1932

Abstract

Many DNA-processing enzymes have been shown to contain a [4Fe4S] cluster, a common redox cofactor in biology. Using DNA electrochemistry, we find that binding of the DNA polyanion promotes a negative shift in [4Fe4S] cluster potential, which corresponds thermodynamically to a ∼500-fold increase in DNA-binding affinity for the oxidized [4Fe4S]3+ cluster versus the reduced [4Fe4S]2+ cluster. This redox switch can be activated from a distance using DNA charge transport (DNA CT) chemistry. DNA-processing proteins containing the [4Fe4S] cluster are enumerated, with possible roles for the redox switch highlighted. A model is described where repair proteins may signal one another using DNA-mediated charge transport as a first step in their search for lesions. The redox switch in eukaryotic DNA primases appears to regulate polymerase handoff, and in DNA polymerase δ, the redox switch provides a means to modulate replication in response to oxidative stress. We thus describe redox signaling interactions of DNA-processing [4Fe4S] enzymes, as well as the most interesting potential players to consider in delineating new DNA-mediated redox signaling networks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-110644
2019-06-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biochem/88/1/annurev-biochem-013118-110644.html?itemId=/content/journals/10.1146/annurev-biochem-013118-110644&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Beinert H, Holm RH, Münck E 1997. Iron-sulfur clusters: Nature's modular, multipurpose structures. Science 277:653–59
    [Google Scholar]
  2. 2. 
    Rees DC, Howard JB. 2003. The interface between the biological and inorganic worlds: iron-sulfur metalloclusters. Science 300:929–31
    [Google Scholar]
  3. 3. 
    Meyer J. 2008. Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. J. Biol. Inorg. Chem. 13:157–70
    [Google Scholar]
  4. 4. 
    Dey A, Jenney FE, Adams MWW, Babini E, Takahashi Y et al. 2007. Solvent tuning of electrochemical potentials in the active sites of HiPIP versus ferredoxin. Science 318:1464–68
    [Google Scholar]
  5. 5. 
    Ha Y, Arnold AR, Nuñez NN, Bartels PL, Zhou A et al. 2017. Sulfur K-edge XAS studies of the effect of DNA binding on the [Fe4S4] site in EndoIII and MutY. J. Am. Chem. Soc. 139:11434–42
    [Google Scholar]
  6. 6. 
    Bertini I, Gray HB, Lippard SJ, Valentine JS 1994. Bioinorganic Chemistry Sausalito, CA: Univ. Sci. Books
  7. 7. 
    Mortenson LE, Valentine RC, Carnahan JE 1962. An electron transport factor from Clostridium pasteurianum. Biochem. Biophys. Res. Commun 7:448–52
    [Google Scholar]
  8. 8. 
    Sands RH, Beinert H. 1960. Studies on mitochondria and submitochondrial particles by paramagnetic resonance (EPR) spectroscopy. Biochem. Biophys. Res. Commun. 3:47–52
    [Google Scholar]
  9. 9. 
    Arnon DI, Whatley FR, Allen MB 1957. Triphosphopyridine nucleotide as a catalyst of photosynthetic phosphorylation. Nature 180:182–85
    [Google Scholar]
  10. 10. 
    Gray HB, Winkler JR. 2010. Electron flow through metalloproteins. Biochim. Biophys. Acta Bioenerg. 1797:1563–72
    [Google Scholar]
  11. 11. 
    Winkler JR, Gray HB. 2014. Electron flow through metalloproteins. Chem. Rev. 114:3369–80
    [Google Scholar]
  12. 12. 
    Cunningham RP, Asahara H, Bank JF, Scholes CP, Salerno JC et al. 1989. Endonuclease III is an iron-sulfur protein. Biochemistry 28:4450–55
    [Google Scholar]
  13. 13. 
    Rouault TA. 2015. Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nat. Rev. Mol. Cell Biol. 16:45–55
    [Google Scholar]
  14. 14. 
    Johnson DC, Dean DR, Smith AD, Johnson MK 2005. Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74:247–81
    [Google Scholar]
  15. 15. 
    Braymer JJ, Lill R. 2017. Iron-sulfur cluster biogenesis and trafficking in mitochondria. J. Biol. Chem. 292:12754–63
    [Google Scholar]
  16. 16. 
    Paul VD, Lill R. 2015. Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability. Biochim. Biophys. Acta Mol. Cell Res. 1853:1528–39
    [Google Scholar]
  17. 17. 
    Rouault TA, Maio N. 2017. Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways. J. Biol. Chem. 292:12744–53
    [Google Scholar]
  18. 18. 
    Rubio LM, Ludden PW. 2008. Biosynthesis of the cofactor of nitrogenase. Annu. Rev. Microbiol. 62:93–111
    [Google Scholar]
  19. 19. 
    Outten FW. 2015. Recent advances in the Suf Fe-S cluster biogenesis pathway: beyond the Proteobacteria. Biochim. Biophys. Acta Mol. Cell Res. 1853:1464–69
    [Google Scholar]
  20. 20. 
    Ezraty B, Vergnes A, Banzhaf M, Duverger Y, Huguenot A et al. 2013. Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science 340:1583–87
    [Google Scholar]
  21. 21. 
    White MF, Dillingham MS. 2012. Iron-sulphur clusters in nucleic acid processing enzymes. Curr. Opin. Struct. Biol. 22:94–100
    [Google Scholar]
  22. 22. 
    Guan Y, Manuel RC, Arvai AS, Parikh SS, Mol CD et al. 1998. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nat. Struct. Biol. 5:1058–64
    [Google Scholar]
  23. 23. 
    Hinks JA, Evans MCW, De Miguel Y, Sartori AA, Jiricny J, Pearl LH 2002. An iron-sulfur cluster in the Family 4 uracil-DNA glycosylases. J. Biol. Chem. 277:16936–40
    [Google Scholar]
  24. 24. 
    Bartels PL, O'Brien E, Barton JK 2017. DNA signaling by iron-sulfur cluster proteins. Iron-Sulfur Clusters in Chemistry and Biology, Vol. 2 Biochemistry, Biosynthesis and Human Diseases, ed. TA Rouault 405–23 Berlin/Boston: De Gruyter. 2nd ed.
    [Google Scholar]
  25. 25. 
    Zhang F, Scheerer P, Oberpichler I, Lamparter T, Krauss N 2013. Crystal structure of a prokaryotic (6-4) photolyase with an Fe-S cluster and a 6,7-dimethyl-8-ribityllumazine antenna chromophore. PNAS 110:7217–22
    [Google Scholar]
  26. 26. 
    Zhang J, Kasciukovic T, White MF 2012. The CRISPR associated protein Cas4 is a 5′ to 3′ DNA exonuclease with an iron-sulfur cluster. PLOS ONE 7:e47232
    [Google Scholar]
  27. 27. 
    Fuss JO, Tsai CL, Ishida JP, Tainer JA 2015. Emerging critical roles of Fe-S clusters in DNA replication and repair. Biochim. Biophys. Acta Mol. Cell Res. 1853:1253–71
    [Google Scholar]
  28. 28. 
    Silva RMB, Zhou A, Grodick MA, Barton JK 2016. DNA-mediated redox signaling in bacterial nucleotide excision repair by UvrC. Biophys. J. 110:62–63
    [Google Scholar]
  29. 29. 
    Hirata A, Klein BJ, Murakami KS 2008. The X-ray crystal structure of RNA polymerase from Archaea. Nature 451:851–54
    [Google Scholar]
  30. 30. 
    Benjdia A, Heil K, Barends TRM, Carell T, Schlichting I 2012. Structural insights into recognition and repair of UV-DNA damage by Spore Photoproduct Lyase, a radical SAM enzyme. Nucleic Acids Res 40:9308–18
    [Google Scholar]
  31. 31. 
    Rouault TA. 2015. Iron-sulfur proteins hiding in plain sight. Nat. Chem. Biol. 11:442–45
    [Google Scholar]
  32. 32. 
    Boal AK, Yavin E, Lukianova OA, O'Shea VL, David SS, Barton JK 2005. DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters. Biochemistry 44:8397–407
    [Google Scholar]
  33. 33. 
    Fu W, O'Handley S, Cunningham RP, Johnson MK 1992. The role of the iron-sulfur cluster in Escherichia coli endonuclease III. A resonance Raman study. J. Biol. Chem. 267:16135–37
    [Google Scholar]
  34. 34. 
    Thayer MM, Ahern H, Xing D, Cunningham RP, Tainer JA 1995. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J 14:4108–20
    [Google Scholar]
  35. 35. 
    Porello SL, Cannon MJ, David SS 1998. A substrate recognition role for the [4Fe-4S]2+ cluster of the DNA repair glycosylase MutY. Biochemistry 37:6465–75
    [Google Scholar]
  36. 36. 
    Imlay JA. 2013. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11:443–54
    [Google Scholar]
  37. 37. 
    Genereux JC, Barton JK. 2010. Mechanisms for DNA charge transport. Chem. Rev. 110:1642–62
    [Google Scholar]
  38. 38. 
    Eley DD, Spivey DI. 1962. Semiconductivity of organic substances. IX. Nucleic acid in the dry state. Trans. Faraday Soc. 58:411–15
    [Google Scholar]
  39. 39. 
    Murphy CJ, Arkin MR, Jenkins Y, Ghatlia ND, Bossmann SH et al. 1993. Long-range photoinduced electron transfer through a DNA helix. Science 262:1025–29
    [Google Scholar]
  40. 40. 
    Kelley SO, Barton JK. 1999. Electron transfer between bases in double helical DNA. Science 283:375–81
    [Google Scholar]
  41. 41. 
    Nunez ME, Hall DB, Barton JK 1999. Long-range oxidative damage to DNA: effects of distance and sequence. Chem. Biol. 6:85–97
    [Google Scholar]
  42. 42. 
    O'Neill MA, Becker HC, Wan C, Barton JK, Zewail AH 2003. Ultrafast dynamics in DNA-mediated electron transfer: base gating and the role of temperature. Angew. Chem. Int. Ed. Engl. 42:5896–900
    [Google Scholar]
  43. 43. 
    Odom DT, Barton JK. 2001. Long-range oxidative damage in DNA/RNA duplexes. Biochemistry 40:8727–37
    [Google Scholar]
  44. 44. 
    O'Neill MA, Barton JK. 2002. 2-Aminopurine: a probe of structural dynamics and charge transfer in DNA and DNA:RNA hybrids. J. Am. Chem. Soc. 124:13053–66
    [Google Scholar]
  45. 45. 
    Giese B, Graber M, Cordes M 2008. Electron transfer in peptides and proteins. Curr. Opin. Chem. Biol. 12:755–59
    [Google Scholar]
  46. 46. 
    Phillips R, Kondev J, Theriot J 2008. Physical Biology of the Cell London: Garland Science, Taylor and Francis Group
  47. 47. 
    Rajski SR, Barton JK. 2001. How different DNA-binding proteins affect long-range oxidative damage to DNA. Biochemistry 40:5556–64
    [Google Scholar]
  48. 48. 
    Boon EM, Salas JE, Barton JK 2002. An electrical probe of protein-DNA interactions on DNA-modified surfaces. Nat. Biotechnol. 20:282–86
    [Google Scholar]
  49. 49. 
    Nunez ME, Noyes KT, Barton JK 2002. Oxidative charge transport through DNA in nucleosome core particles. Chem. Biol. 9:403–15
    [Google Scholar]
  50. 50. 
    Slinker JD, Muren NB, Renfrew SE, Barton JK 2011. DNA charge transport over 34 nm. Nat. Chem. 3:228–33
    [Google Scholar]
  51. 51. 
    Slinker JD, Muren NB, Gorodetsky AA, Barton JK 2010. Multiplexed DNA-modified electrodes. J. Am. Chem. Soc. 132:2769–74
    [Google Scholar]
  52. 52. 
    Pheeney CG, Arnold AR, Grodick MA, Barton JK 2013. Multiplexed electrochemistry of DNA-bound metalloproteins. J. Am. Chem. Soc. 135:11869–78
    [Google Scholar]
  53. 53. 
    Bartels PL, Stodola JL, Burgers PMJ, Barton JK 2017. A redox role for the [4Fe4S] cluster of yeast DNA polymerase δ. J. Am. Chem. Soc. 139:18339–48
    [Google Scholar]
  54. 54. 
    O'Brien E, Holt ME, Thompson MK, Salay LE, Ehlinger AC et al. 2017. The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport. Science 355:eaag1789
    [Google Scholar]
  55. 55. 
    Tse ECM, Zwang TJ, Barton JK 2017. The oxidation state of [4Fe4S] clusters modulates the DNA-binding affinity of DNA repair proteins. J. Am. Chem. Soc. 139:12784–92
    [Google Scholar]
  56. 56. 
    Mui TP, Fuss JO, Ishida JP, Tainer JA, Barton JK 2011. ATP-stimulated, DNA-mediated redox signaling by XPD, a DNA repair and transcription helicase. J. Am. Chem. Soc. 133:16378–81
    [Google Scholar]
  57. 57. 
    Sontz PA, Mui TP, Fuss JO, Tainer JA, Barton JK 2012. DNA charge transport as a first step in coordinating the detection of lesions by repair proteins. PNAS 109:1856–61
    [Google Scholar]
  58. 58. 
    Ekanger L, Oyala PH, Moradian A, Sweredoski MJ, Barton JK 2018. Nitric oxide modulates endonuclease III redox activity by a 800 mV negative shift upon [4Fe4S] cluster nitrosylation. J. Am. Chem. Soc 140:11800–10
    [Google Scholar]
  59. 59. 
    Zhou A. 2018. Investigations of DNA-mediated redox signaling between E. coli DNA repair pathways PhD Thesis, Calif. Inst. Technol., Pasadena, CA
  60. 60. 
    Fromme JC, Verdine GL. 2003. Structure of a trapped endonuclease III-DNA covalent intermediate. EMBO J 22:3461–71
    [Google Scholar]
  61. 61. 
    McDonnell KJ, Chemler JA, Bartels PL, O'Brien E, Marvin ML et al. 2018. A human MUTYH variant linking colonic polyposis to redox degradation of the [4Fe4S]2+ cluster. Nat. Chem. 10:873–80
    [Google Scholar]
  62. 62. 
    Grodick MA, Segal HM, Zwang TJ, Barton JK 2014. DNA-mediated signaling by proteins with 4Fe–4S clusters is necessary for genomic integrity. J. Am. Chem. Soc. 136:6470–78
    [Google Scholar]
  63. 63. 
    Gorodetsky AA, Boal AK, Barton JK. 2006. Direct electrochemistry of endonuclease III in the presence and absence of DNA. J. Am. Chem. Soc. 128:12082–83
    [Google Scholar]
  64. 64. 
    Bartels PL, Zhou A, Arnold AR, Nuñez NN, Crespilho FN et al. 2017. Electrochemistry of the [4Fe4S] cluster in base excision repair proteins: tuning the redox potential with DNA. Langmuir 33:2523–30
    [Google Scholar]
  65. 65. 
    Klinge S, Hirst J, Maman JD, Krude T, Pellegrini L 2007. An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat. Struct. Mol. Biol. 14:875–77
    [Google Scholar]
  66. 66. 
    Weiner BE, Huang H, Dattilo BM, Nilges MJ, Fanning E, Chazin WJ 2007. An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase. J. Biol. Chem. 282:33444–51
    [Google Scholar]
  67. 67. 
    Ren B, Duan X, Ding H 2009. Redox control of the DNA damage-inducible protein DinG helicase activity via its iron-sulfur cluster. J. Biol. Chem. 284:4829–35
    [Google Scholar]
  68. 68. 
    Rudolf J, Makrantoni V, Ingledew WJ, Stark MJR, White MF 2006. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol. Cell 23:801–8
    [Google Scholar]
  69. 69. 
    Yavin E, Boal AK, Stemp EDA, Boon EM, Livingston AL et al. 2005. Protein-DNA charge transport: redox activation of a DNA repair protein by guanine radical. PNAS 102:3546–51
    [Google Scholar]
  70. 70. 
    Ciccia A, Elledge SJ. 2010. The DNA damage response: making it safe to play with knives. Mol. Cell 40:179–204
    [Google Scholar]
  71. 71. 
    Marsden CG, Dragon JA, Wallace SS, Sweasy JB 2017. Base excision repair variants in cancer. Methods Enzymol 591:119–57
    [Google Scholar]
  72. 72. 
    Gorman J, Greene EC. 2008. Visualizing one-dimensional diffusion of proteins along DNA. Nat. Struct. Mol. Biol. 15:768–74
    [Google Scholar]
  73. 73. 
    Christmann M, Kaina B. 2013. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res 41:8403–20
    [Google Scholar]
  74. 74. 
    Boal AK, Barton JK. 2005. Electrochemical detection of lesions in DNA. Bioconjug. Chem. 16:312–21
    [Google Scholar]
  75. 75. 
    Hall DB, Holmlin RE, Barton JK 1996. Oxidative DNA damage through long-range electron transfer. Nature 382:731–35
    [Google Scholar]
  76. 76. 
    David SS, Williams SD. 1998. Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem. Rev. 98:1221–62
    [Google Scholar]
  77. 77. 
    David SS, O'Shea VL, Kundu S 2007. Base-excision repair of oxidative DNA damage. Nature 447:941–50
    [Google Scholar]
  78. 78. 
    Engstrom LM, Partington OA, David SS 2012. An iron-sulfur cluster loop motif in the Archaeoglobus fulgidus uracil-DNA glycosylase mediates efficient uracil recognition and removal. Biochemistry 51:5187–97
    [Google Scholar]
  79. 79. 
    Lukianova OA, David SS. 2005. A role for iron–sulfur clusters in DNA repair. Curr. Opin. Chem. Biol. 9:145–51
    [Google Scholar]
  80. 80. 
    Weren RDA, Ligtenberg MJL, Geurts van Kessel A, De Voer RM, Hoogerbrugge N, Kuiper RP 2018. NTHL1 and MUTYH polyposis syndromes: two sides of the same coin?. J. Pathol. 244:135–42
    [Google Scholar]
  81. 81. 
    Boal AK, Genereux JC, Sontz PA, Gralnick JA, Newman DK, Barton JK 2009. Redox signaling between DNA repair proteins for efficient lesion detection. PNAS 106:15237–42
    [Google Scholar]
  82. 82. 
    Romano CA, Sontz PA, Barton JK 2011. Mutants of the base excision repair glycosylase, endonuclease III: DNA charge transport as a first step in lesion detection. Biochemistry 50:6133–45
    [Google Scholar]
  83. 83. 
    Wu Y, Brosh RM. 2012. DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster. Nucleic Acids Res 40:4247–60
    [Google Scholar]
  84. 84. 
    Brosh RM. 2013. DNA helicases involved in DNA repair and their roles in cancer. Nat. Rev. Cancer 13:542–58
    [Google Scholar]
  85. 85. 
    Vannier JB, Sarek G, Boulton SJ 2014. RTEL1: Functions of a disease-associated helicase. Trends Cell Biol 24:416–25
    [Google Scholar]
  86. 86. 
    Voloshin ON, Camerini-Otero RD. 2007. The DinG protein from Escherichia coli is a structure-specific helicase. J. Biol. Chem. 282:18437–47
    [Google Scholar]
  87. 87. 
    Brown LT, Sutera VA, Zhou S, Weitzel CS, Cheng Y, Lovett ST 2015. Connecting replication and repair: YoaA, a helicase-related protein, promotes azidothymidine tolerance through association with Chi, an accessory clamp loader protein. PLOS Genet 11:e1005651
    [Google Scholar]
  88. 88. 
    Van Houten B, Kuper J, Kisker C 2016. Role of XPD in cellular functions: to TFIIH and beyond. DNA Repair 44:136–42
    [Google Scholar]
  89. 89. 
    Brosh RM, Cantor SB. 2014. Molecular and cellular functions of the FANCJ DNA helicase defective in cancer and in Fanconi anemia. Front. Genet. 5:372
    [Google Scholar]
  90. 90. 
    Bharti SK, Khan I, Banerjee T, Sommers JA, Wu Y, Brosh RM 2014. Molecular functions and cellular roles of the ChlR1 (DDX11) helicase defective in the rare cohesinopathy Warsaw breakage syndrome. Cell. Mol. Life Sci. 71:2625–39
    [Google Scholar]
  91. 91. 
    Guo M, Hundseth K, Ding H, Vidhyasagar V, Inoue A et al. 2015. A distinct triplex DNA unwinding activity of ChlR1 helicase. J. Biol. Chem. 290:5174–89
    [Google Scholar]
  92. 92. 
    Yeeles JTP, Cammack R, Dillingham MS 2009. An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases. J. Biol. Chem. 284:7746–55
    [Google Scholar]
  93. 93. 
    Lenhart JS, Schroeder JW, Walsh BW, Simmons LA 2012. DNA repair and genome maintenance in Bacillus subtilis. Microbiol. Mol. Biol. Rev 76:530–64
    [Google Scholar]
  94. 94. 
    Saikrishnan K, Yeeles JT, Gilhooly NS, Krajewski WW, Dillingham MS, Wigley DB 2012. Insights into Chi recognition from the structure of an AddAB-type helicase-nuclease complex. EMBO J 31:1568–78
    [Google Scholar]
  95. 95. 
    Kisker C, Kuper J, Van Houten B 2013. Prokaryotic nucleotide excision repair. Cold Spring Harb. Perspect. Biol. 5:a012591
    [Google Scholar]
  96. 96. 
    Golinelli MP, Chmiel NH, David SS 1999. Site-directed mutagenesis of the cysteine ligands to the [4Fe–4S] cluster of Escherichia coli MutY. Biochemistry 38:6997–7007
    [Google Scholar]
  97. 97. 
    Cheadle JP, Sampson JR. 2007. MUTYH-associated polyposis—from defect in base excision repair to clinical genetic testing. DNA Repair 6:274–79
    [Google Scholar]
  98. 98. 
    Fan L, Fuss JO, Cheng QJ, Arvai AS, Hammel M et al. 2008. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133:789–800
    [Google Scholar]
  99. 99. 
    Wolski SC, Kuper J, Hänzelmann P, Truglio JJ, Croteau DL et al. 2008. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLOS Biol 6:1332–42
    [Google Scholar]
  100. 100. 
    Lanz ND, Booker SJ. 2015. Auxiliary iron-sulfur cofactors in radical SAM enzymes. Biochim. Biophys. Acta Mol. Cell Res. 1853:1316–34
    [Google Scholar]
  101. 101. 
    Maiocco SJ, Grove TL, Booker SJ, Elliott SJ 2015. Electrochemical resolution of the [4Fe-4S] centers of the AdoMet radical enzyme BtrN: evidence of proton coupling and an unusual, low-potential auxiliary cluster. J. Am. Chem. Soc. 137:8664–67
    [Google Scholar]
  102. 102. 
    Marquet A, Florentin D, Ploux O, Bui BTS 1998. In vivo formation of C-S bonds in biotin. An example of radical chemistry under reducing conditions. J. Phys. Org. Chem. 11:529–35
    [Google Scholar]
  103. 103. 
    Anton BP, Saleh L, Benner JS, Raleigh EA, Kasif S, Roberts RJ 2008. RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli. . PNAS 105:1826–31
    [Google Scholar]
  104. 104. 
    Schwalm EL, Grove TL, Booker SJ, Boal AK 2016. Crystallographic capture of a radical S-adenosylmethionine enzyme in the act of modifying tRNA. Science 352:309–12
    [Google Scholar]
  105. 105. 
    Kneuttinger AC, Heil K, Kashiwazaki G, Carell T 2013. The radical SAM enzyme spore photoproduct lyase employs a tyrosyl radical for DNA repair. Chem. Commun. 49:722–24
    [Google Scholar]
  106. 106. 
    Moran U, Phillips R, Milo R 2010. SnapShot: key numbers in biology. Cell 141:1262
    [Google Scholar]
  107. 107. 
    Ganai RA, Johansson E. 2016. DNA replication—a matter of fidelity. Mol. Cell 62:745–55
    [Google Scholar]
  108. 108. 
    Netz DJA, Stith CM, Stümpfig M, Köpf G, Vogel D et al. 2011. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat. Chem. Biol. 8:125–32
    [Google Scholar]
  109. 109. 
    Pokharel S, Campbell JL. 2012. Cross talk between the nuclease and helicase activities of Dna2: role of an essential iron-sulfur cluster domain. Nucleic Acids Res 40:7821–30
    [Google Scholar]
  110. 110. 
    Baranovskiy AG, Babayeva ND, Zhang Y, Gu J, Suwa Y et al. 2016. Mechanism of concerted RNA-DNA primer synthesis by the human primosome. J. Biol. Chem. 291:10006–20
    [Google Scholar]
  111. 111. 
    Johansson E, Majka J, Burgers PMJ 2001. Structure of DNA polymerase δ from Saccharomyces cerevisiae. J. Biol. Chem 276:43824–28
    [Google Scholar]
  112. 112. 
    Chilkova O, Jonsson B-H, Johansson E 2003. The quaternary structure of DNA polymerase ε from Saccharomyces cerevisiae. J. Biol. Chem 278:14082–86
    [Google Scholar]
  113. 113. 
    Nelson JR, Lawrence CW, Hinkle DC 1996. Thymine-thymine dimer bypass by yeast DNA polymerase ζ. Science 272:1646–49
    [Google Scholar]
  114. 114. 
    Makarova AV, Burgers PM. 2015. Eukaryotic DNA polymerase ζ. DNA Repair 29:47–55
    [Google Scholar]
  115. 115. 
    Yeeles JTP, Deegan TD, Janska A, Early A, Diffley JFX 2015. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519:431–35
    [Google Scholar]
  116. 116. 
    Fragkos M, Ganier O, Coulombe P, Méchali M 2015. DNA replication origin activation in space and time. Nat. Rev. Mol. Cell. Biol. 16:360–74
    [Google Scholar]
  117. 117. 
    Iyer LM, Leipe DD, Koonin EV, Aravind L 2004. Evolutionary history and higher order classification of AAA+ ATPases. J. Struct. Biol. 146:11–31
    [Google Scholar]
  118. 118. 
    Duncker BP, Chesnokov IN, McConkey BJ 2009. The origin recognition complex protein family. Genome Biol 10:214
    [Google Scholar]
  119. 119. 
    Moyer SE, Lewis PW, Botchan MR 2006. Isolation of the Cdc45/Mcm2–7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. PNAS 103:10236–41
    [Google Scholar]
  120. 120. 
    Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC 2006. Localization of MCM2–7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol. Cell 21:581–87
    [Google Scholar]
  121. 121. 
    Labib K, Gambus A. 2007. A key role for the GINS complex at DNA replication forks. Trends Cell Biol 17:271–78
    [Google Scholar]
  122. 122. 
    Burgers PMJ, Kunkel TA. 2017. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86:417–38
    [Google Scholar]
  123. 123. 
    Arezi B, Kuchta RD. 2000. Eukaryotic DNA primase. Trends Biochem. Sci. 25:572–76
    [Google Scholar]
  124. 124. 
    Kuchta RD, Stengel G. 2010. Mechanism and evolution of DNA primases. Biochim. Biophys. Acta Proteins Proteom. 1804:1180–89
    [Google Scholar]
  125. 125. 
    Frick DN, Richardson CC. 2001. DNA primases. Annu. Rev. Biochem. 70:39–80
    [Google Scholar]
  126. 126. 
    Netz DJA, Mascarenhas J, Stehling O, Pierik AJ, Lill R 2014. Maturation of cytosolic and nuclear iron-sulfur proteins. Trends Cell Biol 24:303–12
    [Google Scholar]
  127. 127. 
    Núñez-Ramírez R, Klinge S, Sauguet L, Melero R, Recuero-Checa MA et al. 2011. Flexible tethering of primase and DNA Pol α in the eukaryotic primosome. Nucleic Acids Res 39:8187–99
    [Google Scholar]
  128. 128. 
    Liu L, Huang M. 2015. Essential role of the iron-sulfur cluster binding domain of the primase regulatory subunit Pri2 in DNA replication initiation. Protein Cell 6:194–210
    [Google Scholar]
  129. 129. 
    Vaithiyalingam S, Warren EM, Eichman BF, Chazin WJ 2010. Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase. PNAS 107:13684–89
    [Google Scholar]
  130. 130. 
    O'Brien E, Salay LE, Epum EA, Friedman KL, Chazin WJ, Barton JK 2018. Yeast require redox switching in DNA primase. PNAS 115:13186–91
    [Google Scholar]
  131. 131. 
    Garg P, Burgers PMJ. 2005. DNA polymerases that propagate the eukaryotic DNA replication fork. Crit. Rev. Biochem. Mol. Biol. 40:115–28
    [Google Scholar]
  132. 132. 
    McElhinny SAN, Kumar D, Clark AB, Watt DL, Watts BE et al. 2010. Genome instability due to ribonucleotide incorporation into DNA. Nat. Chem. Biol. 6:774–81
    [Google Scholar]
  133. 133. 
    Lujan SA, Williams JS, Clausen AR, Clark AB, Kunkel TA 2013. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 50:437–43
    [Google Scholar]
  134. 134. 
    McElhinny SAN, Stith CM, Burgers PMJ, Kunkel TA 2007. Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase δ. J. Biol. Chem 282:2324–32
    [Google Scholar]
  135. 135. 
    Johnson RE, Klassen R, Prakash L, Prakash S 2015. A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands. Mol. Cell 59:163–75
    [Google Scholar]
  136. 136. 
    Jain R, Vanamee ES, Dzikovski BG, Buku A, Johnson RE et al. 2014. An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ε. J. Mol. Biol. 426:301–8
    [Google Scholar]
  137. 137. 
    Tsurimoto T, Stillman B. 1991. Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J. Biol. Chem. 266:1950–60
    [Google Scholar]
  138. 138. 
    Yuzhakov A, Kelman Z, Hurwitz J, O'Donnell M 1999. Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme. EMBO J 18:6189–99
    [Google Scholar]
  139. 139. 
    De Piccoli G, Katou Y, Itoh T, Nakato R, Shirahige K, Labib K 2012. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol. Cell 45:696–704
    [Google Scholar]
  140. 140. 
    Berti M, Vindigni A. 2016. Replication stress: getting back on track. Nat. Struct. Mol. Biol. 23:103–9
    [Google Scholar]
  141. 141. 
    Zhou C, Pourmal S, Pavletich NP 2015. Dna2 nuclease-helicase structure, mechanism and regulation by Rpa. eLife 4:e09832
    [Google Scholar]
  142. 142. 
    Hu J, Sun L, Shen F, Chen Y, Hua Y et al. 2012. The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing. Cell 149:1221–32
    [Google Scholar]
  143. 143. 
    Budd ME, Choe WC, Campbell JL 2000. The nuclease activity of the yeast Dna2 protein, which is related to the RecB-like nucleases, is essential in vivo. J. Biol. Chem. 275:16518–29
    [Google Scholar]
  144. 144. 
    Jennings ME, Lessner FH, Karr EA, Lessner DJ 2017. The [4Fe-4S] clusters of Rpo3 are key determinants in the post Rpo3/Rpo11 heterodimer formation of RNA polymerase in Methanosarcina acetivorans. . MicrobiologyOpen 6:e00399
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-110644
Loading
/content/journals/10.1146/annurev-biochem-013118-110644
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error