underlying phellogen initiation and cork differentiation, and future challenges of periderm research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102720-031405
2022-05-20
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-102720-031405.html?itemId=/content/journals/10.1146/annurev-arplant-102720-031405&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alonso-Serra J, Safronov O, Lim KJ, Fraser-Miller SJ, Blokhina OB et al. 2019. Tissue-specific study across the stem reveals the chemistry and transcriptome dynamics of birch bark. New Phytol 222:1816–31This article provides specific transcript profiles for all tissues of a birch stem and the metabolic analysis of birch phellem.
    [Google Scholar]
  2. 2.
    Andersen TG, Barberon M, Geldner N. 2015. Suberization–the second life of an endodermal cell. Curr. Opin. Plant Biol. 28:9–15
    [Google Scholar]
  3. 3.
    Andersen TG, Molina D, Kilian J, Franke RB, Ragni L, Geldner N 2021. Tissue-autonomous phenylpropanoid production is essential for establishment of root barriers. Curr. Biol. 31:965–77.e5This article demonstrates that aromatic acids are essential for phellem function and morphology.
    [Google Scholar]
  4. 4.
    Angyalossy V, Pace MR, Evert RF, Marcati CR, Oskolski AA et al. 2016. IAWA list of microscopic bark features. IAWA J. 37:517–615
    [Google Scholar]
  5. 5.
    Arzee T, Arbel E, Cohen L 1977. Ontogeny of periderm and phellogen activity in Ceratonia siliqua L. Bot. Gaz. 138:329–33
    [Google Scholar]
  6. 6.
    Athoo TO, Winkler A, Knoche M 2020. Russeting in ‘Apple’ mango: triggers and mechanisms. Plants 9:898
    [Google Scholar]
  7. 7.
    Banks HP. 1981. Peridermal activity (wound repair) in an Early Devonian (Emsian) trimerophyte from the Gaspé Peninsula, Canada. Palaeobotanist 28–29:20–25
    [Google Scholar]
  8. 8.
    Banks HP, Colthart BJ. 1993. Plant-animal-fungal interactions in Early Devonian trimerophytes from Gaspé, Canada. Am. J. Bot. 80:992–1001
    [Google Scholar]
  9. 9.
    Banks HP, Leclercq S, Hueber FM 1975. Anatomy and morphology of Psilophyton dawsonii, sp. n., from the Late Lower Devonian of Quebec (Gaspé) and Ontario, Canada. Palaeontogr. Am. 8:75–127
    [Google Scholar]
  10. 10.
    Barberon M. 2017. The endodermis as a checkpoint for nutrients. New Phytol 213:1604–10
    [Google Scholar]
  11. 11.
    Barberon M, Vermeer JE, De Bellis D, Wang P, Naseer S et al. 2016. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164:447–59
    [Google Scholar]
  12. 12.
    Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB. 2007. The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19:351–68
    [Google Scholar]
  13. 13.
    Biggs AR. 1985. Suberized boundary zones and the chronology of wound response in tree bark. Phytopathology 75:1191–95
    [Google Scholar]
  14. 14.
    Biggs AR, Merrill W, Davis DD 1984. Discussion: Response of bark tissues to injury and infection. Can. J. For. Res. 14:351–56
    [Google Scholar]
  15. 15.
    Biggs AR, Stobbs LW. 1986. Fine structure of the suberized cell walls in the boundary zone and necrophylactic periderm in wounded peach bark. Can. J. Bot. 64:1606–10
    [Google Scholar]
  16. 16.
    Boher P, Serra O, Soler M, Molinas M, Figueras M 2013. The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids. J. Exp. Bot. 64:3225–36
    [Google Scholar]
  17. 17.
    Boher P, Soler M, Fernández-Piñán S, Torrent X, Müller SY et al. 2021. Silencing of StRIK in potato suggests a role in periderm related to RNA processing and stress. BMC Plant Biol. 21:409
    [Google Scholar]
  18. 18.
    Borger GA, Kozlowski TT. 1972. Effects of light intensity on early periderm and xylem development in Pinus resinosa, Fraxinus pennsylvanica, and Robinia pseudoacacia. Can. J. For. Res. 2:190–97
    [Google Scholar]
  19. 19.
    Borger GA, Kozlowski TT. 1972. Wound periderm ontogeny in Fraxinus pennsylvanica seedlings. New Phytol 71:709–12
    [Google Scholar]
  20. 20.
    Bossinger G, Spokevicius AV. 2018. Sector analysis reveals patterns of cambium differentiation in poplar stems. J. Exp. Bot. 69:4339–48
    [Google Scholar]
  21. 21.
    Buskila Y, Tsror Lahkim L, Sharon M, Teper-Bamnolker P, Holczer-Erlich O et al. 2011. Postharvest dark skin spots in potato tubers are an oversuberization response to Rhizoctonia solani infection. Phytopathology 101:436–44
    [Google Scholar]
  22. 22.
    Busta L, Serra O, Kim OT, Molinas M, Peré-Fossoul I et al. 2020. Oxidosqualene cyclases involved in the biosynthesis of triterpenoids in Quercus suber cork. Sci. Rep. 10:8011
    [Google Scholar]
  23. 23.
    Cadahía E, Conde E, Fernández de Simón B, García-Vallejo MC. 1998. Changes in tannic composition of reproduction cork Quercus suber throughout industrial processing. J. Agric. Food Chem. 46:2332–36
    [Google Scholar]
  24. 24.
    Capote T, Barbosa P, Usié A, Ramos AM, Inácio V et al. 2018. ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak (Quercus suber). BMC Plant Biol 18:198
    [Google Scholar]
  25. 25.
    Caritat A, Gutiérrez E, Molinas M 2000. Influence of weather on cork-ring width. Tree Physiol 20:893–900
    [Google Scholar]
  26. 26.
    Castle WS. 1978. Citrus root systems: their structure, function, growth and relationship to tree performance. Proc. Int. Soc. Citriculture 1978:62–69
    [Google Scholar]
  27. 27.
    Castola V, Marongiu B, Bighelli A, Floris C, Laï A, Casanova J 2005. Extractives of cork (Quercus suber L.): chemical composition of dichloromethane and supercritical CO2 extracts. Ind. Crops Prod. 21:65–69
    [Google Scholar]
  28. 28.
    Cichan MA, Taylor TN. 1983. A systematic and developmental analysis of Arthropitys deltoides sp. nov. Bot. Gaz. 144:285–94
    [Google Scholar]
  29. 29.
    Cleary MR, van der Kamp BJ, Morrison DJ. 2012. Effects of wounding and fungal infection with Armillaria ostoyae in three conifer species. II. Host response to the pathogen. For. Pathol. 42:109–23
    [Google Scholar]
  30. 30.
    Cohen H, Dong Y, Szymanski J, Lashbrooke J, Meir S et al. 2019. A multilevel study of melon fruit reticulation provides insight into skin ligno-suberization hallmarks. Plant Physiol 179:1486–501
    [Google Scholar]
  31. 30a.
    Cohen H, Fedyuk V, Wang C, Wu S, Aharoni A 2020. SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis. Plant J 102:43147
    [Google Scholar]
  32. 31.
    Conde E, Cadahía E, Garcia-Vallejo MC, Gonźalez-Adrados JR. 1998. Chemical characterization of reproduction cork from Spanish Quercus suber. J. Wood Chem. Technol. 18:447–69
    [Google Scholar]
  33. 32.
    D'Antonio MP, Boyce CK 2020. Arborescent lycopsid periderm production was limited. New Phytol 228:741–51
    [Google Scholar]
  34. 33.
    Decombeix A-L, Galtier J. 2021. Periderm production in the Mississippian cladoxylopsid Cladoxylon taeniatum and a review of periderm occurrence in Paleozoic plants. Int. J. Plant Sci. 182:430–44
    [Google Scholar]
  35. 34.
    Decombeix A-L, Galtier J, Meyer-Berthaud B. 2014. Secondary phloem in Early Carboniferous seed plants: anatomical diversity and evolutionary implications. Int. J. Plant Sci. 175:891–910
    [Google Scholar]
  36. 35.
    Doblas VG, Geldner N, Barberon M. 2017. The endodermis, a tightly controlled barrier for nutrients. Curr. Opin. Plant Biol. 39:136–43
    [Google Scholar]
  37. 36.
    Dou J, Kim H, Li Y, Padmakshan D, Yue F et al. 2018. Structural characterization of lignins from willow bark and wood. J. Agric. Food Chem. 66:7294–300
    [Google Scholar]
  38. 37.
    Douliot H. 1889. Recherches sur le Periderm. PhD Thesis Academie De Paris Paris:
    [Google Scholar]
  39. 38.
    Doyle JA. 2017. Phylogenetic analyses and morphological innovations in land plants. Annu. Plant Rev. 45:1–50
    [Google Scholar]
  40. 39.
    Du Y-P, Wang Z-S, Zhai H. 2011. Grape root cell features related to phylloxera resistance and changes of anatomy and endogenous hormones during nodosity and tuberosity formation. Aust. J. Grape Wine Res. 17:291–97
    [Google Scholar]
  41. 40.
    Efetova M, Zeier J, Riederer M, Lee C-W, Stingl N et al. 2007. A central role of abscisic acid in drought stress protection of Agrobacterium-induced tumors on Arabidopsis. Plant Physiol 145:853–62
    [Google Scholar]
  42. 41.
    Enstone DE, Peterson CA, Ma F. 2002. Root endodermis and exodermis: structure, function, and responses to the environment. J. Plant Growth Regul. 21:335–51
    [Google Scholar]
  43. 42.
    Esau K. 1965. Plant Anatomy Hoboken, NJ: John Wiley & Sons
  44. 43.
    Evert RF. 2006. Periderm. Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development427–45 Hoboken, NJ: John Wiley & Sons. , 3rd ed..
    [Google Scholar]
  45. 44.
    Fagerstedt KV, Saranpaa P, Tapanila T, Immanen J, Serra JA, Nieminen K 2015. Determining the composition of lignins in different tissues of silver birch. Plants 4:183–95
    [Google Scholar]
  46. 45.
    Fernández‑Piñán S, Boher P, Soler M, Figueras M, Serra O 2021. Transcriptomic analysis of cork during seasonal growth highlights regulatory and developmental processes from phellogen to phellem formation. Sci. Rep. 11:12053
    [Google Scholar]
  47. 46.
    Ferreira JPA, Quilhó T, Pereira H. 2017. Characterization of Betula pendula outer bark regarding cork and phloem components at chemical and structural levels in view of biorefinery integration. J. Wood Chem. Technol. 37:10–25
    [Google Scholar]
  48. 47.
    Fich EA, Segerson NA, Rose JKC. 2016. The plant polyester cutin: biosynthesis, structure, and biological roles. Annu. Rev. Plant Biol. 67:207–33
    [Google Scholar]
  49. 48.
    Figueiredo R, Araújo P, Llerena JPP, Mazzafera P. 2019. Suberin and hemicellulose in sugarcane cell wall architecture and crop digestibility: a biotechnological perspective. Food Energy Secur 8:e00163
    [Google Scholar]
  50. 49.
    Franceschi VR, Krokene P, Christiansen E, Krekling T 2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–76
    [Google Scholar]
  51. 50.
    Gerrienne P, Gensel PG, Strullu-Derrien C, Lardeux H, Steemans P, Prestianni C. 2011. A simple type of wood in two Early Devonian plants. Science 333:837
    [Google Scholar]
  52. 51.
    Gess RW, Prestianni C. 2021. An early Devonian flora from the Baviaanskloof Formation (Table Mountain Group) of South Africa. Sci. Rep. 11:11859
    [Google Scholar]
  53. 52.
    Ginzberg I 2008. Wound-periderm formation. Induced Plant Resistance to Herbivory A Schaller 131–46 Dordrecht, Neth: Springer
    [Google Scholar]
  54. 53.
    Ginzberg I, Barel G, Ophir R, Tzin E, Tanami Z et al. 2009. Transcriptomic profiling of heat-stress response in potato periderm. J. Exp. Bot. 60:4411–21
    [Google Scholar]
  55. 54.
    Gou J-Y, Yu X-H, Liu C-J 2009. A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis. PNAS 106:18855–60
    [Google Scholar]
  56. 55.
    Gou M, Hou G, Yang H, Zhang X, Cai Y et al. 2017. The MYB107 transcription factor positively regulates suberin biosynthesis. Plant Physiol 173:1045–58
    [Google Scholar]
  57. 56.
    Grabber JH, Ralph J, Hatfield RD 2002. Model studies of ferulate–coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses. J. Agric. Food Chem. 50:6008–16
    [Google Scholar]
  58. 57.
    Graça J. 2015. Suberin: the biopolyester at the frontier of plants. Front. Chem. 3:62
    [Google Scholar]
  59. 58.
    Graça J, Pereira H. 2004. The periderm development in Quercus suber. IAWA J 25:325–35
    [Google Scholar]
  60. 59.
    Graça J, Santos S. 2007. Suberin: a biopolyester of plants' skin. Macromol. Biosci. 7:128–35
    [Google Scholar]
  61. 60.
    Greb T, Lohmann JU. 2016. Plant stem cells. Curr. Biol. 26:R816–21
    [Google Scholar]
  62. 61.
    Groh B, Hübner C, Lendzian KJ. 2002. Water and oxygen permeance of phellems isolated from trees: the role of waxes and lenticels. Planta 215:794–801
    [Google Scholar]
  63. 62.
    Han X, Zhou Y, Ni X, Chu S, Cheng M et al. 2021. Programmed cell death during the formation of rhytidome and interxylary cork in roots of Astragalus membranaceus (Leguminosae). Microsc. Res. Tech. 84:1400–13
    [Google Scholar]
  64. 63.
    Harman-Ware AE, Sparks S, Addison B, Kalluri UC. 2021. Importance of suberin biopolymer in plant function, contributions to soil organic carbon and in the production of bio-derived energy and materials. Biotechnol. Biofuels 14:75
    [Google Scholar]
  65. 64.
    Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J et al. 2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–67
    [Google Scholar]
  66. 65.
    Heneen WK, Gustafsson M, Brismar K, Karlsson G. 1994. Interactions between Norway spruce (Picea abies) and Heterobasidion annosum. II. Infection of woody roots. Can. J. Bot. 72:884–89
    [Google Scholar]
  67. 66.
    Höfer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R. 2008. The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis. J. Exp. Bot. 59:2347–60
    [Google Scholar]
  68. 67.
    Holden HS. 1912. Some wound reactions in filicinean petioles. Ann. Bot. 26:3777–94
    [Google Scholar]
  69. 68.
    Holden HS. 1930. On the structures and affinities of Ankyropteris corrugata. Philos. Trans. R. Soc. Lond. B 218:79–113
    [Google Scholar]
  70. 69.
    Hooke R, Lessing J. Rosenwald Collect 1665. Micrographia: or, Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses. With Observations and Inquiries Thereupon London: J. Martyn, J. Allestry
  71. 70.
    Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W. 2001. The exodermis: a variable apoplastic barrier. J. Exp. Bot. 52:2245–64
    [Google Scholar]
  72. 71.
    Huang W, Serra O, Dastmalchi K, Jin L, Yang L, Stark RE 2017. Comprehensive MS and solid-state NMR metabolomic profiling reveals molecular variations in native periderms from four Solanum tuberosum potato cultivars. J. Agric. Food Chem. 65:2258–74
    [Google Scholar]
  73. 72.
    Huang Y, Liang D, Xia H, Lin L-J, Wang J, Lv X-L 2020. Lignin and quercetin synthesis underlies berry russeting in ‘sunshine muscat’ grape. Biomolecules 10:690
    [Google Scholar]
  74. 73.
    Inácio V, Lobato C, Graça J, Morais-Cecílio L. 2021. Cork cells in cork oak periderms undergo programmed cell death and proanthocyanidin deposition. Tree Physiol 41:1701–13
    [Google Scholar]
  75. 74.
    Inácio V, Martins MT, Graça J, Morais-Cecílio L. 2018. Cork oak young and traumatic periderms show PCD typical chromatin patterns but different chromatin-modifying genes expression. Front. Plant Sci. 9:1194
    [Google Scholar]
  76. 75.
    Ingram G, Nawrath C. 2017. The roles of the cuticle in plant development: organ adhesions and beyond. J. Exp. Bot. 68:5307–21
    [Google Scholar]
  77. 76.
    Jin L, Cai Q, Huang W, Dastmalchi K, Rigau J et al. 2018. Potato native and wound periderms are differently affected by down-regulation of FHT, a suberin feruloyl transferase. Phytochemistry 147:30–48
    [Google Scholar]
  78. 77.
    Kajala K, Gouran M, Shaar-Moshe L, Mason GA, Rodriguez-Medina J et al. 2021. Innovation, conservation, and repurposing of gene function in root cell type development. Cell 184:3333–48.e19
    [Google Scholar]
  79. 78.
    Kenrick P, Crane PR. 1997. The Origin and Early Diversification of Land Plants: A Cladistic Study Washington, DC: Smithson. Inst. Sch. Press
  80. 79.
    Kevan PG, Chaloner WG, Savile D. 1975. Interrelationships of early terrestrial arthropods and plants. Palaeontology 18:2391–417
    [Google Scholar]
  81. 80.
    Khalil M, Lerat S, Beaudoin N, Beaulieu C. 2019. The plant pathogenic bacterium Streptomyces scabies degrades the aromatic components of potato periderm via the β-ketoadipate pathway. Front. Microbiol. 10:2795
    [Google Scholar]
  82. 81.
    Khanal BP, Grimm E, Knoche M. 2013. Russeting in apple and pear: A plastic periderm replaces a stiff cuticle. AoB PLANTS 5:pls048
    [Google Scholar]
  83. 82.
    Khanal BP, Ikigu GM, Knoche M. 2019. Russeting partially restores apple skin permeability to water vapour. Planta 249:849–60
    [Google Scholar]
  84. 83.
    Knobloch I, Kahl G, Landré P, Nougarède A 1989. Cellular events during wound periderm formation in Dioscorea bulbifera bulbils. Can. J. Bot. 67:3090–102
    [Google Scholar]
  85. 84.
    Kosma DK, Murmu J, Razeq FM, Santos P, Bourgault R et al. 2014. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant J. 80:216–29
    [Google Scholar]
  86. 85.
    Kosma DK, Rice A, Pollard M 2015. Analysis of aliphatic waxes associated with root periderm or exodermis from eleven plant species. Phytochemistry 117:351–62
    [Google Scholar]
  87. 86.
    Landgraf R, Smolka U, Altmann S, Eschen-Lippold L, Senning M et al. 2014. The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm. Plant Cell 26:3403–15
    [Google Scholar]
  88. 87.
    Lashbrooke JG, Cohen H, Levy-Samocha D, Tzfadia O, Panizel I et al. 2016. MYB107 and MYB9 homologs regulate suberin deposition in angiosperms. Plant Cell 28:2097–116
    [Google Scholar]
  89. 88.
    Lawes MJ, Richards A, Dathe J, Midgley JJ 2011. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol 212:2057–69
    [Google Scholar]
  90. 89.
    Leal AR, Barros PM, Parizot B, Sapeta H, Vangheluwe N et al. 2021. Phellem translational landscape throughout secondary development in Arabidopsis roots. bioRxiv 2021.02.08.429142. https://doi.org/10.1101/2021.02.08.429142
    [Crossref]
  91. 90.
    Lee S-B, Jung S-J, Go Y-S, Kim H-U, Kim J-K et al. 2009. Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60:462–75
    [Google Scholar]
  92. 91.
    Legay S, Guerriero G, André C, Guignard C, Cocco E et al. 2016. MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins. New Phytol. 212:977–91
    [Google Scholar]
  93. 92.
    Leide J, Hildebrandt U, Hartung W, Riederer M, Vogg G 2012. Abscisic acid mediates the formation of a suberized stem scar tissue in tomato fruits. New Phytol 194:402–15
    [Google Scholar]
  94. 93.
    Leite C, Pereira H. 2017. Cork-containing barks—a review. Front. Mater. 3:63
    [Google Scholar]
  95. 94.
    Lev-Yadun S, Liphschitz N 1989. Sites of first phellogen initiation in conifers. IAWA J 10:43–52
    [Google Scholar]
  96. 95.
    Liebsch D, Sunaryo W, Holmlund M, Norberg M, Zhang J et al. 2014. Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development 141:4311–19
    [Google Scholar]
  97. 96.
    Liphschitz N, Lev-Yadun S, Rosen E, Waisel Y 1984. The annual rhythm of activity of the lateral meristems (cambium and phellogen) in Pinus halepensis Mill. and Pinus pinea L. IAWA J 5:263–74
    [Google Scholar]
  98. 97.
    Lopes ST, Sobral D, Costa B, Perdiguero P, Chaves I et al. 2020. Phellem versus xylem: genome-wide transcriptomic analysis reveals novel regulators of cork formation in cork oak. Tree Physiol 40:129–41
    [Google Scholar]
  99. 98.
    Lourenço A, Rencoret J, Chemetova C, Gominho J, Gutiérrez A et al. 2016. Lignin composition and structure differs between xylem, phloem and phellem in Quercussuber L. Front. Plant Sci. 7:1612
    [Google Scholar]
  100. 99.
    Luhan M. 1952. Zur Wurzelanatomie unserer Alpenpflanzen. II. Saxifragaceae und Rosaceae. Sitzungsberichte Akad. . Wiss. Math. Naturwiss. Kl. 161:199–237
    [Google Scholar]
  101. 100.
    Lulai EC. 2007. The canon of potato science: 43. skin-set and wound-healing/suberization. Potato Res 50:387
    [Google Scholar]
  102. 101.
    Lulai EC, Campbell LG, Fugate KK, McCue KF. 2016. Biological differences that distinguish the 2 major stages of wound healing in potato tubers. Plant Signal. Behav. 11:e1256531
    [Google Scholar]
  103. 102.
    Lulai EC, Corsini DL. 1998. Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing. Physiol. Mol. Plant Pathol. 53:209–22
    [Google Scholar]
  104. 103.
    Lulai EC, Freeman TP. 2001. The importance of phellogen cells and their structural characteristics in susceptibility and resistance to excoriation in immature and mature potato tuber (Solanum tuberosum L.) periderm. Ann. Bot. 88:555–61
    [Google Scholar]
  105. 104.
    Lulai EC, Neubauer JD, Suttle JC. 2014. Kinetics and localization of wound-induced DNA biosynthesis in potato tuber. J. Plant Physiol. 171:1571–75
    [Google Scholar]
  106. 105.
    Lulai EC, Orr PH. 1995. Porometric measurements indicate wound severity and tuber maturity affect the early stages of wound-healing. Am. Potato J. 72:225–41
    [Google Scholar]
  107. 106.
    Lulai EC, Suttle JC, Pederson SM. 2008. Regulatory involvement of abscisic acid in potato tuber wound-healing. J. Exp. Bot. 59:1175–86
    [Google Scholar]
  108. 107.
    Machado A, Pereira H, Teixeira RT. 2013. Anatomy and development of the endodermis and phellem of Quercus suber L. roots. Microsc. Microanal. 19:525–34
    [Google Scholar]
  109. 108.
    Macnee NC, Rebstock R, Hallett IC, Schaffer RJ, Bulley SM. 2020. A review of current knowledge about the formation of native peridermal exocarp in fruit. Funct. Plant Biol. 47:1019–31
    [Google Scholar]
  110. 109.
    Mahmood K, Zeisler-Diehl VV, Schreiber L, Bi Y-M, Rothstein SJ, Ranathunge K. 2019. Overexpression of ANAC046 promotes suberin biosynthesis in roots of Arabidopsis thaliana. Int. J. Mol. Sci. 20:6117
    [Google Scholar]
  111. 110.
    Marques AV, Pereira H. 2019. A methodological approach for the simultaneous quantification of glycerol and fatty acids from cork suberin in a single GC run. Phytochem. Anal. 30:687–99
    [Google Scholar]
  112. 111.
    Massana-Codina J, Schnee S, Allard P-M, Rutz A, Boccard J et al. 2020. Insights on the structural and metabolic resistance of potato (Solanum tuberosum) cultivars to tuber black dot (Colletotrichum coccodes). Front. Plant Sci. 11:1287
    [Google Scholar]
  113. 112.
    Matten LC. 1974. The Givetian flora from Cairo, New York: Rhacophyton, Triloboxylon and Cladoxylon. Bot. J. Linn. Soc. 68:303–18
    [Google Scholar]
  114. 113.
    Mattinen M-L, Filpponen I, Järvinen R, Li B, Kallio H et al. 2009. Structure of the polyphenolic component of suberin isolated from potato (Solanum tuberosum var. Nikola). J. Agric. Food Chem. 57:9747–53
    [Google Scholar]
  115. 114.
    Miguel A, Milhinhos A, Novák O, Jones B, Miguel CM 2016. The SHORT-ROOT-like gene PtSHR2B is involved in Populus phellogen activity. J. Exp. Bot. 67:1545–55This article presents the functional characterization of poplar SHORT-ROOT, the first phellogen regulator described.
    [Google Scholar]
  116. 115.
    Molina I, Li-Beisson Y, Beisson F, Ohlrogge JB, Pollard M. 2009. Identification of an Arabidopsis feruloyl-coenzyme a transferase required for suberin synthesis. Plant Physiol 151:1317–28
    [Google Scholar]
  117. 116.
    Morris SC, Forbes-Smith MR, Scriven FM. 1989. Determination of optimum conditions for suberization, wound periderm formation, cellular desiccation and pathogen resistance in wounded Solanum tuberosum tubers. Physiol. Mol. Plant Pathol. 35:177–90
    [Google Scholar]
  118. 117.
    Mullick DB. 1975. A new tissue essential to necrophylactic periderm formation in the bark of four conifers. Can. J. Bot. 53:2443–57
    [Google Scholar]
  119. 118.
    Mullick DB. 1977. The non-specific nature of defense in bark and wood during wounding, insect and pathogen attack. Recent Adv. Phytochem. 11:395–441
    [Google Scholar]
  120. 119.
    Myśkow E. 2014. Occurrence of atypical phellem in representatives of Cornus. Int. J. Plant Sci. 175:328–35
    [Google Scholar]
  121. 120.
    Namyslov J, Bauriedlová Z, Janoušková J, Soukup A, Tylová E 2020. Exodermis and endodermis respond to nutrient deficiency in nutrient-specific and localized manner. Plants 9:201
    [Google Scholar]
  122. 121.
    Negrel J, Pollet B, Lapierre C 1996. Ether-linked ferulic acid amides in natural and wound periderms of potato tuber. Phytochemistry 43:1195–99
    [Google Scholar]
  123. 122.
    Nelson P, Wilhelm S 1957. Some anatomic aspects of the strawberry root. Hilgardia 26:631–42
    [Google Scholar]
  124. 123.
    Neumann M, Lawes MJ. 2021. Quantifying carbon in tree bark: The importance of bark morphology and tree size. Methods Ecol. Evol. 12:646–54
    [Google Scholar]
  125. 124.
    Oomen RJFJ, Doeswijk-Voragen CHL, Bush MS, Vincken J-P, Borkhardt B et al. 2002. In muro fragmentation of the rhamnogalacturonan I backbone in potato (Solanum tuberosum L.) results in a reduction and altered location of the galactan and arabinan side-chains and abnormal periderm development. Plant J 30:403–13
    [Google Scholar]
  126. 125.
    Pereira H. 2007. Cork: Biology, Production and Uses Amsterdam: Elsevier
  127. 126.
    Pereira H. 2013. Variability of the chemical composition of cork. BioResources 8:2246–56
    [Google Scholar]
  128. 127.
    Peterson RL, Barker WG. 1979. Early tuber development from explanted stolon nodes of Solanum tuberosum var. Kennebec. Bot. Gaz. 140:398–406
    [Google Scholar]
  129. 128.
    Phillips TL, Galtier J. 2005. Evolutionary and ecological perspectives of Late Paleozoic ferns. Rev. Palaeobot. Palynol. 135:165–203
    [Google Scholar]
  130. 129.
    Phillips TL, Galtier J. 2011. Evolutionary and ecological perspectives of late Paleozoic ferns. Rev. Palaeobot. Palynol. 164:1–29
    [Google Scholar]
  131. 130.
    Ragni L, Greb T. 2018. Secondary growth as a determinant of plant shape and form. Semin. Cell Dev. Biol. 79:58–67
    [Google Scholar]
  132. 131.
    Randall RS, Miyashima S, Blomster T, Zhang J, Elo A et al. 2015. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins. Biol. Open 4:1229–36
    [Google Scholar]
  133. 132.
    Reed FD. 1949. Notes on the anatomy of two Carboniferous plants Sphenophyllum and Psaronius. Bot. Gaz. 110:501–10
    [Google Scholar]
  134. 133.
    Romberger JA, Hejnowicz Z, Hill JF 1993. Plant Structure: Function and Development. A Treatise on Anatomy and Vegetative Development with Special Reference to Woody Plants Berlin: Springer-Verlag
  135. 134.
    Ron M, Dorrity MW, de Lucas M, Toal T, Hernandez RI et al. 2013. Identification of novel loci regulating interspecific variation in root morphology and cellular development in tomato. Plant Physiol 162:755–68
    [Google Scholar]
  136. 135.
    Rosell JA. 2019. Bark in woody plants: understanding the diversity of a multifunctional structure. Integr. Comp. Biol. 59:535–47
    [Google Scholar]
  137. 136.
    Roth I. 1981. Structural Patterns of Tropical Barks Berlin: Borntraeger
  138. 137.
    Scheckler SE, Banks HP. 1971. Anatomy and relationships of some Devonian progymnosperms from New York. Am. J. Bot. 58:737–51
    [Google Scholar]
  139. 138.
    Scheres B. 2007. Stem-cell niches: nursery rhymes across kingdoms. Nat. Rev. Mol. Cell Biol. 8:345–54
    [Google Scholar]
  140. 139.
    Schreiber L, Franke RB. 2011. Endodermis and exodermis in roots. eLS https://doi.org/10.1002/9780470015902.a0002086.pub2
    [Crossref] [Google Scholar]
  141. 140.
    Schreiber L, Franke R, Hartmann K 2005. Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration. Planta 220:520–30
    [Google Scholar]
  142. 141.
    Schweingruber FH, Börner A. 2018. The Plant Stem: A Microscopic Aspect Cham, Switz: Springer Int.
  143. 142.
    Serra O, Chatterjee S, Figueras M, Molinas M, Stark RE 2014. Deconstructing a plant macromolecular assembly: chemical architecture, molecular flexibility, and mechanical performance of natural and engineered potato suberins. Biomacromolecules 15:799–811
    [Google Scholar]
  144. 143.
    Serra O, Hohn C, Franke R, Prat S, Molinas M, Figueras M 2010. A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. Plant J. 62:277–90This article reports that ferulic acid esters in suberin are key for creating a functional periderm barrier.
    [Google Scholar]
  145. 144.
    Serra O, Soler M, Hohn C, Franke R, Schreiber L et al. 2009. Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration. J. Exp. Bot. 60:697–707
    [Google Scholar]
  146. 145.
    Serra O, Soler M, Hohn C, Sauveplane V, Pinot F et al. 2009. CYP86A33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm's water barrier function. Plant Physiol 149:1050–60This article highlights bifunctional fatty acids for suberin deposition and ultrastructure and periderm barrier function.
    [Google Scholar]
  147. 146.
    Shi D, Lebovka I, López-Salmerón V, Sanchez P, Greb T 2019. Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Development 146:dev171355
    [Google Scholar]
  148. 147.
    Shibui H, Sano Y. 2018. Structure and formation of phellem of Betula maximowicziana. IAWA J 39:18–36
    [Google Scholar]
  149. 148.
    Shukla V, Han J-P, Cléard F, Legendre-Lefebvre L, Gully K et al. 2021. Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors. PNAS 118:e2101730118
    [Google Scholar]
  150. 149.
    Silva SP, Ma Sabino, Fernandes EM, Correlo VM, Boesel LF, Reis RL. 2005. Cork: properties, capabilities and applications. Int. Mater. Rev. 53:345–65
    [Google Scholar]
  151. 150.
    Simard M, Rioux D, Laflamme G. 2001. Formation of ligno-suberized tissues in jack pine resistant to the European race of Gremmeniella abietina. Phytopathology 91:1128–40
    [Google Scholar]
  152. 151.
    Smetana O, Makila R, Lyu M, Amiryousefi A, Sanchez Rodriguez F et al. 2019. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565:485–89This article highlights partial common ontogenesis of the vascular cambium and phellogen.
    [Google Scholar]
  153. 152.
    Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M 2007. A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol 144:419–31This was the first cork transcriptome analysis to report candidate genes and processes for phellem formation.
    [Google Scholar]
  154. 153.
    Soler M, Verdaguer R, Fernández-Piñán S, Company-Arumí D, Boher P et al. 2020. Silencing against the conserved NAC domain of the potato StNAC103 reveals new NAC candidates to repress the suberin associated waxes in phellem. Plant Sci 291:110360
    [Google Scholar]
  155. 154.
    Stein WE, Berry CM, Morris JL, Hernick LV, Mannolini F et al. 2020. Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Curr. Biol. 30:421–31.e2
    [Google Scholar]
  156. 155.
    Takahashi A, Kato M. 1988. Developmental anatomy of vascular cambium and periderm of Botrypus virginianus and its bearing on the systematic position of ophioglossaceae. Bot. Mag. Tokyo 101:373
    [Google Scholar]
  157. 156.
    Tanios S, Thangavel T, Eyles A, Tegg RS, Nichols DS et al. 2020. Suberin deposition in potato periderm: a novel resistance mechanism against tuber greening. New Phytol 225:1273–84
    [Google Scholar]
  158. 157.
    Taylor EL, Taylor TN, Krings M 2009. Paleobotany: The Biology and Evolution of Fossil Plants Burlington, Mass: Academic
  159. 158.
    Teixeira RT, Fortes AM, Bai H, Pinheiro C, Pereira H. 2018. Transcriptional profiling of cork oak phellogenic cells isolated by laser microdissection. Planta 247:317–38
    [Google Scholar]
  160. 159.
    Thangavel T, Tegg RS, Wilson CR. 2016. Toughing it out—disease-resistant potato mutants have enhanced tuber skin defenses. Phytopathology 106:474–83
    [Google Scholar]
  161. 160.
    Thomson N, Evert RF, Kelman A. 1995. Wound healing in whole potato tubers: a cytochemical, fluorescence, and ultrastructural analysis of cut and bruise wounds. Can. J. Bot. 73:1436–50
    [Google Scholar]
  162. 161.
    Tippett J, O'Brien T. 1976. The structure of Eucalypt roots. Aust. J. Bot. 24:619–32
    [Google Scholar]
  163. 162.
    To A, Joubès J, Thueux J, Kazaz S, Lepiniec L, Baud S 2020. AtMYB92 enhances fatty acid synthesis and suberin deposition in leaves of Nicotiana benthamiana. Plant J. 103:660–76
    [Google Scholar]
  164. 163.
    Trockenbrodt M. 1990. Survey and discussion of the terminology used in bark anatomy. IAWA J 11:141–66
    [Google Scholar]
  165. 164.
    Tylová E, Pecková E, Blascheová Z, Soukup A. 2017. Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors. Ann. Bot. 120:71–85
    [Google Scholar]
  166. 165.
    van der Graaff E, Hooykaas PJJ, Keller B. 2002. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number. Plant J. 32:819–30
    [Google Scholar]
  167. 166.
    Verdaguer R, Soler M, Serra O, Garrote A, Fernández S et al. 2016. Silencing of the potato StNAC103 gene enhances the accumulation of suberin polyester and associated wax in tuber skin. J. Exp. Bot. 67:5415–27This article functionally characterizes the phellem regulator StNAC103 acting as a suberin repressor.
    [Google Scholar]
  168. 167.
    Vulavala VKR, Fogelman E, Faigenboim A, Shoseyov O, Ginzberg I. 2019. The transcriptome of potato tuber phellogen reveals cellular functions of cork cambium and genes involved in periderm formation and maturation. Sci. Rep. 9:10216
    [Google Scholar]
  169. 168.
    Wacowska M. 1985. Ontogenesis and structure of periderm in Acer negundo L. and x Fatshedera lizei Guillaum. Acta Soc. Bot. Pol. 54:17–27
    [Google Scholar]
  170. 169.
    Wahrenburg Z, Benesch E, Lowe C, Jimenez J, Vulavala VKR et al. 2021. Transcriptional regulation of wound suberin deposition in potato cultivars with differential wound healing capacity. Plant J. 107:77–79
    [Google Scholar]
  171. 170.
    Wang YZ, Zhang S, Dai MS, Shi ZB. 2014. Pigmentation in sand pear (Pyrus pyrifolia) fruit: biochemical characterization, gene discovery and expression analysis with exocarp pigmentation mutant. Plant Mol. Biol. 85:123–34
    [Google Scholar]
  172. 171.
    Wei X, Lu W, Mao L, Han X, Wei X et al. 2020. ABF2 and MYB transcription factors regulate feruloyl transferase FHT involved in ABA-mediated wound suberization of kiwifruit. J. Exp. Bot. 71:305–17
    [Google Scholar]
  173. 172.
    Wei X, Mao L, Wei X, Xia M, Xu C. 2020. MYB41, MYB107, and MYC2 promote ABA-mediated primary fatty alcohol accumulation via activation of AchnFAR in wound suberization in kiwifruit. Hortic. Res. 7:86
    [Google Scholar]
  174. 173.
    Weiland JE, Stanosz GR. 2007. The histology of hybrid poplar clones inoculated with Septoria musiva. Plant Dis 91:1524–30
    [Google Scholar]
  175. 174.
    Wunderling A, Ripper D, Barra-Jimenez A, Mahn S, Sajak K et al. 2018. A molecular framework to study periderm formation in Arabidopsis. New Phytol 219:216–29This article presents the Arabidopsis root as a future model for studying periderm development.
    [Google Scholar]
  176. 175.
    Xiao W, Molina D, Wunderling A, Ripper D, Vermeer JEM, Ragni L. 2020. Pluripotent pericycle cells trigger different growth outputs by integrating developmental cues into distinct regulatory modules. Curr. Biol. 30:4384–98.e5This article shows that auxin acts via WOX4 and BP to promote phellogen establishment and maintenance.
    [Google Scholar]
  177. 176.
    Yadav V, Molina I, Ranathunge K, Castillo IQ, Rothstein SJ, Reed JW. 2014. ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell 26:3569–88
    [Google Scholar]
  178. 177.
    Ye L, Wang X, Lyu M, Siligato R, Eswaran G et al. 2021. Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes. Curr. Biol. 31:3365–73.e7
    [Google Scholar]
  179. 178.
    Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J et al. 2019. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nat. Plants 5:1033–42
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102720-031405
Loading
/content/journals/10.1146/annurev-arplant-102720-031405
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error