1932

Abstract

In this review, we describe speculative ideas and early stage research concerning the flow of genetic information from the nuclear residence of genes to the disparate, cytoplasmic sites of protein synthesis. We propose that this process of information transfer is meticulously guided by transient structures formed from protein segments of low sequence complexity/intrinsic disorder. These low complexity domains are ubiquitously associated with regulatory proteins that control gene expression and RNA biogenesis, but they are also found in the central channel of nuclear pores, the nexus points of intermediate filament assembly, and the locations of action of other well-studied cellular proteins and pathways. Upon being organized into localized cellular positions via mechanisms utilizing properly folded protein domains, thereby facilitating elevated local concentration, certain low complexity domains adopt cross-β interactions that are both structurally specific and labile to disassembly. These weakly tethered assemblies, we propose, are built to relay the passage of genetic information from one site to another within a cell, ensuring that the process is of extreme fidelity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-061516-044700
2018-06-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-061516-044700.html?itemId=/content/journals/10.1146/annurev-biochem-061516-044700&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Alberts B. 2015. Molecular Biology of the Cell New York: Garland Science
  2. 2.  McClintock B. 1934. The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z. Zellforsch. Mikrosk. Anat. 21:294–326
    [Google Scholar]
  3. 3.  Nizami Z, Deryusheva S, Gall JG 2010. The Cajal body and histone locus body. Cold Spring Harb. Perspect. Biol. 2:a000653
    [Google Scholar]
  4. 4.  Anderson P, Kedersha N 2008. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 33:141–50
    [Google Scholar]
  5. 5.  Parker R, Sheth U 2007. P bodies and the control of mRNA translation and degradation. Mol. Cell 25:635–46
    [Google Scholar]
  6. 6.  Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I 2011. RNA granules in germ cells. Cold Spring Harb. Perspect. Biol. 3:a002774
    [Google Scholar]
  7. 7.  Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R. 2005. Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11:371–82
    [Google Scholar]
  8. 8.  Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E 2007. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol. Cell. Biol. 27:3970–81
    [Google Scholar]
  9. 9.  Bond CS, Fox AH 2009. Paraspeckles: nuclear bodies built on long noncoding RNA. J. Cell Biol. 186:637–44
    [Google Scholar]
  10. 10.  Hegner RW. 1911. Experiments with chrysomelid beetles: III. The effects of killing parts of the eggs of Leptinotarsa decemlineata. Biol. Bull. 20:237–51
    [Google Scholar]
  11. 11.  Trcek T, Grosch M, York A, Shroff H, Lionnet T, Lehmann R 2015. Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat. Commun. 6:7962
    [Google Scholar]
  12. 12.  Updike D, Strome S 2010. P granule assembly and function in Caenorhabditis elegans germ cells. J. Androl. 31:53–60
    [Google Scholar]
  13. 13.  Wang JT, Seydoux G 2014. P granules. Curr. Biol. 24:R637–38
    [Google Scholar]
  14. 14.  Perutz MF. 1998. Science is Not a Quiet Life: Unravelling the Atomic Mechanism of Haemoglobin Singapore: World Scientific
  15. 15.  Pabo CO, Sauer RT 1992. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61:1053–95
    [Google Scholar]
  16. 16.  Kim YJ, Bjorklund S, Li Y, Sayre MH, Kornberg RD 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608
    [Google Scholar]
  17. 17.  Ma J, Ptashne M 1987. A new class of yeast transcriptional activators. Cell 51:113–19
    [Google Scholar]
  18. 18.  Sigler PB. 1988. Transcriptional activation. Acid blobs and negative noodles. Nature 333:210–12
    [Google Scholar]
  19. 19.  Triezenberg SJ, Kingsbury RC, McKnight SL 1988. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev 2:718–29
    [Google Scholar]
  20. 20.  Oldfield CJ, Dunker AK 2014. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem. 83:553–84
    [Google Scholar]
  21. 21.  Tompa P. Intrinsically disordered proteins: a 10-year recap. Trends Biochem. Sci. 37:509–16
    [Google Scholar]
  22. 22.  Wright PE, Dyson HJ 2015. Intrinsically disordered proteins in cellular signaling and regulation. Nat. Rev. Mol. Cell Biol. 16:18–29
    [Google Scholar]
  23. 23.  Schneider JW, Gao Z, Li S, Farooqi M, Tang TS et al. 2008. Small-molecule activation of neuronal cell fate. Nat. Chem. Biol. 4:408–10
    [Google Scholar]
  24. 24.  Han TW, Kato M, Xie S, Wu LC, Mirzaei H et al. 2012. Cell-free formation of RNA granules: Bound RNAs identify features and components of cellular assemblies. Cell 149:768–79
    [Google Scholar]
  25. 25.  Kato M, Han TW, Xie S, Shi K, Du X et al. 2012. Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–67
    [Google Scholar]
  26. 26.  Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T et al. 1992. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359:162–65
    [Google Scholar]
  27. 27.  Bertolotti A, Bell B, Tora L 1999. The N-terminal domain of human TAFII68 displays transactivation and oncogenic properties. Oncogene 18:8000–10
    [Google Scholar]
  28. 28.  Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR 2004. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat. Cell Biol. 6:197–206
    [Google Scholar]
  29. 29.  Xu S, Powers MA 2009. Nuclear pore proteins and cancer. Semin. Cell Dev. Biol. 20:620–30
    [Google Scholar]
  30. 30.  Alberti S, Halfmann R, King O, Kapila A, Lindquist S 2009. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137146–58
    [Google Scholar]
  31. 31.  Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL et al. 2009. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–11
    [Google Scholar]
  32. 32.  Decker CJ, Teixeira D, Parker R 2007. Edc3p and a glutamine/asparagine-rich domain of Lsm4P function in processing body assembly in Saccharomyces cerevisiae. J. Cell Biol. 179:437–49
    [Google Scholar]
  33. 33.  Corden JL, Cadena DL, Ahearn JM Jr., Dahmus ME 1985. A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. PNAS 82:7934–38
    [Google Scholar]
  34. 34.  Lee JM, Greenleaf AL 1989. A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II. PNAS 86:3624–28
    [Google Scholar]
  35. 35.  Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P et al. 2013. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155:1049–60
    [Google Scholar]
  36. 36.  West ML, Corden JL 1995. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics 140:1223–33
    [Google Scholar]
  37. 37.  Schwartz JC, Ebmeier CC, Podell ER, Heimiller J, Taatjes DJ, Cech TR 2012. FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2. Genes Dev 26:2690–95
    [Google Scholar]
  38. 38.  Schwartz JC, Wang X, Podell ER, Cech TR 2013. RNA seeds higher-order assembly of FUS protein. Cell Rep 5:918–25
    [Google Scholar]
  39. 39.  Manley JL, Tacke R 1996. SR proteins and splicing control. Genes Dev 10:1569–79
    [Google Scholar]
  40. 40.  Roth MB, Murphy C, Gall JG 1990. A monoclonal antibody that recognizes a phosphorylated epitope stains lampbrush chromosome loops and small granules in the amphibian germinal vesicle. J. Cell Biol. 111:2217–23
    [Google Scholar]
  41. 41.  Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P et al. 2014. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345:1139–45
    [Google Scholar]
  42. 42.  Colwill K, Pawson T, Andrews B, Prasad J, Manley JL et al. 1996. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J 15:265–75
    [Google Scholar]
  43. 43.  Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R 2016. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164:487–98
    [Google Scholar]
  44. 44.  Vanderweyde T, Youmans K, Liu-Yesucevitz L, Wolozin B 2013. Role of stress granules and RNA-binding proteins in neurodegeneration: a mini-review. Gerontology 59:524–33
    [Google Scholar]
  45. 45.  Zheng D, Chen CY, Shyu AB 2011. Unraveling regulation and new components of human P-bodies through a protein interaction framework and experimental validation. RNA 17:1619–34
    [Google Scholar]
  46. 46.  Riordan JF, Wacker WEC, Vallee BL 1965. N-acetylimidazole: a reagent for determination of “free” tyrosyl residues of proteins. Biochemistry 4:1758–65
    [Google Scholar]
  47. 47.  Xiang S, Kato M, Wu LC, Lin Y, Ding M et al. 2015. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163:829–39
    [Google Scholar]
  48. 48.  Liu Q, Shu S, Wang RR, Liu F, Cui B et al. 2016. Whole-exome sequencing identifies a missense mutation in hnRNPA1 in a family with flail arm ALS. Neurology 87:1763–69
    [Google Scholar]
  49. 49.  Ribbeck K, Görlich D 2002. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J 21:2664–71
    [Google Scholar]
  50. 50.  Shulga N, Goldfarb DS 2003. Binding dynamics of structural nucleoporins govern nuclear pore complex permeability and may mediate channel gating. Mol. Cell. Biol. 23:534–42
    [Google Scholar]
  51. 51.  Kroschwald S, Maharana S, Mateju D, Malinovska L, Nüske E et al. 2015. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 4:e06807
    [Google Scholar]
  52. 52.  Rog O, Köhler S, Dernburg AF 2017. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife 6:e21455
    [Google Scholar]
  53. 53.  Updike DL, Hachey SJ, Kreher J, Strome S 2011. P granules extend the nuclear pore complex environment in the C. elegans germ line. J. Cell Biol. 192:939–48
    [Google Scholar]
  54. 54.  Wheeler JR, Matheny T, Jain S, Abrisch R, Parker R 2016. Distinct stages in stress granule assembly and disassembly. eLife 5:e18413
    [Google Scholar]
  55. 55.  Geisler N, Weber K 1988. Phosphorylation of desmin in vitro inhibits formation of intermediate filaments; identification of three kinase A sites in the aminoterminal head domain. EMBO J 7:15–20
    [Google Scholar]
  56. 56.  Godsel LM, Hobbs RP, Green KJ 2008. Intermediate filament assembly: dynamics to disease. Trends Cell Biol 18:28–37
    [Google Scholar]
  57. 57.  Kornreich M, Avinery R, Malka-Gibor E, Laser-Azogui A, Beck R 2015. Order and disorder in intermediate filament proteins. FEBS Lett 589:2464–76
    [Google Scholar]
  58. 58.  Lin Y, Mori E, Kato M, Xiang S, Wu L et al. 2016. Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 167:789–802
    [Google Scholar]
  59. 59.  Sokolova AV, Kreplak L, Wedig T, Mucke N, Svergun DI et al. 2006. Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates. PNAS 103:16206–11
    [Google Scholar]
  60. 60.  Pondel MD, King ML 1988. Localized maternal mRNA related to transforming growth factor β mRNA is concentrated in a cytokeratin-enriched fraction from Xenopus oocytes. PNAS 85:7612–16
    [Google Scholar]
  61. 61.  Cho A, Kato M, Whitwam T, Kim JH, Montell DJ 2016. An atypical tropomyosin in Drosophila with intermediate filament-like properties. Cell Rep 16:928–38
    [Google Scholar]
  62. 62.  Gáspár I, Sysoev V, Komissarov A, Ephrussi A 2017. An RNA‐binding atypical tropomyosin recruits kinesin‐1 dynamically to oskar mRNPs. EMBO J 36:319–33
    [Google Scholar]
  63. 63.  Frey S, Richter RP, Gorlich D 2006. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314:815–17
    [Google Scholar]
  64. 64.  Lunde BM, Moore C, Varani G 2007. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8:479–90
    [Google Scholar]
  65. 65.  Beyer AL, Miller OL Jr., McKnight SL 1980. Ribonucleoprotein structure in nascent hnRNA is nonrandom and sequence-dependent. Cell 20:75–84
    [Google Scholar]
  66. 66.  Dynan WS. 1989. Modularity in promoters and enhancers. Cell 58:1–4
    [Google Scholar]
  67. 67.  Smith RP, Taher L, Patwardhan RP, Kim MJ, Inoue F et al. 2013. Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. Nat. Genet. 45:1021–28
    [Google Scholar]
  68. 68.  Thompson CC, McKnight SL 1992. Anatomy of an enhancer. Trends Genet 8:232–36
    [Google Scholar]
  69. 69.  Sharrocks AD. 2001. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2:827–37
    [Google Scholar]
  70. 70.  Gangwal K, Sankar S, Hollenhorst PC, Kinsey M, Haroldsen SC et al. 2008. Microsatellites as EWS/FLI response elements in Ewing's sarcoma. PNAS 105:10149–54
    [Google Scholar]
  71. 71.  Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA 2017. A phase separation model for transcriptional control. Cell 169:13–23
    [Google Scholar]
  72. 72.  Anfinsen CB. 1973. Principles that govern the folding of protein chains. Science 181:223–30
    [Google Scholar]
  73. 73.  Bertini I, Gonnelli L, Luchinat C, Mao J, Nesi A 2011. A new structural model of Aβ40 fibrils. J. Am. Chem. Soc. 133:16013–22
    [Google Scholar]
  74. 74.  Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I et al. 2016. Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. J. Am. Chem. Soc. 138:9663–74
    [Google Scholar]
  75. 75.  Paravastu AK, Leapman RD, Yau W-M, Tycko R 2008. Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils. PNAS 105:18349–54
    [Google Scholar]
  76. 76.  Tuttle MD, Comellas G, Nieuwkoop AJ, Covell DJ, Berthold DA et al. 2016. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 23:409–15
    [Google Scholar]
  77. 77.  Wälti MA, Ravotti F, Arai H, Glabe CG, Wall JS et al. 2016. Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril. PNAS 113:E4976–84
    [Google Scholar]
  78. 78.  Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F et al. 2015. Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. Nat. Struct. Mol. Biol. 22:499–505
    [Google Scholar]
  79. 79.  Murray DT, Kato M, Lin Y, Thurber KR, Hung I et al. 2017. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171:615–27
    [Google Scholar]
  80. 80.  Shah NH, Dann GP, Vila-Perelló M, Liu Z, Muir TW 2012. Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J. Am. Chem. Soc. 134:11338–41
    [Google Scholar]
  81. 81.  Shi KY, Mori E, Nizami ZF, Lin Y, Kato M et al. 2017. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. PNAS 114:E1111–17
    [Google Scholar]
  82. 82.  Rulten SL, Rotheray A, Green RL, Grundy GJ, Moore DA et al. 2014. PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage. Nucleic Acids Res 42:307–14
    [Google Scholar]
  83. 83.  Deng Q, Holler CJ, Taylor G, Hudson KF, Watkins W et al. 2014. FUS is phosphorylated by DNA-PK and accumulates in the cytoplasm after DNA damage. J. Neurosci. 34:7802–13
    [Google Scholar]
  84. 84.  Gardiner M, Toth R, Vandermoere F, Morrice NA, Rouse J 2008. Identification and characterization of FUS/TLS as a new target of ATM. Biochem. J. 415:297–307
    [Google Scholar]
  85. 85.  Li P, Banjade S, Cheng HC, Kim S, Chen B et al. 2012. Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–40
    [Google Scholar]
  86. 86.  Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S et al. 2015. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6:8088
    [Google Scholar]
  87. 87.  Burke KA, Janke AM, Rhine CL, Fawzi NL 2015. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol. Cell 60:231–41
    [Google Scholar]
  88. 88.  Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC, Eckmann CR et al. 2015. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. PNAS 112:7189–94
    [Google Scholar]
  89. 89.  Lin Y, Protter DS, Rosen MK, Parker R 2015. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60:208–19
    [Google Scholar]
  90. 90.  Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP et al. 2015. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–33
    [Google Scholar]
  91. 91.  Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M et al. 2015. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–77
    [Google Scholar]
  92. 92.  Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E et al. 2015. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57:936–47
    [Google Scholar]
  93. 93.  Leuenberger P, Ganscha S, Kahraman A, Cappelletti V, Boersema PJ et al. 2017. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science 355:eaai7825
    [Google Scholar]
  94. 94.  Hayes MH, Weeks DL 2016. Amyloids assemble as part of recognizable structures during oogenesis in Xenopus. Biol. Open 5:801–6
    [Google Scholar]
  95. 95.  Aguzzi A, Altmeyer M 2016. Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol 26:547–58
    [Google Scholar]
  96. 96.  Banani SF, Lee HO, Hyman AA, Rosen MK 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:285–98
    [Google Scholar]
  97. 97.  Bowden HA, Dormann D 2016. Altered mRNP granule dynamics in FTLD pathogenesis. J. Neurochem. 138:Suppl. 1112–33
    [Google Scholar]
  98. 98.  Courchaine EM, Lu A, Neugebauer KM 2016. Droplet organelles?. EMBO J 35:1603–12
    [Google Scholar]
  99. 99.  Halfmann R. 2016. A glass menagerie of low complexity sequences. Curr. Opin. Struct. Biol. 38:18–25
    [Google Scholar]
  100. 100.  Harrison AF, Shorter J 2017. RNA-binding proteins with prion-like domains in health and disease. Biochem. J. 474:1417–38
    [Google Scholar]
  101. 101.  Hyman AA, Weber CA, Jülicher F 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  102. 102.  Maziuk B, Ballance HI, Wolozin B 2017. Dysregulation of RNA binding protein aggregation in neurodegenerative disorders. Front. Mol. Neurosci. 10:89
    [Google Scholar]
  103. 103.  Mitrea DM, Kriwacki RW 2016. Phase separation in biology; functional organization of a higher order. Cell Commun. Signal. 14:1
    [Google Scholar]
  104. 104.  Wu H, Fuxreiter M 2016. The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165:1055–66
    [Google Scholar]
  105. 105.  Zhu L, Brangwynne CP 2015. Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr. Opin. Cell Biol. 34:23–30
    [Google Scholar]
  106. 107.  Holehouse AS, Pappu RV 2017. FUS zigzags its way to cross beta. Cell 171:499–500
    [Google Scholar]
  107. 106.  Pesiridis GS, Lee VMY, Trojanowski JQ 2009. Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum. Mol. Genet. 18:R156–62
    [Google Scholar]
  108. 108.  Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I et al. 2010. ALS-associated fused in sarcoma (FUS) mutations disrupt transportin-mediated nuclear import. EMBO J 29:2841–57
    [Google Scholar]
  109. 109.  Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J et al. 2013. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–73
    [Google Scholar]
  110. 110.  Vieira NM, Naslavsky MS, Licinio L, Kok F, Schlesinger D et al. 2014. A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G). Hum. Mol. Genet. 23:4103–10
    [Google Scholar]
  111. 111.  Koehl P, Levitt M 1999. Structure-based conformational preferences of amino acids. PNAS 96:12524–29
    [Google Scholar]
  112. 112.  Davis TL, Walker JR, Campagna-Slater V, Finerty PJ, Paramanathan R et al. 2010. Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. PLOS Biol 8:e1000439
    [Google Scholar]
  113. 113.  Lauranzano E, Pozzi S, Pasetto L, Stucchi R, Massignan T et al. 2015. Peptidylprolyl isomerase A governs TARDBP function and assembly in heterogeneous nuclear ribonucleoprotein complexes. Brain 138:974–91
    [Google Scholar]
  114. 114.  Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD et al. 2017. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95:808–16
    [Google Scholar]
  115. 115.  De Jonghe P Mersivanova I, Nelis E, Del Favero J, Martin JJ et al. 2001. Further evidence that neurofilament light chain gene mutations can cause Charcot-Marie-Tooth disease type 2E. Ann. Neurol. 49:245–49
    [Google Scholar]
  116. 116.  Georgiou DM, Zidar J, Korosec M, Middleton LT, Kyriakides T, Christodoulou K 2002. A novel NF-L mutation Pro22Ser is associated with CMT2 in a large Slovenian family. Neurogenetics 4:93–96
    [Google Scholar]
  117. 117.  Jordanova A, De Jonghe P Boerkoel CF, Takashima H, De Vriendt E et al. 2003. Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot–Marie–Tooth disease. Brain 126:590–97
    [Google Scholar]
  118. 118.  Yoshihara T, Yamamoto M, Hattori N, Misu K-i, Mori K et al. 2002. Identification of novel sequence variants in the neurofilament-light gene in a Japanese population: analysis of Charcot-Marie-Tooth disease patients and normal individuals. J. Peripher. Nerv. Syst. 7:221–24
    [Google Scholar]
  119. 119.  DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M et al. 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–56
    [Google Scholar]
  120. 120.  Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S et al. 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–68
    [Google Scholar]
  121. 121.  Mizielinska S, Lashley T, Norona FE, Clayton EL, Ridler CE et al. 2013. C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol 126:845–57
    [Google Scholar]
  122. 122.  Zu T, Liu Y, Banez-Coronel M, Reid T, Pletnikova O et al. 2013. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. PNAS 110:E4968–77
    [Google Scholar]
  123. 123.  Ash PEA, Bieniek KF, Gendron TF, Caulfield T, Lin W-L et al. 2013. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–46
    [Google Scholar]
  124. 124.  Mori K, Weng SM, Arzberger T, May S, Rentzsch K et al. 2013. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–38
    [Google Scholar]
  125. 125.  Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A et al. 2011. Non-ATG-initiated translation directed by microsatellite expansions. PNAS 108:260–65
    [Google Scholar]
  126. 126.  Lin CL, Bristol LA, Jin L, Dykes-Hoberg M, Crawford T et al. 1998. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20:589–602
    [Google Scholar]
  127. 127.  Mizielinska S, Gronke S, Niccoli T, Ridler CE, Clayton EL et al. 2014. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345:1192–94
    [Google Scholar]
  128. 128.  Lee KH, Zhang P, Kim HJ, Mitrea DM, Sarkar M et al. 2016. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167:774–88
    [Google Scholar]
  129. 129.  Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S et al. 2015. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525:129–33
    [Google Scholar]
  130. 130.  Jovicic A, Mertens J, Boeynaems S, Bogaert E, Chai N et al. 2015. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat. Neurosci. 18:1226–29
    [Google Scholar]
  131. 131.  Courey AJ, Holtzman DA, Jackson SP, Tjian R 1989. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell 59:827–36
    [Google Scholar]
  132. 132.  Cummings CJ, Zoghbi HY 2000. Trinucleotide repeats: mechanisms and pathophysiology. Annu. Rev. Genomics Hum. Genet. 1:281–328
    [Google Scholar]
  133. 133.  Robinson PJ, Trnka MJ, Pellarin R, Greenberg CH, Bushnell DA et al. 2015. Molecular architecture of the yeast mediator complex. eLife 4:e08719
    [Google Scholar]
  134. 134.  Perutz MF, Johnson T, Suzuki M, Finch JT 1994. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. PNAS 91:5355–58
    [Google Scholar]
  135. 135.  Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M et al. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–40
    [Google Scholar]
  136. 136.  Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R et al. 2010. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–89
    [Google Scholar]
  137. 137.  Zhang Y, Wang J, Ding M, Yu Y 2013. Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat. Methods 10:981–84
    [Google Scholar]
  138. 138.  Lee CD, Tu BP 2015. Glucose-regulated phosphorylation of the PUF protein Puf3 regulates the translational fate of its bound mRNAs and association with RNA granules. Cell Rep 11:1638–50
    [Google Scholar]
  139. 139.  Wang JT, Smith J, Chen BC, Schmidt H, Rasoloson D et al. 2014. Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans. eLife 3:e04591
    [Google Scholar]
  140. 140.  André J, Rouiller C 1956. L'ultrastructure de la membrane nucléaire des ovocytes del l'araignée (Tegenaria domestica Clark). Proc. Eur. Conf. Electron Microsc., Stockholm New York: Academic
    [Google Scholar]
  141. 141.  Pitt JN, Schisa JA, Priess JR 2000. P granules in the germ cells of Caenorhabditis elegans adults are associated with clusters of nuclear pores and contain RNA. Dev. Biol. 219:315–33
    [Google Scholar]
  142. 142.  Voronina E, Seydoux G 2010. The C. elegans homolog of nucleoporin Nup98 is required for the integrity and function of germline P granules. Development 137:1441–50
    [Google Scholar]
  143. 143.  Zhang F, Wang J, Xu J, Zhang Z, Koppetsch BS et al. 2012. UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell 151:871–84
    [Google Scholar]
  144. 144.  Boke E, Ruer M, Wuhr M, Coughlin M, Lemaitre R et al. 2016. Amyloid-like self-assembly of a cellular compartment. Cell 166:637–50
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-061516-044700
Loading
/content/journals/10.1146/annurev-biochem-061516-044700
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error