1932

Abstract

Circadian clocks are cellular timekeeping mechanisms that coordinate behavior and physiology around the 24-h day in most living organisms. Misalignment of an organism's clock with its environment is associated with long-term adverse fitness consequences, as exemplified by the link between circadian disruption and various age-related diseases in humans. Current eukaryotic models of the circadian oscillator rely on transcription/translation feedback loop mechanisms, supplemented with accessory cytosolic loops that connect them to cellular physiology. However, mounting evidence is questioning the absolute necessity of transcription-based oscillators for circadian rhythmicity, supported by the recent discovery of oxidation-reduction cycles of peroxiredoxin proteins, which persist even in the absence of transcription. A more fundamental mechanism based on metabolic cycles could thus underlie circadian transcriptional and cytosolic rhythms, thereby promoting circadian oscillations to integral properties of cellular metabolism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060713-035623
2014-06-02
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biochem/83/1/annurev-biochem-060713-035623.html?itemId=/content/journals/10.1146/annurev-biochem-060713-035623&mimeType=html&fmt=ahah

Literature Cited

  1. Siffre M.1.  1963. Hors du temps Paris: Ed. Julliard
  2. Aschoff J.2.  1965. Circadian rhythms in man. Science 148:1427–32 [Google Scholar]
  3. Wijnen H, Young MW. 3.  2006. Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet. 40:409–48 [Google Scholar]
  4. Dibner C, Schibler U, Albrecht U. 4.  2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72:517–49 [Google Scholar]
  5. Johnson CH, Stewart PL, Egli M. 5.  2011. The cyanobacterial circadian system: from biophysics to bioevolution. Annu. Rev. Biophys. 40:143–67 [Google Scholar]
  6. Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. 6.  1998. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl. Acad. Sci. USA 95:8660–64 [Google Scholar]
  7. Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. 7.  2004. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr. Biol. 14:1481–86 [Google Scholar]
  8. Dodd AN, Salathia N, Hall A, Kevei E, Tóth R. 8.  et al. 2005. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–33 [Google Scholar]
  9. Reddy AB, O'Neill JS. 9.  2010. Healthy clocks, healthy body, healthy mind. Trends Cell Biol. 20:36–44 [Google Scholar]
  10. Hastings MH, Reddy AB, Maywood ES. 10.  2003. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4:649–61 [Google Scholar]
  11. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM. 11.  et al. 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12:540–50 [Google Scholar]
  12. Young MW, Kay SA. 12.  2001. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2:702–15 [Google Scholar]
  13. Edmunds LNJ.13.  1988. Cellular and Molecular Bases of Biological Clocks New York: Springer
  14. Gallego M, Virshup DM. 14.  2007. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8:139–48 [Google Scholar]
  15. Mehra A, Baker CL, Loros JJ, Dunlap JC. 15.  2009. Post-translational modifications in circadian rhythms. Trends Biochem. Sci. 34:483–90 [Google Scholar]
  16. Kojima S, Shingle DL, Green CB. 16.  2011. Post-transcriptional control of circadian rhythms. J. Cell Sci. 124:311–20 [Google Scholar]
  17. Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y. 17.  et al. 2005. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–15 [Google Scholar]
  18. O'Neill JS, Reddy AB. 18.  2011. Circadian clocks in human red blood cells. Nature 469:498–503 [Google Scholar]
  19. O'Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F. 19.  et al. 2011. Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–58 [Google Scholar]
  20. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M. 20.  et al. 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459–64 [Google Scholar]
  21. Konopka RJ, Benzer S. 21.  1971. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68:2112–16 [Google Scholar]
  22. Bargiello TA, Young MW. 22.  1984. Molecular genetics of a biological clock in Drosophila. Proc. Natl. Acad. Sci. USA 81:2142–46 [Google Scholar]
  23. Reddy P, Zehring WA, Wheeler DA, Pirrotta V, Hadfield C. 23.  et al. 1984. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38:701–10 [Google Scholar]
  24. Hardin PE, Hall JC, Rosbash M. 24.  1990. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343:536–40 [Google Scholar]
  25. Zerr DM, Hall JC, Rosbash M, Siwicki KK. 25.  1990. Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J. Neurosci. 10:2749–62 [Google Scholar]
  26. Aronson BD, Johnson KA, Loros JJ, Dunlap JC. 26.  1994. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263:1578–84 [Google Scholar]
  27. Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N. 27.  et al. 1998. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280:1599–603 [Google Scholar]
  28. Allada R, White NE, So WV, Hall JC, Rosbash M. 28.  1998. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93:791–804 [Google Scholar]
  29. Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC. 29.  1998. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93:5805–14 [Google Scholar]
  30. Vitaterna M, King D, Chang A, Kornhauser J, Lowrey P. 30.  et al. 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–25 [Google Scholar]
  31. DeBruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM. 31.  2006. A clock shock: Mouse CLOCK is not required for circadian oscillator function. Neuron 50:465–77 [Google Scholar]
  32. Harmer SL, Panda S, Kay SA.32.  2001. Molecular bases of circadian rhythms. Annu. Rev. Cell Dev. Biol. 17:215–53 [Google Scholar]
  33. Hogenesch JB, Gu YZ, Jain S, Bradfield CA. 33.  1998. The basic helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95:5474–79 [Google Scholar]
  34. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D. 34.  et al. 2002. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–60 [Google Scholar]
  35. Cho H, Zhao X, Hatori M, Yu RT, Barish GD. 35.  et al. 2012. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123–27 [Google Scholar]
  36. Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE. 36.  et al. 2012. REV-ERBα and REV-ERBβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26:657–67 [Google Scholar]
  37. Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. 37.  2011. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9:e1000595 [Google Scholar]
  38. Koike N, Yoo S-H, Huang H-C, Kumar V, Lee C. 38.  et al. 2012. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349–54 [Google Scholar]
  39. Doherty CJ, Kay SA. 39.  2010. Circadian control of global gene expression patterns. Annu. Rev. Genet. 44:419–44 [Google Scholar]
  40. Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M. 40.  et al. 2006. Circadian orchestration of the hepatic proteome. Curr. Biol. 16:1107–15 [Google Scholar]
  41. Ripperger JA, Merrow M. 41.  2011. Perfect timing: epigenetic regulation of the circadian clock. FEBS Lett. 585:1406–11 [Google Scholar]
  42. Hastings MH, Maywood ES, O'Neill JS. 42.  2008. Cellular circadian pacemaking and the role of cytosolic rhythms. Curr. Biol. 18:R805–15 [Google Scholar]
  43. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J. 43.  et al. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–40 [Google Scholar]
  44. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C. 44.  et al. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–28 [Google Scholar]
  45. Etchegaray J-P, Yang X, DeBruyne JP, Peters AHFM, Weaver DR. 45.  et al. 2006. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281:21209–15 [Google Scholar]
  46. Ripperger JA, Schibler U. 46.  2006. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38:369–74 [Google Scholar]
  47. Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. 47.  2005. Circadian clock control by SUMOylation of BMAL1. Science 309:1390–94 [Google Scholar]
  48. Durgan DJ, Pat BM, Laczy B, Bradley JA, Tsai J-Y. 48.  et al. 2011. O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock. J. Biol. Chem. 286:44606–19 [Google Scholar]
  49. Kim EY, Jeong EH, Park S, Jeong H-J, Edery I, Cho JW. 49.  2012. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 26:490–502 [Google Scholar]
  50. Kaasik K, Kivimäe S, Allen JJ, Chalkley RJ, Huang Y. 50.  et al. 2013. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab. 17:291–302 [Google Scholar]
  51. Li M-D, Ruan H-B, Hughes ME, Lee J-S, Singh JP. 51.  et al. 2013. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab. 17:303–10 [Google Scholar]
  52. Godinho SIH, Maywood ES, Shaw L, Tucci V, Barnard AR. 52.  et al. 2007. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316:897–900 [Google Scholar]
  53. Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM. 53.  et al. 2007. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316:900–4 [Google Scholar]
  54. Siepka SM, Yoo S-H, Park J, Song W, Kumar V. 54.  et al. 2007. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129:1011–23 [Google Scholar]
  55. Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M. 55.  et al. 2013. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152:1106–18 [Google Scholar]
  56. Yoo S-H, Mohawk JA, Siepka SM, Shan Y, Huh SK. 56.  et al. 2013. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152:1091–105 [Google Scholar]
  57. Reischl S, Vanselow K, Westermark PO, Thierfelder N, Maier B. 57.  et al. 2007. β-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 22:375–86 [Google Scholar]
  58. Ko HW, Jiang J, Edery I. 58.  2002. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature 420:673–78 [Google Scholar]
  59. Koh K, Zheng X, Sehgal A. 59.  2006. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science 312:1809–12 [Google Scholar]
  60. He Q, Cheng P, Yang Y, He Q, Yu H, Liu Y. 60.  2003. FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation. EMBO J. 22:4421–30 [Google Scholar]
  61. Kim WY, Fujiwara S, Suh S-S, Kim J, Kim Y. 61.  et al. 2007. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–60 [Google Scholar]
  62. van Ooijen G, Dixon LE, Troein C, Millar AJ. 62.  2011. Proteasome function is required for biological timing throughout the twenty-four hour cycle. Curr. Biol. 21:869–75 [Google Scholar]
  63. Deery MJ, Maywood ES, Chesham JE, Sládek M, Karp NA. 63.  et al. 2009. Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock. Curr. Biol. 19:2031–36 [Google Scholar]
  64. Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I. 64.  et al. 2013. The circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc. Natl. Acad. Sci. USA 110:3339–44 [Google Scholar]
  65. Morf J, Rey G, Schneider K, Stratmann M, Fujita J. 65.  et al. 2012. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338:379–83 [Google Scholar]
  66. McGlincy NJ, Valomon A, Chesham JE, Maywood ES, Hastings MH, Ule J. 66.  2012. Regulation of alternative splicing by the circadian clock and food-related cues. Genome Biol. 13:R54 [Google Scholar]
  67. Kojima S, Sher-Chen EL, Green CB. 67.  2012. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 26:2724–36 [Google Scholar]
  68. Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. 68.  2012. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 1:e00011 [Google Scholar]
  69. Le Martelot G, Canella D, Symul L, Migliavacca E, Gilardi F. 69.  et al. 2012. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol. 10:e1001442 [Google Scholar]
  70. Valekunja UK, Edgar RS, Oklejewicz M, van der Horst GTJ, O'Neill JS. 70.  et al. 2013. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc. Natl. Acad. Sci. USA 110:1554–59 [Google Scholar]
  71. Rey G, Reddy AB. 71.  2013. Connecting cellular metabolism to circadian clocks. Trends Cell Biol. 23:234–41 [Google Scholar]
  72. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y. 72.  et al. 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–54 [Google Scholar]
  73. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. 73.  2009. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–57 [Google Scholar]
  74. Rutter J, Reick M, Wu LC, McKnight SL. 74.  2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–14 [Google Scholar]
  75. Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U. 75.  2010. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943–53 [Google Scholar]
  76. O'Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH. 76.  2008. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949–53 [Google Scholar]
  77. Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG. 77.  et al. 2009. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–40 [Google Scholar]
  78. Hirota T, Kon N, Itagaki T, Hoshina N, Okano T, Fukada Y. 78.  2010. Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork. Genes Cells 15:111–21 [Google Scholar]
  79. Roenneberg T, Morse D. 79.  1993. Two circadian oscillators in one cell. Nature 362:362–64 [Google Scholar]
  80. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. 80.  2004. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705 [Google Scholar]
  81. Kondo T, Mori T, Lebedeva NV, Aoki S, Ishiura M, Golden SS. 81.  1997. Circadian rhythms in rapidly dividing cyanobacteria. Science 275:224–27 [Google Scholar]
  82. Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F. 82.  2011. Mammalian genes are transcribed with widely different bursting kinetics. Science 332:472–74 [Google Scholar]
  83. Dibner C, Sage D, Unser M, Bauer C, d'Eysmond T. 83.  et al. 2009. Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 28:123–34 [Google Scholar]
  84. Yang Z, Sehgal A. 84.  2001. Role of molecular oscillations in generating behavioral rhythms in Drosophila. Neuron 29:453–67 [Google Scholar]
  85. Lakin-Thomas PL.85.  2006. Transcriptional feedback oscillators: maybe, maybe not…. J. Biol. Rhythms 21:83–92 [Google Scholar]
  86. Morse D, Milos PM, Roux E, Hastings JW. 86.  1989. Circadian regulation of bioluminescence in Gonyaulax involves translational control. Proc. Natl. Acad. Sci. USA 86:172–76 [Google Scholar]
  87. Mittag M, Lee DH, Hastings JW. 87.  1994. Circadian expression of the luciferin-binding protein correlates with the binding of a protein to the 3′ untranslated region of its mRNA. Proc. Natl. Acad. Sci. USA 91:5257–61 [Google Scholar]
  88. Ko CH, Takahashi JS. 88.  2006. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15:R271–77 [Google Scholar]
  89. McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC. 89.  et al. 2006. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 314:1304–8 [Google Scholar]
  90. Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L. 90.  et al. 2013. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J. Clin. Investig. 123:5389–400 [Google Scholar]
  91. Ko CH, Yamada YR, Welsh DK, Buhr ED, Liu AC. 91.  et al. 2010. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol. 8:e1000513 [Google Scholar]
  92. Maywood ES, Chesham JE, O'Brien JA, Hastings MH. 92.  2011. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc. Natl. Acad. Sci. USA 108:14306–11 [Google Scholar]
  93. Ono D, Honma S, Honma K-I. 93.  2013. Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Nat. Commun. 4:1666 [Google Scholar]
  94. Honma K, Honma S, Hiroshige T. 94.  1987. Activity rhythms in the circadian domain appear in suprachiasmatic nuclei lesioned rats given methamphetamine. Physiol. Behav. 40:767–74 [Google Scholar]
  95. Tataroğlu Ö, Davidson AJ, Benvenuto LJ, Menaker M. 95.  2006. The methamphetamine-sensitive circadian oscillator (MASCO) in mice. J. Biol. Rhythms 21:185–94 [Google Scholar]
  96. Mohawk JA, Baer ML, Menaker M. 96.  2009. The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes. Proc. Natl. Acad. Sci. USA 106:3519–24 [Google Scholar]
  97. Sel'kov EE.97.  1968. Self-oscillations in glycolysis. 1. A simple kinetic model. Eur. J. Biochem. 4:79–86 [Google Scholar]
  98. Goldbeter A, Lefever R. 98.  1972. Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys. J. 12:1302–15 [Google Scholar]
  99. Martiel JL, Goldbeter A. 99.  1987. A model based on receptor desensitization for cyclic AMP signaling in dictyostelium cells. Biophys. J. 52:807–28 [Google Scholar]
  100. Tyson JJ, Alexander KA, Manoranjan VS. 100.  1989. Spiral waves of cyclic AMP in a model of slime mold aggregation. Physica D 34: 193–207
  101. Goto K, Laval-Martin DL, Edmunds LN. 101.  1985. Biochemical modeling of an autonomously oscillatory circadian clock in Euglena. Science 228:1284–88 [Google Scholar]
  102. Johnson CH, Knight MR, Kondo T, Masson P, Sedbrook J. 102.  et al. 1995. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269:1863–65 [Google Scholar]
  103. Sweeney BM.103.  1974. A physiological model for circadian rhythms derived from the acetabularia rhythm paradoxes. Int. J. Chronobiol. 2:25–33 [Google Scholar]
  104. Njus D, Sulzman FM, Hastings JW. 104.  1974. Membrane model for the circadian clock. Nature 248:116–20 [Google Scholar]
  105. Schweiger HG, Schweiger M. 105.  1977. Circadian rhythms in unicellular organisms: an endeavor to explain the molecular mechanism. Int. Rev. Cytol. 51:315–42 [Google Scholar]
  106. Burgoyne RD.106.  1978. A model for the molecular basis of circadian rhythm involving monovalent ion-mediated translational control. FEBS Lett. 94:17–19 [Google Scholar]
  107. Sweeney BM, Haxo FT. 107.  1961. Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science 134:1361–63 [Google Scholar]
  108. Schweiger E, Wallraff HG, Schweiger HG. 108.  1964. Endogenous circadian rhythm in cytoplasm of Acetabularia: influence of the nucleus. Science 146:658–59 [Google Scholar]
  109. Mergenhagen D, Schweiger HG. 109.  1975. The effect of different inhibitors of transcription and translation on the expression and control of circadian rhythm in individual cells of Acetabularia. Exp. Cell Res. 94:321–26 [Google Scholar]
  110. Cornelius G, Rensing L. 110.  1976. Daily rhythmic changes in Mg2+-dependent ATPase activity in human red blood cell membranes in vitro. Biochem. Biophys. Res. Commun. 71:1269–72 [Google Scholar]
  111. Radha E, Hill TD, Rao GH, White JG. 111.  1985. Glutathione levels in human platelets display a circadian rhythm in vitro. Thromb. Res. 40:823–31 [Google Scholar]
  112. Tomita J, Nakajima M, Kondo T, Iwasaki H. 112.  2005. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251–54 [Google Scholar]
  113. Rust MJ, Markson JS, Lane WS, Fisher DS, O'Shea EK. 113.  2007. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318:809–12 [Google Scholar]
  114. Nishiwaki T, Satomi Y, Kitayama Y, Terauchi K, Kiyohara R. 114.  et al. 2007. A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. EMBO J. 26:4029–37 [Google Scholar]
  115. Kim Y-I, Dong G, Carruthers CW, Golden SS, LiWang A. 115.  2008. The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria. Proc. Natl. Acad. Sci. USA 105:12825–30 [Google Scholar]
  116. Rust MJ, Golden SS, O'Shea EK. 116.  2011. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331:220–23 [Google Scholar]
  117. Ivleva NB, Bramlett MR, Lindahl PA, Golden SS. 117.  2005. LdpA: a component of the circadian clock senses redox state of the cell. EMBO J. 24:1202–10 [Google Scholar]
  118. Wood TL, Bridwell-Rabb J, Kim Y-I, Gao T, Chang Y-G. 118.  et al. 2010. The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor. Proc. Natl. Acad. Sci. USA 107:5804–9 [Google Scholar]
  119. Kitayama Y, Nishiwaki T, Terauchi K, Kondo T. 119.  2008. Dual KaiC-based oscillations constitute the circadian system of cyanobacteria. Genes Dev. 22:1513–21 [Google Scholar]
  120. Qin X, Byrne M, Xu Y, Mori T, Johnson CH. 120.  2010. Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system. PLoS Biol. 8:e1000394 [Google Scholar]
  121. Zwicker D, Lubensky DK, ten Wolde PR. 121.  2010. Robust circadian clocks from coupled protein-modification and transcription-translation cycles. Proc. Natl. Acad. Sci. USA 107:22540–45 [Google Scholar]
  122. Teng SW, Mukherji S, Moffitt JR, de Buyl S, O'Shea EK. 122.  2013. Robust circadian oscillations in growing cyanobacteria require transcriptional feedback. Science 340:737–40 [Google Scholar]
  123. Jolley CC, Ode KL, Ueda HR. 123.  2012. A design principle for a posttranslational biochemical oscillator. Cell Rep. 2:938–50 [Google Scholar]
  124. Olmedo M, O'Neill JS, Edgar RS, Valekunja UK, Reddy AB, Merrow M. 124.  2012. Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 109:20479–84 [Google Scholar]
  125. Hall A, Karplus PA, Poole LB. 125.  2009. Typical 2-Cys peroxiredoxins: structures, mechanisms and functions. FEBS J. 276:2469–77 [Google Scholar]
  126. Rhee SG, Jeong W, Chang T-S, Woo HA. 126.  2007. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int. 72:S3–S8 [Google Scholar]
  127. Poole LB.127.  2007. The catalytic mechanism of peroxiredoxins. Subcell. Biochem. 44:61–81 [Google Scholar]
  128. Bass J.128.  2012. Circadian topology of metabolism. Nature 491:348–56 [Google Scholar]
  129. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C. 129.  et al. 2007. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6:414–21 [Google Scholar]
  130. Buxton OM, Cain SW, O'Connor SP, Porter JH, Duffy JF. 130.  et al. 2012. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 4:129ra43 [Google Scholar]
  131. Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez M-A, McKnight SL. 131.  2002. NPAS2: a gas-responsive transcription factor. Science 298:2385–87 [Google Scholar]
  132. Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR. 132.  et al. 2007. REV-ERBα, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786–89 [Google Scholar]
  133. Gupta N, Ragsdale SW. 133.  2011. Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor REV-ERBα. J. Biol. Chem. 286:4392–403 [Google Scholar]
  134. Yang J, Kim KD, Lucas A, Drahos KE, Santos CS. 134.  et al. 2008. A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol. Cell. Biol. 28:4697–711 [Google Scholar]
  135. Katada S, Imhof A, Sassone-Corsi P. 135.  2012. Connecting threads: epigenetics and metabolism. Cell 148:24–28 [Google Scholar]
  136. Tanner KG, Trievel RC, Kuo MH, Howard RM, Berger SL. 136.  et al. 1999. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J. Biol. Chem. 274:18157–60 [Google Scholar]
  137. Cai L, Tu BP. 137.  2011. On acetyl-CoA as a gauge of cellular metabolic state. Cold Spring Harb. Symp. Quant. Biol. 76:195–202 [Google Scholar]
  138. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M. 138.  et al. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–40 [Google Scholar]
  139. Zhao S, Xu W, Jiang W, Yu W, Lin Y. 139.  et al. 2010. Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–4 [Google Scholar]
  140. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. 140.  2011. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80:825–58 [Google Scholar]
  141. Wagner E, Frosch S. 141.  1974. Cycles in plants. J. Interdiscipl. Cycle Res. 5:231–39 [Google Scholar]
  142. Isaacs J, Binkley F. 142.  1977. Glutathione dependent control of protein disulfide-sulfhydryl content by subcellular fractions of hepatic tissue. Biochim. Biophys. Acta 497:192–204 [Google Scholar]
  143. Isaacs JT, Binkley F. 143.  1977. Cyclic AMP–dependent control of the rat hepatic glutathione disulfide-sulfhydryl ratio. Biochim. Biophys. Acta 498:29–38 [Google Scholar]
  144. Robinson JL, Foustock S, Chanez M, Bois-Joyeux B, Peret J. 144.  1981. Circadian variation of liver metabolites and amino acids in rats adapted to a high protein, carbohydrate-free diet. J. Nutr. 111:1711–20 [Google Scholar]
  145. Kaminsky YG, Kosenko EA, Kondrashova MN. 145.  1984. Analysis of the circadian rhythm in energy metabolism of rat liver. Int. J. Biochem. 16:629–39 [Google Scholar]
  146. Bélanger PM, Desgagné M, Bruguerolle B. 146.  1991. Temporal variations in microsomal lipid peroxidation and in glutathione concentration of rat liver. Drug Metab. Dispos. 19:241–44 [Google Scholar]
  147. Scheer FAJL, Michelson AD, Frelinger AL, Evoniuk H, Kelly EE. 147.  et al. 2011. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS ONE 6:e24549 [Google Scholar]
  148. Roenneberg T, Merrow M. 148.  1999. Circadian systems and metabolism. J. Biol. Rhythms 14:449–59 [Google Scholar]
  149. Rutter J, Reick M, McKnight SL. 149.  2002. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71:307–31 [Google Scholar]
  150. Hirayama J, Cho S, Sassone-Corsi P. 150.  2007. Circadian control by the reduction/oxidation pathway: Catalase represses light-dependent clock gene expression in the zebrafish. Proc. Natl. Acad. Sci. USA 104:15747–52 [Google Scholar]
  151. Krishnan N, Davis AJ, Giebultowicz JM. 151.  2008. Circadian regulation of response to oxidative stress in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 374:299–303 [Google Scholar]
  152. Beaver LM, Klichko VI, Chow ES, Kotwica-Rolinska J, Williamson M. 152.  et al. 2012. Circadian regulation of glutathione levels and biosynthesis in Drosophila melanogaster. PLoS ONE 7:e50454 [Google Scholar]
  153. Wang TA, Yu YV, Govindaiah G, Ye X, Artinian L. 153.  et al. 2012. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 337:839–42 [Google Scholar]
  154. Kil IS, Lee SK, Ryu KW, Woo HA, Hu M-C. 154.  et al. 2012. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46:584–94 [Google Scholar]
  155. Yoshida Y, Iigusa H, Wang N, Hasunuma K. 155.  2011. Cross-talk between the cellular redox state and the circadian system in Neurospora. PLoS ONE 6:e28227 [Google Scholar]
  156. Yoshida Y, Maeda T, Lee B, Hasunuma K. 156.  2008. Conidiation rhythm and light entrainment in superoxide dismutase mutant in Neurospora crassa. Mol. Genet. Genomics 279:193–202 [Google Scholar]
  157. Gyöngyösi N, Nagy D, Makara K, Ella K, Káldi K. 157.  2013. Reactive oxygen species can modulate circadian phase and period in Neurospora crassa. Free Radic. Biol. Med. 58:134–43 [Google Scholar]
  158. Chang T-S, Jeong W, Woo HA, Lee SM, Park S, Rhee SG. 158.  2004. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279:50994–1001 [Google Scholar]
  159. Yang K-S, Kang SW, Woo HA, Hwang SC, Chae HZ. 159.  et al. 2002. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277:38029–36 [Google Scholar]
  160. Murayama Y, Mukaiyama A, Imai K, Onoue Y, Tsunoda A. 160.  et al. 2011. Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution. EMBO J. 30:68–78 [Google Scholar]
  161. Paulose JK, Rucker EB, Cassone VM. 161.  2012. Toward the beginning of time: Circadian rhythms in metabolism precede rhythms in clock gene expression in mouse embryonic stem cells. PLoS ONE 7:e49555 [Google Scholar]
  162. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE. 162.  et al. 2005. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6:544–56 [Google Scholar]
  163. Hasegawa K, Saigusa T, Tamai Y. 163.  2005. Caenorhabditis elegans opens up new insights into circadian clock mechanisms. Chronobiol. Int. 22:1–19 [Google Scholar]
  164. Ghosh A, Chance B. 164.  1964. Oscillations of glycolytic intermediates in yeast cells. Biochem. Biophys. Res. Commun. 16:174–81 [Google Scholar]
  165. Chance B, Schoener B, Elsässer S. 165.  1964. Control of the waveform of oscillations of the reduced pyridine nucleotide level in a cell-free extract. Proc. Natl. Acad. Sci. USA 52:337–41 [Google Scholar]
  166. Goldbeter A.166.  1997. Biochemical Oscillations and Cellular Rhythms Cambridge, UK: Cambridge Univ. Press
  167. Frenkel R.167.  1968. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. Arch. Biochem. Biophys. 125:151–56 [Google Scholar]
  168. Chou HF, Berman N, Ipp E. 168.  1992. Oscillations of lactate released from islets of Langerhans: evidence for oscillatory glycolysis in β-cells. Am. J. Physiol. Endocrinol. Metab. 262:800–5 [Google Scholar]
  169. O'Rourke B, Ramza BM, Marban E. 169.  1994. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science 265:962–66 [Google Scholar]
  170. Goodwin BC.170.  1963. Temporal Organization in Cells: A Dynamic Theory of Cellular Control Process New York: Academic
  171. Sel'kov EE.171.  1975. Stabilization of energy charge, generation of oscillations and multiple steady states in energy metabolism as a result of purely stoichiometric regulation. Eur. J. Biochem. 59:151–57 [Google Scholar]
  172. Winfree AT.172.  1967. Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16:15–42 [Google Scholar]
  173. Pavlidis T.173.  1969. Populations of interacting oscillators and circadian rhythms. J. Theor. Biol. 22:418–36 [Google Scholar]
  174. Tu BP, Kudlicki A, Rowicka M, McKnight SL. 174.  2005. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310:1152–58 [Google Scholar]
  175. Klevecz RR, Bolen J, Forrest G, Murray DB. 175.  2004. A genome-wide oscillation in transcription gates DNA replication and cell cycle. Proc. Natl. Acad. Sci. USA 101:1200–5 [Google Scholar]
  176. Tu BP, Mohler RE, Liu JC, Dombek KM, Young ET. 176.  et al. 2007. Cyclic changes in metabolic state during the life of a yeast cell. Proc. Natl. Acad. Sci. USA 104:16886–91 [Google Scholar]
  177. Murray DB, Beckmann M, Kitano H. 177.  2007. Regulation of yeast oscillatory dynamics. Proc. Natl. Acad. Sci. USA 104:2241–46 [Google Scholar]
  178. Červený J, Sinetova MA, Valledor L, Sherman LA, Nedbal L. 178.  2013. Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. Proc. Natl. Acad. Sci. USA 110:13210–15 [Google Scholar]
  179. Carey HV, Andrews MT, Martin SL. 179.  2003. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83:1153–81 [Google Scholar]
  180. Tu BP, McKnight SL. 180.  2006. Metabolic cycles as an underlying basis of biological oscillations. Nat. Rev. Mol. Cell Biol. 7:696–701 [Google Scholar]
  181. Pittendrigh CS.181.  1993. Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55:16–54 [Google Scholar]
  182. Mori T, Binder B, Johnson CH. 182.  1996. Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc. Natl. Acad. Sci. USA 93:10183–88 [Google Scholar]
  183. Hut RA, Beersma DGM. 183.  2011. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos. Trans. R. Soc. B 366:2141–54 [Google Scholar]
  184. Vitalini MW, de Paula RM, Park WD, Bell-Pedersen D. 184.  2006. The rhythms of life: circadian output pathways in Neurospora. J. Biol. Rhythms 21:432–44 [Google Scholar]
  185. Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB, Winterbourn CC. 185.  2007. The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282:11885–92 [Google Scholar]
  186. Go Y-M, Jones DP. 186.  2008. Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta 1780:1273–90 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060713-035623
Loading
/content/journals/10.1146/annurev-biochem-060713-035623
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error