1932

Abstract

I spent my childhood and adolescence in North and South Carolina, attended Duke University, and then entered Duke Medical School. One year in the laboratory of George Schwert in the biochemistry department kindled my interest in biochemistry. After one year of residency on the medical service of Duke Hospital, chaired by Eugene Stead, I joined the group of Arthur Kornberg at Stanford Medical School as a postdoctoral fellow. Two years later I accepted a faculty position at Harvard Medical School, where I remain today. During these 50 years, together with an outstanding group of students, postdoctoral fellows, and collaborators, I have pursued studies on DNA replication. I have experienced the excitement of discovering a number of important enzymes in DNA replication that, in turn, triggered an interest in the dynamics of a replisome. My associations with industry have been stimulating and fostered new friendships. I could not have chosen a better career.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-033850
2015-06-02
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-033850.html?itemId=/content/journals/10.1146/annurev-biochem-060614-033850&mimeType=html&fmt=ahah

Literature Cited

  1. Jukes TH. 1.  1983. Philip Handler (1917–1981). A biographical sketch. J. Nutr. 113:1086–94 [Google Scholar]
  2. White A, Handler P, Smith EL, Stetten D. 2.  1954. Principles of Biochemistry. New York: McGraw-Hill [Google Scholar]
  3. Avery OT, Macleod CM, McCarty M. 3.  1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a deoxyribonucleic acid fraction isolated from Pneumococcus type III. J. Exp. Med. 79:137–58 [Google Scholar]
  4. Lehman IR, Bessman MJ, Simms ES, Kornberg A. 4.  1958. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J. Biol. Chem. 233:163–70 [Google Scholar]
  5. Schwert GW. 5.  1958. The mode of action of heart muscle lactic dehydrogenase. Ann. N.Y. Acad. Sci. 75:311–13 [Google Scholar]
  6. Wyngaarden JB, Ashton DM. 6.  1959. Feedback control of purine biosynthesis by purine ribonucleotides. Nature 183:747–48 [Google Scholar]
  7. Laszlo J, Neelon FA. 7.  2006. The Doctor's Doctor: A Biography of Eugene A. Stead Jr., MD. Durham, NC: Carolina Acad346
  8. Stead EA, Wagner GS, Cebe B, Rozear MP. 8.  1978. E.A. Stead, Jr.: What This Patient Needs Is a Doctor. Durham, NC: Carolina Acad244
  9. Kornberg A. 9.  1989. Never a dull enzyme. Annu. Rev. Biochem. 58:1–30 [Google Scholar]
  10. Richardson CC, Schildkraut CL, Aposhian HV, Kornberg A. 10.  1964. Enzymatic synthesis of deoxyribonucleic acid. XIV. Further purification and properties of deoxyribonucleic acid polymerase of Escherichia coli. J. Biol. Chem. 239:222–32 [Google Scholar]
  11. Gladwell M. 11.  2008. Outliers: The Story of Success New York: Little, Brown
  12. Richardson CC, Schildkraut CL, Aposhian HV, Kornberg A, Bodmer W, Lederberg J. 12.  1963. Studies on the Replication of DNA by Escherichia coli Polymerase. New York: Academic [Google Scholar]
  13. Richardson CC, Kornberg A. 13.  1964. A deoxyribonucleic acid phosphatase-exonuclease from Escherichia coli. I. Purification of the enzyme and characterization of the phosphatase activity. J. Biol. Chem. 239:242–50 [Google Scholar]
  14. Richardson CC, Lehman IR, Kornberg A. 14.  1964. A deoxyribonucleic acid phosphatase-exonuclease from Escherichia coli. II. Characterization of the exonuclease activity. J. Biol. Chem. 239:251–58 [Google Scholar]
  15. Richardson CC, Inman RB, Kornberg A. 15.  1964. Enzymic synthesis of deoxyribonucleic acid. 18. The repair of partially single-stranded DNA templates by DNA polymerase. J. Mol. Biol. 9:46–69 [Google Scholar]
  16. Schildkraut CL, Richardson CC, Kornberg A. 16.  1964. Enzymic synthesis of deoxyribonucleic acid. XVII. Some unusual physical properties of the product primed by native DNA templates. J. Mol. Biol. 9:24–45 [Google Scholar]
  17. Lehman IR, Richardson CC. 17.  1964. The deoxyribonucleases of Escherichia coli. IV. An exonuclease activity present in purified preparations of deoxyribonucleic acid polymerase. J. Biol. Chem. 239:233–41 [Google Scholar]
  18. Luria SE. 18.  1953. Host-induced modifications of viruses. Cold Spring Harb. Symp. Quant. Biol. 18:237–44 [Google Scholar]
  19. Richardson CC. 19.  1966. Influence of glucosylation of deoxyribonucleic acid on hydrolysis by deoxyribonucleases of Escherichia coli. J. Biol. Chem. 241:2084–92 [Google Scholar]
  20. Lehman IR. 20.  1960. The deoxyribonucleases of Escherichia coli. I. Purification and properties of a phosphodiesterase. J. Biol. Chem. 235:1479–87 [Google Scholar]
  21. MacHattie LA, Ritchie DA, Thomas CA Jr, Richardson CC. 21.  1967. Terminal repetition in permuted T2 bacteriophage DNA molecules. J. Mol. Biol. 23:355–63 [Google Scholar]
  22. Fleischman RA, Richardson CC. 22.  1971. Analysis of host range restriction in Escherichia coli treated with toluene. PNAS 68:2527–31 [Google Scholar]
  23. Fleischman RA, Campbell JL, Richardson CC. 23.  1976. Modification and restriction of T-even bacteriophages. In vitro degradation of deoxyribonucleic acid containing 5-hydroxymethylctosine. J. Biol. Chem. 251:1561–70 [Google Scholar]
  24. Okazaki R, Okazaki T, Sakabe K, Sugimoto K, Sugino A. 24.  1968. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. PNAS 59:598–605 [Google Scholar]
  25. Richardson CC. 25.  1965. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage–infected Escherichia coli. PNAS 54:158–65 [Google Scholar]
  26. Novogrodsky A, Hurwitz J. 26.  1966. The enzymatic phosphorylation of ribonucleic acid and deoxyribonucleic acid. I. Phosphorylation at 5′-hydroxyl termini. J. Biol. Chem. 241:2923–32 [Google Scholar]
  27. Richardson CC. 27.  1966. The 5′-terminal nucleotides of T7 bacteriophage deoxyribonucleic acid. J. Mol. Biol. 15:49–61 [Google Scholar]
  28. Dunn JJ, Studier FW. 28.  1983. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166:477–535 [Google Scholar]
  29. Weiss B, Richardson CC. 29.  1967. The 5′-terminal dinucleotides of the separated strands of T7 bacteriophage deoxyribonucleic acid. J. Mol. Biol. 23:405–15 [Google Scholar]
  30. Weiss B, Live TR, Richardson CC. 30.  1968. Enzymatic breakage and joining of deoxyribonucleic acid. V. End group labeling and analysis of deoxyribonucleic acid containing single stranded breaks. J. Biol. Chem. 243:4530–42 [Google Scholar]
  31. Weiss B, Richardson CC. 31.  1966. End-group labeling of nucleic acids by enzymatic phosphorylation. Cold Spring Harb. Symp. Quant. Biol. 31:471–78 [Google Scholar]
  32. Richardson CC, Weiss B. 32.  1966. The enzymatic phosphorylation of nucleic acids and its application to end-group analysis. J. Gen. Physiol. 49:81–97 [Google Scholar]
  33. Masamune Y, Fleischman RA, Richardson CC. 33.  1971. Enzymatic removal and replacement of nucleotides at single strand breaks in deoxyribonucleic acid. J. Biol. Chem. 246:2680–91 [Google Scholar]
  34. Masamune Y, Richardson CC. 34.  1971. Strand displacement during deoxyribonucleic acid synthesis at single strand breaks. J. Biol. Chem. 246:2692–701 [Google Scholar]
  35. Scheffler IE, Richardson CC. 35.  1972. Chemical and enzymatic studies of deoxyribonucleic acid covalently linked to Ficoll. J. Biol. Chem. 247:5736–45 [Google Scholar]
  36. Weiss B, Richardson CC. 36.  1967. Enzymatic breakage and joining of deoxyribonucleic acid. I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. PNAS 57:1021–28 [Google Scholar]
  37. Richardson CC, Masamune Y, Live TR, Jacquemin-Sablon A, Weiss B, Fareed GC. 37.  1968. Studies on the joining of DNA by polynucleotide ligase of phage T4. Cold Spring Harb. Symp. Quant. Biol. 33:151–64 [Google Scholar]
  38. Weiss B, Jacquemin-Sablon A, Live TR, Fareed GC, Richardson CC. 38.  1968. Enzymatic breakage and joining of deoxyribonucleic acid. VI. Further purification and properties of polynucleotide ligase from Escherichia coli infected with bacteriophage T4. J. Biol. Chem. 243:4543–55 [Google Scholar]
  39. Weiss B, Thompson A, Richardson CC. 39.  1968. Ezymatic breakage and joining of deoxyribonucleic acid. VII. Properties of the enzyme-adenylate intermediate in the polynucleotide ligase reaction. J. Biol. Chem. 243:4556–63 [Google Scholar]
  40. Harvey CL, Gabriel TF, Wilt EM, Richardson CC. 40.  1971. Enzymatic breakage and joining of deoxyribonucleic acid. IX. Synthesis and properties of the deoxyribonucleic acid adenylate in the phage T4 ligase reaction. J. Biol. Chem. 246:4523–30 [Google Scholar]
  41. Fareed GC, Wilt EM, Richardson CC. 41.  1971. Enzymatic breakage and joining of deoxyribonucleic acid. 8. Hybrids of ribo- and deoxyribonucleotide homopolymers as substrates for polynucleotide ligase of bacteriophage T4. J. Biol. Chem. 246:925–32 [Google Scholar]
  42. Zimmerman SB, Little JW, Oshinsky CK, Gellert M. 42.  1967. Enzymatic joining of DNA strands: a novel reaction of diphosphopyridine nucleotide. PNAS 57:1841–48 [Google Scholar]
  43. Olivera BM, Lehman IR. 43.  1967. Linkage of polynucleotides through phosphodiester bonds by an enzyme from Escherichia coli. PNAS 57:1426–33 [Google Scholar]
  44. Gefter ML, Becker A, Hurwitz J. 44.  1967. The enzymatic repair of DNA. I. Formation of circular λ-DNA. PNAS 58:240–47 [Google Scholar]
  45. Cozzarelli NR, Melechen NE, Jovin TM, Kornberg A. 45.  1967. Polynucleotide cellulose as a substrate for a polynucleotide ligase induced by phage T4. Biochem. Biophys. Res. Commun. 28:578–86 [Google Scholar]
  46. Fareed GC, Richardson CC. 46.  1967. Enzymatic breakage and joining of deoxyribonucleic acid. II. The structural gene for polynucleotide ligase in bacteriophage T4. PNAS 58:665–72 [Google Scholar]
  47. Masamune Y, Frenkel GD, Richardson CC. 47.  1971. A mutant of bacteriophage T7 deficient in polynucleotide ligase. J. Biol. Chem. 246:6874–79 [Google Scholar]
  48. Jacquemin-Sablon A, Richardson CC. 48.  1970. Analysis of the interruptions in bacteriophage T5 DNA. J. Mol. Biol. 47:477–93 [Google Scholar]
  49. Frenkel GD, Richardson CC. 49.  1971. The deoxyribonuclease induced after infection of Escherichia coli by bacteriophage T5. II. Role of the enzyme in replication of the pahge deoxyribonucleic acid. J. Biol. Chem. 246:4848–52 [Google Scholar]
  50. Frenkel GD, Richardson CC. 50.  1971. The deoxyribonuclease induced after infection of Escherichia coli by bacteriophage T5. I. Characterization of the enzyme as a 5′-exonuclease. J. Biol. Chem. 246:4839–47 [Google Scholar]
  51. Paul AV, Lehman IR. 51.  1966. The deoxyribonucleases of Escherichia coli. VII. A deoxyribonuclease induced by infection with phage T-5. J. Biol. Chem. 241:3441–51 [Google Scholar]
  52. Khorana HG. 52.  1979. Total synthesis of a gene. Science 203:614–25 [Google Scholar]
  53. Hirota Y, Mordoh J, Scheffler I, Jacob F. 53.  1972. Genetic approach to DNA replication and its control in Escherichia coli. Fed. Proc. 31:1422–27 [Google Scholar]
  54. De Lucia P, Cairns J. 54.  1969. Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature 224:1164–66 [Google Scholar]
  55. Moses RE, Richardson CC. 55.  1970. Replication and repair of DNA in cells of Escherichia coli treated with toluene. PNAS 67:674–81 [Google Scholar]
  56. Moses RE, Campbell JL, Fleischman RA, Frenkel GD, Mulcahy HL. 56.  et al. 1972. Enzymatic mechanisms of DNA replication in Escherichia coli. Fed. Proc. 31:1415–21 [Google Scholar]
  57. Moses RE, Richardson CC. 57.  1970. A new DNA polymerase acitvity of Escherichia coli. II. Properties of the enzyme purified from wild-type E. coli and DNA-ts mutants. Biochem. Biophys. Res. Commun. 41:1565–71 [Google Scholar]
  58. Moses RE, Richardson CC. 58.  1970. A new DNA polymerase activity of Escherichia coli. I. Purification and properties of the activity present in E. coli polA1. Biochem. Biophys. Res. Commun. 41:1557–64 [Google Scholar]
  59. Campbell JL, Shizuya H, Richardson CC. 59.  1974. Mapping of a mutation, polB100, affecting deoxyribonucleic acid polymerase II in Escherichia coli K-12. J. Bacteriol. 119:494–99 [Google Scholar]
  60. Campbell JL, Soll L, Richardson CC. 60.  1972. Isolation and partial characterization of a mutant of Escherichia coli deficient in DNA polymerase II. PNAS 69:2090–94 [Google Scholar]
  61. Hirota Y, Gefter ML, Mindich L. 61.  1972. A mutant of Escherichia coli defective in DNA polymerase II activity. PNAS 69:3238–42 [Google Scholar]
  62. Kornberg T, Gefter ML. 62.  1970. DNA synthesis in cell-free extracts of a DNA polymerase–defective mutant. Biochem. Biophys. Res. Commun. 40:1348–55 [Google Scholar]
  63. Kornberg T, Gefter ML. 63.  1971. Purification and DNA synthesis in cell-free extracts: properties of DNA polymerase II. PNAS 68:761–64 [Google Scholar]
  64. Gefter ML, Hirota Y, Kornberg T, Wechsler JA, Barnoux C. 64.  1971. Analysis of DNA polymerases II and III in mutants of Escherichia coli thermosensitive for DNA synthesis. PNAS 68:3150–53 [Google Scholar]
  65. Moore FD. 65.  1973. Edward Delos Churchill: 1895–1972. Ann. Surg. 177:507–8 [Google Scholar]
  66. Livingston DM, Hinkle DC, Richardson CC. 66.  1975. Deoxyribonucleic acid polymerase III of Escherichia coli. Purification and properties. J. Biol. Chem. 250:461–69 [Google Scholar]
  67. Livingston DM, Richardson CC. 67.  1975. Deoxyribonucleic acid polymerase III of Escherichia coli. Characterization of associated exonuclease activities. J. Biol. Chem. 250:470–78 [Google Scholar]
  68. Chase JW, Richardson CC. 68.  1977. Escherichia coli mutants deficient in exonuclease VII. J. Bacteriol. 129:934–47 [Google Scholar]
  69. Chase JW, Richardson CC. 69.  1975. Exonuclease VII of Escherichia coli. Basic Life Sci. 5A:225–34 [Google Scholar]
  70. Chase JW, Richardson CC. 70.  1974. Exonuclease VII of Escherichia coli. Mechanism of action. J. Biol. Chem. 249:4553–61 [Google Scholar]
  71. Chase JW, Richardson CC. 71.  1974. Exonuclease VII of Escherichia coli. Purification and properties. J. Biol. Chem. 249:4545–52 [Google Scholar]
  72. Shizuya H, Richardson CC. 72.  1974. Synthesis of bacteriophage λDNA in vitro: requirement for O and P gene products. PNAS 71:1758–62 [Google Scholar]
  73. Studier FW. 73.  1972. Bacteriophage T7. Science 176:367–76 [Google Scholar]
  74. Studier FW. 74.  1969. The genetics and physiology of bacteriophage T7. Virology 39:562–74 [Google Scholar]
  75. Center MS, Richardson CC. 75.  1970. An endonuclease induced after infection of Escherichia coli with bacteriophage T7. II. Specificity of the enzyme toward single- and double-stranded deoxyribonucleic acid. J. Biol. Chem. 245:6292–99 [Google Scholar]
  76. Center MS, Richardson CC. 76.  1970. An endonuclease induced after infection of Escherichia coli with bacteriophage T7. I. Purification and properties of the enzyme. J. Biol. Chem. 245:6285–91 [Google Scholar]
  77. Center MS, Studier FW, Richardson CC. 77.  1970. The structural gene for a T7 endonuclease essential for phage DNA synthesis. PNAS 65:242–48 [Google Scholar]
  78. Grippo P, Richardson CC. 78.  1971. Deoxyribonucleic acid polymerase of bacteriophage T7. J. Biol. Chem. 246:6867–73 [Google Scholar]
  79. Masamune Y, Richardson CC. 79.  1968. Enzymatic breakage and joining of deoxyribonucleic acid. IV. DNA synthesis in E. coli infected with ligase-negative mutants of phage T4. PNAS 61:1328–35 [Google Scholar]
  80. LeClerc JE, Richardson CC. 80.  1979. Gene 2 protein of bacteriophage T7: purification and requirement for packaging of T7 DNA in vitro. PNAS 76:4852–56 [Google Scholar]
  81. Campbell JL, Tamanoi F, Richardson CC, Studier FW. 81.  1979. Cloning of the T7 genome in Escherichia coli: use of recombination between cloned sequences and bacteriophage T7 to identify genes involved in recombination and a clone containing the origin of T7 DNA replication. Cold Spring Harb. Symp. Quant. Biol. 43:441–48 [Google Scholar]
  82. Chamberlin M. 82.  1974. Isolation and characterization of prototrophic mutants of Escherichia coli unable to support the intracellular growth of T7. J. Virol. 14:509–16 [Google Scholar]
  83. Modrich P, Richardson CC. 83.  1975. Bacteriophage T7 deoxyribonucleic acid replication in vitro. A protein of Escherichia coli required for bacteriophage T7 DNA polymerase activity. J. Biol. Chem. 250:5508–14 [Google Scholar]
  84. Modrich P, Richardson CC. 84.  1975. Bacteriophage T7 deoxyribonucleic acid replication in vitro. Bacteriophage T7 DNA polymerase: an an enzyme composed of phage- and host-specific subunits. J. Biol. Chem. 250:5515–22 [Google Scholar]
  85. Mark DF, Richardson CC. 85.  1976. Escherichia coli thioredoxin: a subunit of bacteriophage T7 DNA polymerase. PNAS 73:780–84 [Google Scholar]
  86. Hori K, Mark DF, Richardson CC. 86.  1979. Deoxyribonucleic acid polymerase of bacteriophage T7. Purification and properties of the phage-encoded subunit, the gene 5 protein. J. Biol. Chem. 254:11591–97 [Google Scholar]
  87. Hori K, Mark DF, Richardson CC. 87.  1979. Deoxyribonucleic acid polymerase of bacteriophage T7. Characterization of the exonuclease activities of the gene 5 protein and the reconstituted polymerase. J. Biol. Chem. 254:11598–604 [Google Scholar]
  88. Mark DF, Chase JW, Richardson CC. 88.  1977. Genetic mapping of trxA, a gene affecting thioredoxin in Escherichia coli K12. Mol. Gen. Genet. 155:145–52 [Google Scholar]
  89. Holmgren A. 89.  1989. Thioredoxin and glutaredoxin systems. J. Biol. Chem. 264:13963–66 [Google Scholar]
  90. Kumar JK, Tabor S, Richardson CC. 90.  2004. Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. PNAS 101:3759–64 [Google Scholar]
  91. Hinkle DC, Richardson CC. 91.  1974. Bacteriophage T7 deoxyribonucleic acid replication in vitro. Requirements for deoxyribonucleic acid synthesis and characterization of the product. J. Biol. Chem. 249:2974–80 [Google Scholar]
  92. Stratling W, Ferdinand FJ, Krause E, Knippers R. 92.  1973. Bacteriophage T7-DNA replication in vitro: an experimental system. Eur. J. Biochem. 38:160–69 [Google Scholar]
  93. Masker WE, Richardson CC. 93.  1976. Bacteriophage T7 deoxyribonucleic acid replication in vitro. VI. Synthesis of biologically active T7 DNA. J. Mol. Biol. 100:557–67 [Google Scholar]
  94. Masker WE, Richardson CC. 94.  1976. Bacteriophage T7 deoxyribonucleic acid replication in vitro. V. Synthesis of intact chromosomes of bacteriophage T7. J. Mol. Biol. 100:543–56 [Google Scholar]
  95. Hinkle DC, Richardson CC. 95.  1975. Bacteriophage T7 deoxyribonucleic acid replication in vitro. Purification and properties of the gene 4 protein of bacteriophage T7. J. Biol. Chem. 250:5523–29 [Google Scholar]
  96. Kolodner R, Masamune Y, LeClerc JE, Richardson CC. 96.  1978. Gene 4 protein of bacteriophage T7. Purification physical properties, and stimulation of T7 DNA polymerase during the elongation of polynucleotide chains. J. Biol. Chem. 253:566–73 [Google Scholar]
  97. Kolodner R, Richardson CC. 97.  1978. Gene 4 protein of bacteriophage T7. Characterization of the product synthesized by the T7 DNA polymerase and gene 4 protein in the absence of ribonucleoside 5′-triphosphates. J. Biol. Chem. 253:574–84 [Google Scholar]
  98. Kolodner R, Richardson CC. 98.  1977. Replication of duplex DNA by bacteriophage T7 DNA polymerase and gene 4 protein is accompanied by hydrolysis of nucleoside 5′-triphosphates. PNAS 74:1525–29 [Google Scholar]
  99. Matson SW, Beauchamp BB, Engler MJ, Fuller CW, Lechner R. 99.  et al. 1983. Enzymatic mechanisms of T7 DNA replication. UCLA Symposia on Molecular and Cellular Biology 10 Mechanisms of DNA Replication and Recombination NR Cozzarelli 135–51 New York: Alan R. Liss [Google Scholar]
  100. Matson SW, Richardson CC. 100.  1985. Nucleotide-dependent binding of the gene 4 protein of bacteriophage T7 to single-stranded DNA. J. Biol. Chem. 260:2281–87 [Google Scholar]
  101. Matson SW, Richardson CC. 101.  1983. DNA-dependent nucleoside 5′-triphosphatase activity of the gene 4 protein of bacteriophage T7. J. Biol. Chem. 258:14009–16 [Google Scholar]
  102. Matson SW, Tabor S, Richardson CC. 102.  1983. The gene 4 protein of bacteriophage T7. Characterization of helicase activity. J. Biol. Chem. 258:14017–24 [Google Scholar]
  103. Scherzinger E, Lanka E, Hillenbrand G. 103.  1977. Role of bacteriophage T7 DNA primase in the initiation of DNA strand synthesis. Nucleic Acids Res. 4:4151–63 [Google Scholar]
  104. Scherzinger E, Lanka E, Morelli G, Seiffert D, Yuki A. 104.  1977. Bacteriophage-T7-induced DNA-priming protein. A novel enzyme involved in DNA replication. Eur. J. Biochem. 72:543–58 [Google Scholar]
  105. Romano LJ, Richardson CC. 105.  1979. Characterization of the ribonucleic acid primers and the deoxyribonucleic acid product synthesized by the DNA polymerase and gene 4 protein of bacteriophage T7. J. Biol. Chem. 254:10483–89 [Google Scholar]
  106. Romano LJ, Richardson CC. 106.  1979. Requirements for synthesis of ribonucleic acid primers during lagging strand synthesis by the DNA polymerase and gene 4 protein of bacteriophage T7. J. Biol. Chem. 254:10476–82 [Google Scholar]
  107. Tabor S, Richardson CC. 107.  1981. Template recognition sequence for RNA primer synthesis by gene 4 protein of bacteriophage T7. PNAS 78:205–9 [Google Scholar]
  108. Bernstein JA, Richardson CC. 108.  1989. Characterization of the helicase and primase activities of the 63-kDa component of the bacteriophage T7 gene 4 protein. J. Biol. Chem. 264:13066–73 [Google Scholar]
  109. Bernstein JA, Richardson CC. 109.  1988. Purification of the 56-kDa component of the bacteriophage T7 primase/helicase and characterization of its nucleoside 5′-triphosphatase activity. J. Biol. Chem. 263:14891–99 [Google Scholar]
  110. Bernstein JA, Richardson CC. 110.  1988. A 7-kDa region of the bacteriophage T7 gene 4 protein is required for primase but not for helicase activity. PNAS 85:396–400 [Google Scholar]
  111. Nakai H, Richardson CC. 111.  1988. The effect of the T7 and Escherichia coli DNA-binding proteins at the replication fork of bacteriophage T7. J. Biol. Chem. 263:9831–39 [Google Scholar]
  112. Nakai H, Richardson CC. 112.  1988. Leading and lagging strand synthesis at the replication fork of bacteriophage T7. Distinct properties of T7 gene 4 protein as a helicase and primase. J. Biol. Chem. 263:9818–30 [Google Scholar]
  113. Nakai H, Richardson CC. 113.  1986. Dissection of RNA-primed DNA synthesis catalyzed by gene 4 protein and DNA polymerase of bacteriophage T7. Coupling of RNA primer and DNA synthesis. J. Biol. Chem. 261:15217–24 [Google Scholar]
  114. Nakai H, Richardson CC. 114.  1986. Interactions of the DNA polymerase and gene 4 protein of bacteriophage T7. Protein–protein and protein–DNA interactions involved in RNA-primed DNA synthesis. J. Biol. Chem. 261:15208–16 [Google Scholar]
  115. Tamanoi F, Saito H, Richardson CC. 115.  1980. Physical mapping of primary and secondary origins of bacteriophage T7 DNA replication. PNAS 77:2656–60 [Google Scholar]
  116. Saito H, Tabor S, Tamanoi F, Richardson CC. 116.  1980. Nucleotide sequence of the primary origin of bacteriophage T7 DNA replication: relationship to adjacent genes and regulatory elements. PNAS 77:3917–21 [Google Scholar]
  117. Romano LJ, Tamanoi F, Richardson CC. 117.  1981. Initiation of DNA replication at the primary origin of bacteriophage T7 by purified proteins: requirement for T7 RNA polymerase. PNAS 78:4107–11 [Google Scholar]
  118. Fuller CW, Richardson CC. 118.  1985. Initiation of DNA replication at the primary origin of bacteriophage T7 by purified proteins. Initiation of bidirectional synthesis. J. Biol. Chem. 260:3197–206 [Google Scholar]
  119. Fuller CW, Richardson CC. 119.  1985. Initiation of DNA replication at the primary origin of bacteriophage T7 by purified proteins. Site and direction of initial DNA synthesis. J. Biol. Chem. 260:3185–96 [Google Scholar]
  120. Rabkin SD, Richardson CC. 120.  1990. In vivo analysis of the initiation of bacteriophage T7 DNA replication. Virology 174:585–92 [Google Scholar]
  121. Rabkin SD, Richardson CC. 121.  1988. Initiation of DNA replication at cloned origins of bacteriophage T7. J. Mol. Biol. 204:903–16 [Google Scholar]
  122. Ikeda RA, Richardson CC. 122.  1987. Interactions of a proteolytically nicked RNA polymerase of bacteriophage T7 with its promoter. J. Biol. Chem. 262:3800–8 [Google Scholar]
  123. Ikeda RA, Richardson CC. 123.  1987. Enzymatic properties of a proteolytically nicked RNA polymerase of bacteriophage T7. J. Biol. Chem. 262:3790–99 [Google Scholar]
  124. Ikeda RA, Richardson CC. 124.  1986. Interactions of the RNA polymerase of bacteriophage T7 with its promoter during binding and initiation of transcription. PNAS 83:3614–18 [Google Scholar]
  125. White JH, Richardson CC. 125.  1988. Gene 19 of bacteriophage T7. Overexpression, purification, and characterization of its product. J. Biol. Chem. 263:2469–76 [Google Scholar]
  126. White JH, Richardson CC. 126.  1987. Processing of concatemers of bacteriophage T7 DNA in vitro. J. Biol. Chem. 262:8851–60 [Google Scholar]
  127. White JH, Richardson CC. 127.  1987. Gene 18 protein of bacteriophage T7. Overproduction, purification, and characterization. J. Biol. Chem. 262:8845–50 [Google Scholar]
  128. Tabor S, Richardson CC. 128.  1992. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Biotechnology 24:280–84 [Google Scholar]
  129. Huber HE, Tabor S, Richardson CC. 129.  1987. Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templates. J. Biol. Chem. 262:16224–32 [Google Scholar]
  130. Tabor S, Huber HE, Richardson CC. 130.  1987. Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J. Biol. Chem. 262:16212–23 [Google Scholar]
  131. Tabor S, Richardson CC. 131.  1987. Selective oxidation of the exonuclease domain of bacteriophage T7 DNA polymerase. J. Biol. Chem. 262:15330–33 [Google Scholar]
  132. Tabor S, Richardson CC. 132.  1987. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. PNAS 84:4767–71 [Google Scholar]
  133. Huber HE, Russel M, Model P, Richardson CC. 133.  1986. Interaction of mutant thioredoxins of Escherichia coli with the gene 5 protein of phage T7. The redox capacity of thioredoxin is not required for stimulation of DNA polymerase activity. J. Biol. Chem. 261:15006–12 [Google Scholar]
  134. Himawan JS, Richardson CC. 134.  1996. Amino acid residues critical for the interaction between bacteriophage T7 DNA polymerase and Escherichia coli thioredoxin. J. Biol. Chem. 271:19999–20008 [Google Scholar]
  135. Himawan JS, Richardson CC. 135.  1992. Genetic analysis of the interaction between bacteriophage T7 DNA polymerase and Escherichia coli thioredoxin. PNAS 89:9774–78 [Google Scholar]
  136. Yang XM, Richardson CC. 136.  1997. Amino acid changes in a unique sequence of bacteriophage T7 DNA polymerase alter the processivity of nucleotide polymerization. J. Biol. Chem. 272:6599–606 [Google Scholar]
  137. Bedford E, Tabor S, Richardson CC. 137.  1997. The thioredoxin binding domain of bacteriophage T7 DNA polymerase confers processivity on Escherichia coli DNA polymerase I. PNAS 94:479–84 [Google Scholar]
  138. Fischer H, Hinkle DC. 138.  1980. T7 DNA replication in vitro. Stimulation of DNA polymerase by T7 RNA polymerase. J. Biol. Chem. 255:7956–64 [Google Scholar]
  139. Stratling W, Knippers R. 139.  1973. Function and purification of gene 4 protein of phage T7. Nature 245:195–97 [Google Scholar]
  140. Engler MJ, Lechner RL, Richardson CC. 140.  1983. Two forms of the DNA polymerase of bacteriophage T7. J. Biol. Chem. 258:11165–73 [Google Scholar]
  141. Lechner RL, Engler MJ, Richardson CC. 141.  1983. Characterization of strand displacement synthesis catalyzed by bacteriophage T7 DNA polymerase. J. Biol. Chem. 258:11174–84 [Google Scholar]
  142. Lechner RL, Richardson CC. 142.  1983. A preformed, topologically stable replication fork. Characterization of leading strand DNA synthesis catalyzed by T7 DNA polymerase and T7 gene 4 protein. J. Biol. Chem. 258:11185–96 [Google Scholar]
  143. Akabayov B, Akabayov SR, Lee SJ, Tabor S, Kulczyk AW, Richardson CC. 143.  2010. Conformational dynamics of bacteriophage T7 DNA polymerase and its processivity factor, Escherichia coli thioredoxin. PNAS 107:15033–38 [Google Scholar]
  144. Tabor S, Richardson CC. 144.  1990. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Effect of pyrophosphorolysis and metal ions. J. Biol. Chem. 265:8322–28 [Google Scholar]
  145. Tabor S, Richardson CC. 145.  1989. Effect of manganese ions on the incorporation of dideoxynucleotides by bacteriophage T7 DNA polymerase and Escherichia coli DNA polymerase I. PNAS 86:4076–80 [Google Scholar]
  146. Tabor S, Richardson CC. 146.  1989. Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis. J. Biol. Chem. 264:6447–58 [Google Scholar]
  147. Tabor S, Richardson CC. 147.  1995. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. PNAS 92:6339–43 [Google Scholar]
  148. Frick DN, Richardson CC. 148.  2001. DNA primases. Annu. Rev. Biochem. 70:39–80 [Google Scholar]
  149. Hamdan SM, Richardson CC. 149.  2009. Motors, switches, and contacts in the replisome. Annu. Rev. Biochem. 78:205–43 [Google Scholar]
  150. Zhang H, Lee SJ, Richardson CC. 150.  2011. Essential protein interactions within the replisome regulate DNA replication. Cell Cycle 10:3413–14 [Google Scholar]
  151. Lee SJ, Richardson CC. 151.  2011. Choreography of bacteriophage T7 DNA replication. Curr. Opin. Chem. Biol. 15:580–86 [Google Scholar]
  152. Akabayov B, Akabayov SR, Lee SJ, Wagner G, Richardson CC. 152.  2013. Impact of macromolecular crowding on DNA replication. Nat. Commun. 4:1615 [Google Scholar]
  153. Akabayov B, Kulczyk AW, Akabayov SR, Theile C, McLaughlin LW. 153.  et al. 2011. Pyrovanadolysis, a pyrophosphorolysis-like reaction mediated by pyrovanadate, Mn2+, and DNA polymerase of bacteriophage T7. J. Biol. Chem. 286:29146–57 [Google Scholar]
  154. Akabayov B, Lee SJ, Akabayov SR, Rekhi S, Zhu B, Richardson CC. 154.  2009. DNA recognition by the DNA primase of bacteriophage T7: a structure–function study of the zinc-binding domain. Biochemistry 48:1763–73 [Google Scholar]
  155. Kulczyk AW, Akabayov B, Lee SJ, Bostina M, Berkowitz SA, Richardson CC. 155.  2012. An interaction between DNA polymerase and helicase is essential for the high processivity of the bacteriophage T7 replisome. J. Biol. Chem. 287:39050–60 [Google Scholar]
  156. Lee SJ, Zhu B, Akabayov B, Richardson CC. 156.  2012. Zinc-binding domain of the bacteriophage T7 DNA primase modulates binding to the DNA template. J. Biol. Chem. 287:39030–40 [Google Scholar]
  157. Tran NQ, Lee SJ, Akabayov B, Johnson DE, Richardson CC. 157.  2012. Thioredoxin, the processivity factor, sequesters an exposed cysteine in the thumb domain of bacteriophage T7 DNA polymerase. J. Biol. Chem. 287:39732–41 [Google Scholar]
  158. Akabayov SR, Akabayov B, Richardson CC, Wagner G. 158.  2013. Molecular crowding enhanced ATPase activity of the RNA helicase eIF4A correlates with compaction of its quaternary structure and association with eIF4G. J. Am. Chem. Soc. 135:10040–47 [Google Scholar]
  159. Andraos N, Tabor S, Richardson CC. 159.  2004. The highly processive DNA polymerase of bacteriophage T5. Role of the unique N and C termini. J. Biol. Chem. 279:50609–18 [Google Scholar]
  160. Frick DN, Baradaran K, Richardson CC. 160.  1998. An N-terminal fragment of the gene 4 helicase/primase of bacteriophage T7 retains primase activity in the absence of helicase activity. PNAS 95:7957–62 [Google Scholar]
  161. Kusakabe T, Baradaran K, Lee J, Richardson CC. 161.  1998. Roles of the helicase and primase domain of the gene 4 protein of bacteriophage T7 in accessing the primase recognition site. EMBO J. 17:1542–52 [Google Scholar]
  162. Canard B, Chowdhury K, Sarfati R, Doublie S, Richardson CC. 162.  1999. The motif D loop of human immunodeficiency virus type 1 reverse transcriptase is critical for nucleoside 5′-triphosphate selectivity. J. Biol. Chem. 274:35768–76 [Google Scholar]
  163. Canard B, Sarfati R, Richardson CC. 163.  1997. Binding of RNA template to a complex of HIV-1 reverse transcriptase/primer/template. PNAS 94:11279–84 [Google Scholar]
  164. Canard B, Sarfati SR, Richardson CC. 164.  1998. Enhanced binding of azidothymidine-resistant human immunodeficiency virus 1 reverse transcriptase to the 3′-azido-3′-deoxythymidine 5′-monophosphate-terminated primer. J. Biol. Chem. 273:14596–604 [Google Scholar]
  165. Chowdhury K, Tabor S, Richardson CC. 165.  2000. A unique loop in the DNA-binding crevice of bacteriophage T7 DNA polymerase influences primer utilization. PNAS 97:12469–74 [Google Scholar]
  166. Lee SJ, Chowdhury K, Tabor S, Richardson CC. 166.  2009. Rescue of bacteriophage T7 DNA polymerase of low processivity by suppressor mutations affecting gene 3 endonuclease. J. Virol. 83:8418–27 [Google Scholar]
  167. Kumar JK, Chiu ET, Tabor S, Richardson CC. 167.  2004. A unique region in bacteriophage T7 DNA polymerase important for exonucleolytic hydrolysis of DNA. J. Biol. Chem. 279:42018–25 [Google Scholar]
  168. Crampton DJ, Guo S, Johnson DE, Richardson CC. 168.  2004. The arginine finger of bacteriophage T7 gene 4 helicase: role in energy coupling. PNAS 101:4373–78 [Google Scholar]
  169. Crampton DJ, Mukherjee S, Richardson CC. 169.  2006. DNA-induced switch from independent to sequential dTTP hydrolysis in the bacteriophage T7 DNA helicase. Mol. Cell 21:165–74 [Google Scholar]
  170. Crampton DJ, Ohi M, Qimron U, Walz T, Richardson CC. 170.  2006. Oligomeric states of bacteriophage T7 gene 4 primase/helicase. J. Mol. Biol. 360:667–77 [Google Scholar]
  171. Satapathy AK, Crampton DJ, Beauchamp BB, Richardson CC. 171.  2009. Promiscuous usage of nucleotides by the DNA helicase of bacteriophage T7: determinants of nucleotide specificity. J. Biol. Chem. 284:14286–95 [Google Scholar]
  172. Satapathy AK, Kochaniak AB, Mukherjee S, Crampton DJ, van Oijen A, Richardson CC. 172.  2010. Residues in the central β-hairpin of the DNA helicase of bacteriophage T7 are important in DNA unwinding. PNAS 107:6782–87 [Google Scholar]
  173. van Oijen AM, Blainey PC, Crampton DJ, Richardson CC, Ellenberger T, Xie XS. 173.  2003. Single-molecule kinetics of λ exonuclease reveal base dependence and dynamic disorder. Science 301:1235–38 [Google Scholar]
  174. Debyser Z, Tabor S, Richardson CC. 174.  1994. Coordination of leading and lagging strand DNA synthesis at the replication fork of bacteriophage T7. Cell 77:157–66 [Google Scholar]
  175. Park K, Debyser Z, Tabor S, Richardson CC, Griffith JD. 175.  1998. Formation of a DNA loop at the replication fork generated by bacteriophage T7 replication proteins. J. Biol. Chem. 273:5260–70 [Google Scholar]
  176. Frick DN, Kumar S, Richardson CC. 176.  1999. Interaction of ribonucleoside triphosphates with the gene 4 primase of bacteriophage T7. J. Biol. Chem. 274:35899–907 [Google Scholar]
  177. Frick DN, Richardson CC. 177.  1999. Interaction of bacteriophage T7 gene 4 primase with its template recognition site. J. Biol. Chem. 274:35889–98 [Google Scholar]
  178. Kato M, Frick DN, Lee J, Tabor S, Richardson CC, Ellenberger T. 178.  2001. A complex of the bacteriophage T7 primase–helicase and DNA polymerase directs primer utilization. J. Biol. Chem. 276:21809–20 [Google Scholar]
  179. Tseng TY, Frick DN, Richardson CC. 179.  2000. Characterization of a novel DNA primase from the Salmonella typhimurium bacteriophage SP6. Biochemistry 39:1643–54 [Google Scholar]
  180. Ghosh S, Hamdan SM, Cook TE, Richardson CC. 180.  2008. Interactions of Escherichia coli thioredoxin, the processivity factor, with bacteriophage T7 DNA polymerase and helicase. J. Biol. Chem. 283:32077–84 [Google Scholar]
  181. Ghosh S, Hamdan SM, Richardson CC. 181.  2010. Two modes of interaction of the single-stranded DNA–binding protein of bacteriophage T7 with the DNA polymerase–thioredoxin complex. J. Biol. Chem. 285:18103–12 [Google Scholar]
  182. Ghosh S, Marintcheva B, Takahashi M, Richardson CC. 182.  2009. C-terminal phenylalanine of bacteriophage T7 single-stranded DNA–binding protein is essential for strand displacement synthesis by T7 DNA polymerase at a nick in DNA. J. Biol. Chem. 284:30339–49 [Google Scholar]
  183. Satapathy AK, Kulczyk AW, Ghosh S, van Oijen AM, Richardson CC. 183.  2011. Coupling dTTP hydrolysis with DNA unwinding by the DNA helicase of bacteriophage T7. J. Biol. Chem. 286:34468–78 [Google Scholar]
  184. Guo S, Tabor S, Richardson CC. 184.  1999. The linker region between the helicase and primase domains of the bacteriophage T7 gene 4 protein is critical for hexamer formation. J. Biol. Chem. 274:30303–9 [Google Scholar]
  185. Sawaya MR, Guo S, Tabor S, Richardson CC, Ellenberger T. 185.  1999. Crystal structure of the helicase domain from the replicative helicase–primase of bacteriophage T7. Cell 99:167–77 [Google Scholar]
  186. Etson CM, Hamdan SM, Richardson CC, van Oijen AM. 186.  2010. Thioredoxin suppresses microscopic hopping of T7 DNA polymerase on duplex DNA. PNAS 107:1900–5 [Google Scholar]
  187. Hamdan SM, Johnson DE, Tanner NA, Lee JB, Qimron U. 187.  et al. 2007. Dynamic DNA helicase–DNA polymerase interactions assure processive replication fork movement. Mol. Cell 27:539–49 [Google Scholar]
  188. Hamdan SM, Loparo JJ, Takahashi M, Richardson CC, van Oijen AM. 188.  2009. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 457:336–39 [Google Scholar]
  189. Hamdan SM, Marintcheva B, Cook T, Lee SJ, Tabor S, Richardson CC. 189.  2005. A unique loop in T7 DNA polymerase mediates the binding of helicase–primase, DNA binding protein, and processivity factor. PNAS 102:5096–101 [Google Scholar]
  190. Johnson DE, Takahashi M, Hamdan SM, Lee SJ, Richardson CC. 190.  2007. Exchange of DNA polymerases at the replication fork of bacteriophage T7. PNAS 104:5312–17 [Google Scholar]
  191. Lee JB, Hite RK, Hamdan SM, Xie XS, Richardson CC, van Oijen AM. 191.  2006. DNA primase acts as a molecular brake in DNA replication. Nature 439:621–24 [Google Scholar]
  192. Lee SJ, Marintcheva B, Hamdan SM, Richardson CC. 192.  2006. The C-terminal residues of bacteriophage T7 gene 4 helicase–primase coordinate helicase and DNA polymerase activities. J. Biol. Chem. 281:25841–49 [Google Scholar]
  193. Lee SJ, Zhu B, Hamdan SM, Richardson CC. 193.  2010. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7. Nucleic Acids Res. 38:4372–83 [Google Scholar]
  194. Marintcheva B, Hamdan SM, Lee SJ, Richardson CC. 194.  2006. Essential residues in the C terminus of the bacteriophage T7 gene 2.5 single-stranded DNA–binding protein. J. Biol. Chem. 281:25831–40 [Google Scholar]
  195. Qimron U, Kulczyk AW, Hamdan SM, Tabor S, Richardson CC. 195.  2008. Inadequate inhibition of host RNA polymerase restricts T7 bacteriophage growth on hosts overexpressing UDK. Mol. Microbiol. 67:448–57 [Google Scholar]
  196. Qimron U, Lee SJ, Hamdan SM, Richardson CC. 196.  2006. Primer initiation and extension by T7 DNA primase. EMBO J. 25:2199–208 [Google Scholar]
  197. Scholle MD, Banach BS, Hamdan SM, Richardson CC, Kay BK. 197.  2008. Peptide ligands specific to the oxidized form of Escherichia coli thioredoxin. Biochim. Biophys. Acta 1784:1735–41 [Google Scholar]
  198. He ZG, Rezende LF, Willcox S, Griffith JD, Richardson CC. 198.  2003. The carboxyl-terminal domain of bacteriophage T7 single-stranded DNA–binding protein modulates DNA binding and interaction with T7 DNA polymerase. J. Biol. Chem. 278:29538–45 [Google Scholar]
  199. He ZG, Richardson CC. 199.  2004. Effect of single-stranded DNA–binding proteins on the helicase and primase activities of the bacteriophage T7 gene 4 protein. J. Biol. Chem. 279:22190–97 [Google Scholar]
  200. Zhu B, Tabor S, Raytcheva DA, Hernandez A, King JA, Richardson CC. 200.  2013. The RNA polymerase of marine cyanophage Syn5. J. Biol. Chem. 288:3545–52 [Google Scholar]
  201. Hine AV, Richardson CC. 201.  1994. A functional chimeric DNA primase: the Cys4 zinc-binding domain of bacteriophage T3 primase fused to the helicase of bacteriophage T7. PNAS 91:12327–31 [Google Scholar]
  202. Kusakabe T, Hine AV, Hyberts SG, Richardson CC. 202.  1999. The Cys4 zinc finger of bacteriophage T7 primase in sequence-specific single-stranded DNA recognition. PNAS 96:4295–300 [Google Scholar]
  203. Hyland EM, Rezende LF, Richardson CC. 203.  2003. The DNA binding domain of the gene 2.5 single-stranded DNA–binding protein of bacteriophage T7. J. Biol. Chem. 278:7247–56 [Google Scholar]
  204. Dutta S, Li Y, Johnson D, Dzantiev L, Richardson CC. 204.  et al. 2004. Crystal structures of 2-acetylaminofluorene and 2-aminofluorene in complex with T7 DNA polymerase reveal mechanisms of mutagenesis. PNAS 101:16186–91 [Google Scholar]
  205. Johnson DE, Richardson CC. 205.  2003. A covalent linkage between the gene 5 DNA polymerase of bacteriophage T7 and Escherichia coli thioredoxin, the processivity factor: fate of thioredoxin during DNA synthesis. J. Biol. Chem. 278:23762–72 [Google Scholar]
  206. Kim YT, Richardson CC. 206.  1994. Acidic carboxyl-terminal domain of gene 2.5 protein of bacteriophage T7 is essential for protein–protein interactions. J. Biol. Chem. 269:5270–78 [Google Scholar]
  207. Kim YT, Richardson CC. 207.  1993. Bacteriophage T7 gene 2.5 protein: an essential protein for DNA replication. PNAS 90:10173–77 [Google Scholar]
  208. Kim YT, Tabor S, Bortner C, Griffith JD, Richardson CC. 208.  1992. Purification and characterization of the bacteriophage T7 gene 2.5 protein. A single-stranded DNA–binding protein. J. Biol. Chem. 267:15022–31 [Google Scholar]
  209. Kim YT, Tabor S, Churchich JE, Richardson CC. 209.  1992. Interactions of gene 2.5 protein and DNA polymerase of bacteriophage T7. J. Biol. Chem. 267:15032–40 [Google Scholar]
  210. Kumar JK, Kremsdorf R, Tabor S, Richardson CC. 210.  2001. A mutation in the gene-encoding bacteriophage T7 DNA polymerase that renders the phage temperature-sensitive. J. Biol. Chem. 276:46151–59 [Google Scholar]
  211. Kulczyk AW, Richardson CC. 211.  2012. Molecular interactions in the priming complex of bacteriophage T7. PNAS 109:9408–13 [Google Scholar]
  212. Kulczyk AW, Tanner NA, Loparo JJ, Richardson CC, van Oijen AM. 212.  2010. Direct observation of enzymes replicating DNA using a single-molecule DNA stretching assay. J. Vis. Exp. 37:1689 [Google Scholar]
  213. Loparo JJ, Kulczyk AW, Richardson CC, van Oijen AM. 213.  2011. Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange. PNAS 108:3584–89 [Google Scholar]
  214. Tran NQ, Tabor S, Amarasiriwardena CJ, Kulczyk AW, Richardson CC. 214.  2012. Characterization of a nucleotide kinase encoded by bacteriophage T7. J. Biol. Chem. 287:29468–78 [Google Scholar]
  215. Zhang H, Lee SJ, Kulczyk AW, Zhu B, Richardson CC. 215.  2012. Heterohexamer of 56- and 63-kDa gene 4 helicase–primase of bacteriophage T7 in DNA replication. J. Biol. Chem. 287:34273–87 [Google Scholar]
  216. Geertsema HJ, Kulczyk AW, Richardson CC, van Oijen AM. 216.  2014. Single-molecule studies of polymerase dynamics and stoichiometry at the bacteriophage T7 replication machinery. PNAS 111:4073–78 [Google Scholar]
  217. Kusakabe T, Richardson CC. 217.  1997. Gene 4 DNA primase of bacteriophage T7 mediates the annealing and extension of ribo-oligonucleotides at primase recognition sites. J. Biol. Chem. 272:12446–53 [Google Scholar]
  218. Kusakabe T, Richardson CC. 218.  1997. Template recognition and ribonucleotide specificity of the DNA primase of bacteriophage T7. J. Biol. Chem. 272:5943–51 [Google Scholar]
  219. Kusakabe T, Richardson CC. 219.  1996. The role of the zinc motif in sequence recognition by DNA primases. J. Biol. Chem. 271:19563–70 [Google Scholar]
  220. Lee J, Chastain PD 2nd, Kusakabe T, Griffith JD, Richardson CC. 220.  1998. Coordinated leading and lagging strand DNA synthesis on a minicircular template. Mol. Cell 1:1001–10 [Google Scholar]
  221. Kong D, Griffith JD, Richardson CC. 221.  1997. Gene 4 helicase of bacteriophage T7 mediates strand transfer through pyrimidine dimers, mismatches, and nonhomologous regions. PNAS 94:2987–92 [Google Scholar]
  222. Kong D, Nossal NG, Richardson CC. 222.  1997. Role of the bacteriophage T7 and T4 single-stranded DNA–binding proteins in the formation of joint molecules and DNA helicase–catalyzed polar branch migration. J. Biol. Chem. 272:8380–87 [Google Scholar]
  223. Kong D, Richardson CC. 223.  1998. Role of the acidic carboxyl-terminal domain of the single-stranded DNA–binding protein of bacteriophage T7 in specific protein–protein interactions. J. Biol. Chem. 273:6556–64 [Google Scholar]
  224. Kong D, Richardson CC. 224.  1996. Single-stranded DNA binding protein and DNA helicase of bacteriophage T7 mediate homologous DNA strand exchange. EMBO J. 15:2010–19 [Google Scholar]
  225. Kumar JK, Tabor S, Richardson CC. 225.  2001. Role of the C-terminal residue of the DNA polymerase of bacteriophage T7. J. Biol. Chem. 276:34905–12 [Google Scholar]
  226. Lee J, Chastain PD 2nd, Griffith JD, Richardson CC. 226.  2002. Lagging strand synthesis in coordinated DNA synthesis by bacteriophage T7 replication proteins. J. Mol. Biol. 316:19–34 [Google Scholar]
  227. Notarnicola SM, Mulcahy HL, Lee J, Richardson CC. 227.  1997. The acidic carboxyl terminus of the bacteriophage T7 gene 4 helicase/primase interacts with T7 DNA polymerase. J. Biol. Chem. 272:18425–33 [Google Scholar]
  228. Lee SJ, Qimron U, Richardson CC. 228.  2008. Communication between subunits critical to DNA binding by hexameric helicase of bacteriophage T7. PNAS 105:8908–13 [Google Scholar]
  229. Lee SJ, Richardson CC. 229.  2010. Molecular basis for recognition of nucleoside triphosphate by gene 4 helicase of bacteriophage T7. J. Biol. Chem. 285:31462–71 [Google Scholar]
  230. Lee SJ, Richardson CC. 230.  2005. Acidic residues in the nucleotide-binding site of the bacteriophage T7 DNA primase. J. Biol. Chem. 280:26984–91 [Google Scholar]
  231. Lee SJ, Richardson CC. 231.  2004. The linker region between the helicase and primase domains of the gene 4 protein of bacteriophage T7. Role in helicase conformation and activity. J. Biol. Chem. 279:23384–93 [Google Scholar]
  232. Lee SJ, Richardson CC. 232.  2002. Interaction of adjacent primase domains within the hexameric gene 4 helicase–primase of bacteriophage T7. PNAS 99:12703–8 [Google Scholar]
  233. Lee SJ, Richardson CC. 233.  2001. Essential lysine residues in the RNA polymerase domain of the gene 4 primase–helicase of bacteriophage T7. J. Biol. Chem. 276:49419–26 [Google Scholar]
  234. Tran NQ, Lee SJ, Richardson CC, Tabor S. 234.  2010. A novel nucleotide kinase encoded by gene 1.7 of bacteriophage T7. Mol. Microbiol. 77:492–504 [Google Scholar]
  235. Zhang H, Lee SJ, Richardson CC. 235.  2012. The roles of tryptophans in primer synthesis by the DNA primase of bacteriophage T7. J. Biol. Chem. 287:23644–56 [Google Scholar]
  236. Zhang H, Lee SJ, Zhu B, Tran NQ, Tabor S, Richardson CC. 236.  2011. Helicase–DNA polymerase interaction is critical to initiate leading-strand DNA synthesis. PNAS 108:9372–77 [Google Scholar]
  237. Zhu B, Lee SJ, Richardson CC. 237.  2011. Bypass of a nick by the replisome of bacteriophage T7. J. Biol. Chem. 286:28488–97 [Google Scholar]
  238. Zhu B, Lee SJ, Richardson CC. 238.  2010. Direct role for the RNA polymerase domain of T7 primase in primer delivery. PNAS 107:9099–104 [Google Scholar]
  239. Zhu B, Lee SJ, Richardson CC. 239.  2009. An in trans interaction at the interface of the helicase and primase domains of the hexameric gene 4 protein of bacteriophage T7 modulates their activities. J. Biol. Chem. 284:23842–51 [Google Scholar]
  240. Zhu B, Lee SJ, Tan M, Wang ED, Richardson CC. 240.  2012. Gene 5.5 protein of bacteriophage T7 in complex with Escherichia coli nucleoid protein H-NS and transfer RNA masks transfer RNA priming in T7 DNA replication. PNAS 109:8050–55 [Google Scholar]
  241. Liu Q, Richardson CC. 241.  1993. Gene 5.5 protein of bacteriophage T7 inhibits the nucleoid protein H-NS of Escherichia coli. PNAS 90:1761–65 [Google Scholar]
  242. Marintcheva B, Marintchev A, Wagner G, Richardson CC. 242.  2008. Acidic C-terminal tail of the ssDNA-binding protein of bacteriophage T7 and ssDNA compete for the same binding surface. PNAS 105:1855–60 [Google Scholar]
  243. Marintcheva B, Qimron U, Yu Y, Tabor S, Richardson CC. 243.  2009. Mutations in the gene 5 DNA polymerase of bacteriophage T7 suppress the dominant lethal phenotype of gene 2.5 ssDNA binding protein lacking the C-terminal phenylalanine. Mol. Microbiol. 72:869–80 [Google Scholar]
  244. Qimron U, Marintcheva B, Tabor S, Richardson CC. 244.  2006. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. PNAS 103:19039–44 [Google Scholar]
  245. Shokri L, Marintcheva B, Richardson CC, Rouzina I, Williams MC. 245.  2006. Single molecule force spectroscopy of salt-dependent bacteriophage T7 gene 2.5 protein binding to single-stranded DNA. J. Biol. Chem. 281:38689–96 [Google Scholar]
  246. Mendelman LV, Beauchamp BB, Richardson CC. 246.  1994. Requirement for a zinc motif for template recognition by the bacteriophage T7 primase. EMBO J. 13:3909–16 [Google Scholar]
  247. Mendelman LV, Kuimelis RG, McLaughlin LW, Richardson CC. 247.  1995. Effects of base analog substitutions in the noncoding dC of the 3′-d(CTG)-5′ template recognition site of the bacteriophage T7 primase. Biochemistry 34:10187–93 [Google Scholar]
  248. Mendelman LV, Notarnicola SM, Richardson CC. 248.  1993. Evidence for distinct primase and helicase domains in the 63-kDa gene 4 protein of bacteriophage T7. Characterization of nucleotide binding site mutant. J. Biol. Chem. 268:27208–13 [Google Scholar]
  249. Mendelman LV, Notarnicola SM, Richardson CC. 249.  1992. Roles of bacteriophage T7 gene 4 proteins in providing primase and helicase functions in vivo. PNAS 89:10638–42 [Google Scholar]
  250. Mendelman LV, Richardson CC. 250.  1991. Requirements for primer synthesis by bacteriophage T7 63-kDa gene 4 protein. Roles of template sequence and T7 56-kDa gene 4 protein. J. Biol. Chem. 266:23240–50 [Google Scholar]
  251. Mitsunobu H, Zhu B, Lee SJ, Tabor S, Richardson CC. 251.  2014. Flap endonuclease activity of gene 6 exonuclease of bacteriophage T7. J. Biol. Chem. 289:5860–75 [Google Scholar]
  252. Myers JA, Beauchamp BB, Richardson CC. 252.  1987. Gene 1.2 protein of bacteriophage T7. Effect on deoxyribonucleotide pools. J. Biol. Chem. 262:5288–92 [Google Scholar]
  253. Myers JA, Beauchamp BB, White JH, Richardson CC. 253.  1987. Purification and characterization of the gene 1.2 protein of bacteriophage T7. J. Biol. Chem. 262:5280–87 [Google Scholar]
  254. Notarnicola SM, Park K, Griffith JD, Richardson CC. 254.  1995. A domain of the gene 4 helicase/primase of bacteriophage T7 required for the formation of an active hexamer. J. Biol. Chem. 270:20215–24 [Google Scholar]
  255. Notarnicola SM, Richardson CC. 255.  1993. The nucleotide binding site of the helicase/primase of bacteriophage T7. Interaction of mutant and wild-type proteins. J. Biol. Chem. 268:27198–207 [Google Scholar]
  256. Tran NQ, Rezende LF, Qimron U, Richardson CC, Tabor S. 256.  2008. Gene 1.7 of bacteriophage T7 confers sensitivity of phage growth to dideoxythymidine. PNAS 105:9373–78 [Google Scholar]
  257. Rezende LF, Hollis T, Ellenberger T, Richardson CC. 257.  2002. Essential amino acid residues in the single-stranded DNA–binding protein of bacteriophage T7. Identification of the dimer interface. J. Biol. Chem. 277:50643–53 [Google Scholar]
  258. Rezende LF, Willcox S, Griffith JD, Richardson CC. 258.  2003. A single-stranded DNA–binding protein of bacteriophage T7 defective in DNA annealing. J. Biol. Chem. 278:29098–105 [Google Scholar]
  259. Scholl D, Kieleczawa J, Kemp P, Rush J, Richardson CC. 259.  et al. 2004. Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup. J. Mol. Biol. 335:1151–71 [Google Scholar]
  260. Satapathy AK, Richardson CC. 260.  2011. The glutamate switch of bacteriophage T7 DNA helicase: role in coupling nucleotide triphosphate (NTP) and DNA binding to NTP hydrolysis. J. Biol. Chem. 286:23113–20 [Google Scholar]
  261. Hollis T, Stattel JM, Walther DS, Richardson CC, Ellenberger T. 261.  2001. Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7. PNAS 98:9557–62 [Google Scholar]
  262. Tran NQ, Tabor S, Richardson CC. 262.  2014. Genetic requirements for sensitivity of bacteriophage T7 to dideoxythymidine. J. Bacteriol. 196:2842–50 [Google Scholar]
  263. Zhu B, Tabor S, Richardson CC. 263.  2014. Syn5 RNA polymerase synthesizes precise run-off RNA products. Nucleic Acids Res. 42:e33 [Google Scholar]
  264. Ritchie DA, Thomas CA Jr, MacHattie LA, Wensink PC. 264.  1967. Terminal repetition in non-permuted T3 and T7 bacteriophage DNA molecules. J. Mol. Biol. 23:365–76 [Google Scholar]
  265. Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T. 265.  1998. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391:251–58 [Google Scholar]
  266. Kato M, Ito T, Wagner G, Richardson CC, Ellenberger T. 266.  2003. Modular architecture of the bacteriophage T7 primase couples RNA primer synthesis to DNA synthesis. Mol. Cell 11:1349–60 [Google Scholar]
  267. Toth EA, Li Y, Sawaya MR, Cheng Y, Ellenberger T. 267.  2003. The crystal structure of the bifunctional primase–helicase of bacteriophage T7. Mol. Cell 12:1113–23 [Google Scholar]
  268. Alberts BM, Barry J, Bedinger P, Formosa T, Jongeneel CV, Kreuzer KN. 268.  1983. Studies on DNA replication in the bacteriophage T4 in vitro system. Cold Spring Harb. Symp. Quant. Biol. 47:655–68 [Google Scholar]
  269. Lehman IR, Nussbaum AL. 269.  1964. The deoxyribonucleases of Escherichia coli. V. On the specificity of exonuclease I (phosphodiesterase). J. Biol. Chem. 239:2628–36 [Google Scholar]
  270. Harvey CL, Wright R, Nussbaum AL. 270.  1973. Lambda phage DNA: joining of a chemically synthesized cohesive end. Science 179:291–93 [Google Scholar]
  271. Harvey CL, Olson K, de Czekala A, Nussbaum AL. 271.  1975. Construction of a double-stranded deoxyribonucleotide sequence of 45 base pairs designed to code for S-peptide 2-14 of bovine ribonuclease A. Nucleic Acids Res. 2:2007–20 [Google Scholar]
  272. Huber HE, McCoy JM, Seehra JS, Richardson CC. 272.  1989. Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis, and template switching. J. Biol. Chem. 264:4669–78 [Google Scholar]
  273. Huber HE, Richardson CC. 273.  1990. Processing of the primer for plus strand DNA synthesis by human immunodeficiency virus 1 reverse transcriptase. J. Biol. Chem. 265:10565–73 [Google Scholar]
  274. Saito H, Richardson CC. 274.  1981. Genetic analysis of gene 1.2 of bacteriophage T7: isolation of a mutant of Escherichia coli unable to support the growth of T7 gene 1.2 mutants. J. Virol. 37:343–51 [Google Scholar]
  275. Saito H, Richardson CC. 275.  1981. Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7. Cell 27:533–42 [Google Scholar]
  276. Beauchamp BB, Richardson CC. 276.  1988. A unique deoxyguanosine triphosphatase is responsible for the optA1 phenotype of Escherichia coli. PNAS 85:2563–67 [Google Scholar]
  277. Wurgler SM, Richardson CC. 277.  1990. Structure and regulation of the gene for dGTP triphosphohydrolase from Escherichia coli. PNAS 87:2740–44 [Google Scholar]
  278. Wurgler SM, Richardson CC. 278.  1993. DNA binding properties of the deoxyguanosine triphosphate triphosphohydrolase of Escherichia coli. J. Biol. Chem. 268:20046–54 [Google Scholar]
  279. Kornberg SR, Lehman IR, Bessman MJ, Simms ES, Kornberg A. 279.  1958. Enzymatic cleavage of deoxyguanosine triphosphate to deoxyguanosine and tripolyphosphate. J. Biol. Chem. 233:159–62 [Google Scholar]
  280. Huber HE, Beauchamp BB, Richardson CC. 280.  1988. Escherichia coli dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7. J. Biol. Chem. 263:13549–56 [Google Scholar]
  281. Nakai H, Richardson CC. 281.  1990. The gene 1.2 protein of bacteriophage T7 interacts with the Escherichia coli dGTP triphosphohydrolase to form a GTP-binding protein. J. Biol. Chem. 265:4411–19 [Google Scholar]
  282. Gawel D, Hamilton MD, Schaaper RM. 282.  2008. A novel mutator of Escherichia coli carrying a defect in the dgt gene, encoding a dGTP triphosphohydrolase. J. Bacteriol. 190:6931–39 [Google Scholar]
  283. Dorman CJ. 283.  2007. H-NS, the genome sentinel. Nat. Rev. Microbiol. 5:157–61 [Google Scholar]
  284. Tisne C. 284.  2005. Structural bases of the annealing of primer Lys tRNA to the HIV-1 viral RNA. Curr. HIV Res. 3:147–56 [Google Scholar]
  285. Richardson CC. 285.  1969. Enzymes in DNA metabolism. Annu. Rev. Biochem. 38:795–840 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-033850
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error