1932

Abstract

How individual enzymes evolved is relatively well understood. However, individual enzymes rarely confer a physiological advantage on their own. Judging by its current state, the emergence of metabolism seemingly demanded the simultaneous emergence of many enzymes. Indeed, how multicomponent interlocked systems, like metabolic pathways, evolved is largely an open question. This complexity can be unlocked if we assume that survival of the fittest applies not only to genes and enzymes but also to the metabolites they produce. This review develops our current knowledge of enzyme evolution into a wider hypothesis of pathway and network evolution. We describe the current models for pathway evolution and offer an integrative metabolite–enzyme coevolution hypothesis. Our hypothesis addresses the origins of new metabolites and of new enzymes and the order of their recruitment. We aim to not only survey established knowledge but also present open questions and potential ways of addressing them.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012023
2018-06-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012023.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012023&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Hochachka PW, Somero GN 1984. Biochemical Adaptation Princeton, N.J: Princeton Univ. Press
  2. 2.  Hochachka PW, Somero GN 2002. Biochemical Adaptation: Mechanism and Process in Physiological Evolution New York: Oxford Univ. Press
  3. 3.  Harms MJ, Thornton JW 2013. Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat. Rev. Genet. 14:559–71
    [Google Scholar]
  4. 4.  Copley SD. 2015. An evolutionary biochemist's perspective on promiscuity. Trends Biochem. Sci. 40:72–78
    [Google Scholar]
  5. 5.  Cornish-Bowden A, Pereto J, Cardenas ML 2014. Biochemistry and evolutionary biology: two disciplines that need each other?. J. Biosci. 39:13–27
    [Google Scholar]
  6. 6.  Vianello A, Passamonti S 2016. Biochemistry and physiology within the framework of the extended synthesis of evolutionary biology. Biol. Direct 11:7
    [Google Scholar]
  7. 7.  Kocherezhkin VG. 1967. [Evolutionary biochemistry and the origin of life]. Izv. Akad. Nauk SSSR Biol. 2:310–13 in Russian
    [Google Scholar]
  8. 8.  Wachtershauser G. 1992. Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog. Biophys. Mol. Biol. 58:85–201
    [Google Scholar]
  9. 9.  Khersonsky O, Tawfik DS 2010. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79:471–505
    [Google Scholar]
  10. 10.  Pandya C, Farelli JD, Dunaway-Mariano D, Allen KN 2014. Enzyme promiscuity: engine of evolutionary innovation. J. Biol. Chem. 289:30229–36
    [Google Scholar]
  11. 11.  O'Brien PJ, Herschlag D 1999. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6:R91–105
    [Google Scholar]
  12. 12.  Hughes AL. 1994. The evolution of functionally novel proteins after gene duplication. Proc. Biol. Sci. 256:119–24
    [Google Scholar]
  13. 13.  Piatigorsky J. 2003. Gene sharing, lens crystallins and speculations on an eye/ear evolutionary relationship. Integr. Comp. Biol. 43:492–99
    [Google Scholar]
  14. 14.  Soskine M, Tawfik DS 2010. Mutational effects and the evolution of new protein functions. Nat. Rev. Genet. 11:572–82
    [Google Scholar]
  15. 18.  Nam H, Lewis NE, Lerman JA, Lee DH, Chang RL et al. 2012. Network context and selection in the evolution to enzyme specificity. Science 337:1101–4
    [Google Scholar]
  16. 15.  Matsumura I, Ellington AD 2001. In vitro evolution of beta-glucuronidase into a beta-galactosidase proceeds through non-specific intermediates. J. Mol. Biol. 305:331–39
    [Google Scholar]
  17. 16.  Rockah-Shmuel L, Tawfik DS 2012. Evolutionary transitions to new DNA methyltransferases through target site expansion and shrinkage. Nucleic Acids Res 40:11627–37
    [Google Scholar]
  18. 17.  Noda-Garcia L, Camacho-Zarco AR, Medina-Ruiz S, Gaytan P, Carrillo-Tripp M et al. 2013. Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer. Mol. Biol. Evol. 30:2024–34
    [Google Scholar]
  19. 19.  Ferla MP, Brewster JL, Hall KR, Evans GB, Patrick WM 2017. Primordial-like enzymes from bacteria with reduced genomes. Mol. Microbiol. 105:508–24
    [Google Scholar]
  20. 20.  Jia B, Cheong GW, Zhang S 2013. Multifunctional enzymes in archaea: promiscuity and moonlight. Extremophiles 17:193–203
    [Google Scholar]
  21. 21.  Weng JK, Noel JP 2012. The remarkable pliability and promiscuity of specialized metabolism. Cold Spring Harb. Symp. Quant. Biol. 77:309–20
    [Google Scholar]
  22. 22.  Dawson NL, Lewis TE, Das S, Lees JG, Lee D et al. 2017. CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res 45:D289–95
    [Google Scholar]
  23. 23.  Baier F, Copp JN, Tokuriki N 2016. Evolution of enzyme superfamilies: comprehensive exploration of sequence-function relationships. Biochemistry 55:6375–88
    [Google Scholar]
  24. 24.  Laurino P, Toth-Petroczy A, Meana-Paneda R, Lin W, Truhlar DG, Tawfik DS 2016. An ancient fingerprint indicates the common ancestry of Rossmann-fold enzymes utilizing different ribose-based cofactors. PLOS Biol 14:e1002396
    [Google Scholar]
  25. 25.  Nagano N, Orengo CA, Thornton JM 2002. One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J. Mol. Biol. 321:741–65
    [Google Scholar]
  26. 26.  Copley RR, Bork P 2000. Homology among (βα)8 barrels: implications for the evolution of metabolic pathways. J. Mol. Biol. 303:627–41
    [Google Scholar]
  27. 27.  Baier F, Tokuriki N 2014. Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily. J. Mol. Biol. 426:2442–56
    [Google Scholar]
  28. 28.  Gerlt JA, Babbitt PC, Jacobson MP, Almo SC 2012. Divergent evolution in enolase superfamily: strategies for assigning functions. J. Biol. Chem. 287:29–34
    [Google Scholar]
  29. 29.  Knutson ST, Westwood BM, Leuthaeuser JB, Turner BE, Nguyendac D et al. 2017. An approach to functionally relevant clustering of the protein universe: active site profile-based clustering of protein structures and sequences. Protein Sci 26:677–99
    [Google Scholar]
  30. 30.  Khersonsky O, Malitsky S, Rogachev I, Tawfik DS 2011. Role of chemistry versus substrate binding in recruiting promiscuous enzyme functions. Biochemistry 50:2683–90
    [Google Scholar]
  31. 31.  Soo VW, Yosaatmadja Y, Squire CJ, Patrick WM 2016. Mechanistic and evolutionary insights from the reciprocal promiscuity of two pyridoxal phosphate-dependent enzymes. J. Biol. Chem. 291:19873–87
    [Google Scholar]
  32. 32.  Rossmann MG, Moras D, Olsen KW 1974. Chemical and biological evolution of nucleotide-binding protein. Nature 250:194–99
    [Google Scholar]
  33. 33.  Goldman AD, Beatty JT, Landweber LF 2016. The TIM barrel architecture facilitated the early evolution of protein-mediated metabolism. J. Mol. Evol. 82:17–26
    [Google Scholar]
  34. 34.  Alam MT, Olin-Sandoval V, Stincone A, Keller MA, Zelezniak A et al. 2017. The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat. Commun. 8:16018
    [Google Scholar]
  35. 35.  Newton MS, Guo X, Soderholm A, Nasvall J, Lundstrom P et al. 2017. Structural and functional innovations in the real-time evolution of new (βα)8 barrel enzymes. PNAS 114:4727–32
    [Google Scholar]
  36. 36.  Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL 2000. The large-scale organization of metabolic networks. Nature 407:651–54
    [Google Scholar]
  37. 37.  Light S, Kraulis P 2004. Network analysis of metabolic enzyme evolution in Escherichia coli. BMC Bioinform 5:15
    [Google Scholar]
  38. 38.  Pfeiffer T, Soyer OS, Bonhoeffer S 2005. The evolution of connectivity in metabolic networks. PLOS Biol 3:e228
    [Google Scholar]
  39. 39.  Guimera R, Nunes Amaral LA 2005. Functional cartography of complex metabolic networks. Nature 433:895–900
    [Google Scholar]
  40. 40.  Orth JD, Conrad TM, Na J, Lerman JA, Nam H et al. 2011. A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol. Syst. Biol. 7:535
    [Google Scholar]
  41. 41.  Lima-Mendez G, van Helden J 2009. The powerful law of the power law and other myths in network biology. Mol. Biosyst. 5:1482–93
    [Google Scholar]
  42. 42.  Vorobieva AA, Khan MS, Soumillion P 2014. Escherichia colid-malate dehydrogenase, a generalist enzyme active in the leucine biosynthesis pathway. J. Biol. Chem. 289:29086–96
    [Google Scholar]
  43. 43.  Light S, Kraulis P, Elofsson A 2005. Preferential attachment in the evolution of metabolic networks. BMC Genom 6:159
    [Google Scholar]
  44. 44.  D'Ari R, Casadesus J 1998. Underground metabolism. BioEssays 20:181–86
    [Google Scholar]
  45. 45.  Notebaart RA, Szappanos B, Kintses B, Pal F, Gyorkei A et al. 2014. Network-level architecture and the evolutionary potential of underground metabolism. PNAS 111:11762–67
    [Google Scholar]
  46. 46.  Kurakin A. 2007. Self-organization versus Watchmaker: ambiguity of molecular recognition and design charts of cellular circuitry. J. Mol. Recognit. 20:205–14
    [Google Scholar]
  47. 47.  Tawfik DS. 2010. Messy biology and the origins of evolutionary innovations. Nat. Chem. Biol. 6:692–96
    [Google Scholar]
  48. 48.  Jensen RA. 1976. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30:409–25
    [Google Scholar]
  49. 49.  Marcheschi RJ, Li H, Zhang K, Noey EL, Kim S et al. 2012. A synthetic recursive “+1” pathway for carbon chain elongation. ACS Chem. Biol. 7:689–97
    [Google Scholar]
  50. 50.  Bar-Even A, Flamholz A, Noor E, Milo R 2012. Thermodynamic constraints shape the structure of carbon fixation pathways. Biochim. Biophys. Acta 1817:1646–59
    [Google Scholar]
  51. 51.  Leipe DD, Koonin EV, Aravind L 2003. Evolution and classification of P-loop kinases and related proteins. J. Mol. Biol. 333:781–815
    [Google Scholar]
  52. 52.  Ycas M. 1974. On earlier states of the biochemical system. J. Theor. Biol. 44:145–60
    [Google Scholar]
  53. 53.  Li F, Hagemeier CH, Seedorf H, Gottschalk G, Thauer RK 2007. Re-citrate synthase from Clostridium kluyveri is phylogenetically related to homocitrate synthase and isopropylmalate synthase rather than to Si-citrate synthase. J. Bacteriol. 189:4299–304
    [Google Scholar]
  54. 54.  Casey AK, Hicks MA, Johnson JL, Babbitt PC, Frantom PA 2014. Mechanistic and bioinformatic investigation of a conserved active site helix in α-isopropylmalate synthase from Mycobacterium tuberculosis, a member of the DRE-TIM metallolyase superfamily. Biochemistry 53:2915–25
    [Google Scholar]
  55. 55.  Gruer MJ, Artymiuk PJ, Guest JR 1997. The aconitase family: three structural variations on a common theme. Trends Biochem. Sci. 22:3–6
    [Google Scholar]
  56. 56.  Aktas DF, Cook PF 2009. A lysine-tyrosine pair carries out acid-base chemistry in the metal ion-dependent pyridine dinucleotide-linked β-hydroxyacid oxidative decarboxylases. Biochemistry 48:3565–77
    [Google Scholar]
  57. 57.  Bar-Even A, Flamholz A, Noor E, Milo R 2012. Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat. Chem. Biol. 8:509–17
    [Google Scholar]
  58. 58.  Noor E, Bar-Even A, Flamholz A, Reznik E, Liebermeister W, Milo R 2014. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLOS Comput. Biol. 10:e1003483
    [Google Scholar]
  59. 59.  Metzenberg RL. 2005. Norman Harold Horowitz, 1915–2005. Genetics 171:1445–48
    [Google Scholar]
  60. 60.  Srb AM, Horowitz NH 1944. The ornithine cycle in Neurospora and its genetic control. J. Biol. Chem. 154:129–39
    [Google Scholar]
  61. 61.  Horowitz NH. 1945. On the evolution of biochemical syntheses. PNAS 31:153–57
    [Google Scholar]
  62. 62.  Horowitz NH. 1965. The evolution of biochemical synthesis—retrospect and prospect. Evolving Genes and Proteins V Bryson, HJ Vogel 15–23 New York: Academic
    [Google Scholar]
  63. 63.  Rison SC, Teichmann SA, Thornton JM 2002. Homology, pathway distance and chromosomal localization of the small molecule metabolism enzymes in Escherichia coli. J. Mol. Biol 318:911–32
    [Google Scholar]
  64. 64.  Wilmanns M, Hyde CC, Davies DR, Kirschner K, Jansonius JN 1991. Structural conservation in parallel β/α-barrel enzymes that catalyze three sequential reactions in the pathway of tryptophan biosynthesis. Biochemistry 30:9161–69
    [Google Scholar]
  65. 65.  Diaz-Mejia JJ, Perez-Rueda E, Segovia L 2007. A network perspective on the evolution of metabolism by gene duplication. Genome Biol 8:R26
    [Google Scholar]
  66. 66.  Granick S. 1965. The evolution of heme and chlorophyll. Evolving Genes and Proteins V Bryson, HJ Vogel 67–88 New York: Academic
    [Google Scholar]
  67. 67.  Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M et al. 2017. Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol. Mol. Biol. Rev. 81:e00048–16
    [Google Scholar]
  68. 68.  Rison SC, Thornton JM 2002. Pathway evolution, structurally speaking. Curr. Opin. Struct. Biol. 12:374–82
    [Google Scholar]
  69. 69.  Austin MB, O'Maille PE, Noel JP 2008. Evolving biosynthetic tangos negotiate mechanistic landscapes. Nat. Chem. Biol. 4:217–22
    [Google Scholar]
  70. 70.  Belfaiza J, Parsot C, Martel A, de la Tour CB, Margarita D et al. 1986. Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. PNAS 83:867–71
    [Google Scholar]
  71. 71.  Kouidmi I, Levesque RC, Paradis-Bleau C 2014. The biology of Mur ligases as an antibacterial target. Mol. Microbiol. 94:242–53
    [Google Scholar]
  72. 72.  Velasco AM, Leguina JI, Lazcano A 2002. Molecular evolution of the lysine biosynthetic pathways. J. Mol. Evol. 55:445–59
    [Google Scholar]
  73. 73.  Howell DM, Harich K, Xu H, White RH 1998. α-Keto acid chain elongation reactions involved in the biosynthesis of coenzyme B (7-mercaptoheptanoyl threonine phosphate) in methanogenic Archaea. Biochemistry 37:10108–17
    [Google Scholar]
  74. 74.  Howell DM, Graupner M, Xu H, White RH 2000. Identification of enzymes homologous to isocitrate dehydrogenase that are involved in coenzyme B and leucine biosynthesis in methanoarchaea. J. Bacteriol. 182:5013–16
    [Google Scholar]
  75. 75.  Fondi M, Brilli M, Emiliani G, Paffetti D, Fani R 2007. The primordial metabolism: an ancestral interconnection between leucine, arginine, and lysine biosynthesis. BMC Evol. Biol. 7:Suppl. 2S3
    [Google Scholar]
  76. 76.  Xu H, Zhang Y, Guo X, Ren S, Staempfli AA et al. 2004. Isoleucine biosynthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway. J. Bacteriol. 186:5400–9
    [Google Scholar]
  77. 77.  Lefort V, Longueville JE, Gascuel O 2017. SMS: smart model selection in PhyML. Mol. Biol. Evol. 34:2422–24
    [Google Scholar]
  78. 78.  Sonawane PD, Pollier J, Panda S, Szymanski J, Massalha H et al. 2016. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. Plants 3:16205
    [Google Scholar]
  79. 79.  Lazcano A, Miller SL 1999. On the origin of metabolic pathways. J. Mol. Evol. 49:424–31
    [Google Scholar]
  80. 80.  Copley SD. 2009. Evolution of efficient pathways for degradation of anthropogenic chemicals. Nat. Chem. Biol. 5:559–66
    [Google Scholar]
  81. 81.  Trivedi VD, Jangir PK, Sharma R, Phale PS 2016. Insights into functional and evolutionary analysis of carbaryl metabolic pathway from Pseudomonas sp. strain C5pp. Sci. Rep. 6:38430
    [Google Scholar]
  82. 82.  Shapir N, Mongodin EF, Sadowsky MJ, Daugherty SC, Nelson KE, Wackett LP 2007. Evolution of catabolic pathways: genomic insights into microbial s-triazine metabolism. J. Bacteriol. 189:674–82
    [Google Scholar]
  83. 83.  Erb TJ, Jones PR, Bar-Even A 2017. Synthetic metabolism: metabolic engineering meets enzyme design. Curr. Opin. Chem. Biol. 37:56–62
    [Google Scholar]
  84. 84.  Patrick WM, Quandt EM, Swartzlander DB, Matsumura I 2007. Multicopy suppression underpins metabolic evolvability. Mol. Biol. Evol. 24:2716–22
    [Google Scholar]
  85. 85.  Linster CL, van Schaftingen E, Hanson AD 2013. Metabolite damage and its repair or pre-emption. Nat. Chem. Biol. 9:72–80
    [Google Scholar]
  86. 86.  Lu ZJ, Markham GD 2002. Enzymatic properties of S-adenosylmethionine synthetase from the archaeon Methanococcus jannaschii. J. Biol. Chem 277:16624–31
    [Google Scholar]
  87. 87.  da Silva RR, Dorrestein PC, Quinn RA 2015. Illuminating the dark matter in metabolomics. PNAS 112:12549–50
    [Google Scholar]
  88. 88.  Zampieri M, Sekar K, Zamboni N, Sauer U 2017. Frontiers of high-throughput metabolomics. Curr. Opin. Chem. Biol. 36:15–23
    [Google Scholar]
  89. 89.  Sutherland JD. 2017. Opinion: Studies on the origin of life—the end of the beginning. Nat. Rev. Chem. 1:0012
    [Google Scholar]
  90. 90.  Keller MA, Piedrafita G, Ralser M 2015. The widespread role of non-enzymatic reactions in cellular metabolism. Curr. Opin. Biotechnol. 34:153–61
    [Google Scholar]
  91. 91.  Piedrafita G, Keller MA, Ralser M 2015. The impact of non-enzymatic reactions and enzyme promiscuity on cellular metabolism during (oxidative) stress conditions. Biomolecules 5:2101–22
    [Google Scholar]
  92. 92.  Moellering RE, Cravatt BF 2013. Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 341:549–53
    [Google Scholar]
  93. 93.  Xu XL, Grant GA 2016. Mutagenic and chemical analyses provide new insight into enzyme activation and mechanism of the type 2 iron-sulfur l-serine dehydratase from Legionella pneumophila. Arch. Biochem. Biophys 596:108–17
    [Google Scholar]
  94. 94.  Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D et al. 2011. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:4402–10
    [Google Scholar]
  95. 95.  Bar-Even A, Tawfik DS 2013. Engineering specialized metabolic pathways—is there a room for enzyme improvements?. Curr. Opin. Biotechnol. 24:310–19
    [Google Scholar]
  96. 96.  Gravel E, Poupon E 2010. Biosynthesis and biomimetic synthesis of alkaloids isolated from plants of the Nitraria and Myrioneuron genera: an unusual lysine-based metabolism. Nat. Prod. Rep. 27:32–56
    [Google Scholar]
  97. 97.  Poupon E, Gravel E 2015. Manipulating simple reactive chemical units: fishing for alkaloids from complex mixtures. Chemistry 21:10604–15
    [Google Scholar]
  98. 98.  Kim J, Kershner JP, Novikov Y, Shoemaker RK, Copley SD 2010. Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5′-phosphate synthesis. Mol. Syst. Biol. 6:436
    [Google Scholar]
  99. 99.  Tani Y, Dempsey WB 1973. Glycolaldehyde is a precursor of pyridoxal phosphate in Escherichia coli B. J. Bacteriol. 116:341–45
    [Google Scholar]
  100. 100.  Keller MA, Turchyn AV, Ralser M 2014. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol. Syst. Biol. 10:725
    [Google Scholar]
  101. 101.  Keller MA, Zylstra A, Castro C, Turchyn AV, Griffin JL, Ralser M 2016. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. Sci. Adv. 2:e1501235
    [Google Scholar]
  102. 102.  Messner CB, Driscoll PC, Piedrafita G, De Volder MFL, Ralser M 2017. Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice. PNAS 114:7403–7
    [Google Scholar]
  103. 103.  Keller MA, Kampjut D, Harrison SA, Ralser M 2017. Sulfate radicals enable a non-enzymatic Krebs cycle precursor. Nat. Ecol. Evol. 1:0083
    [Google Scholar]
  104. 104.  Laurino P, Tawfik DS 2017. Spontaneous emergence of S-adenosylmethionine and the evolution of methylation. Angew. Chem. Int. Ed. 56:343–45
    [Google Scholar]
  105. 105.  Heinrich R, Hoffmann E 1991. Kinetic parameters of enzymatic reactions in states of maximal activity; an evolutionary approach. J. Theor. Biol. 151:249–83
    [Google Scholar]
  106. 106.  Heinrich R, Klipp E 1996. Control analysis of unbranched enzymatic chains in states of maximal activity. J. Theor. Biol. 182:243–52
    [Google Scholar]
  107. 107.  Thomas S, Fell DA 1998. The role of multiple enzyme activation in metabolic flux control. Adv. Enzyme Regul. 38:65–85
    [Google Scholar]
  108. 108.  Newton MS, Arcus VL, Patrick WM 2015. Rapid bursts and slow declines: on the possible evolutionary trajectories of enzymes. J. R. Soc. Interface 12:20150036
    [Google Scholar]
  109. 109.  Birmingham WR, Starbird CA, Panosian TD, Nannemann DP, Iverson TM, Bachmann BO 2014. Bioretrosynthetic construction of a didanosine biosynthetic pathway. Nat. Chem. Biol. 10:392–99
    [Google Scholar]
  110. 110.  Braakman R, Smith E 2012. The emergence and early evolution of biological carbon-fixation. PLOS Comput. Biol. 8:e1002455
    [Google Scholar]
  111. 111.  Firn RD, Jones CG 2000. The evolution of secondary metabolism—a unifying model. Mol. Microbiol. 37:989–94
    [Google Scholar]
  112. 112.  Benderoth M, Textor S, Windsor AJ, Mitchell-Olds T, Gershenzon J, Kroymann J 2006. Positive selection driving diversification in plant secondary metabolism. PNAS 103:9118–23
    [Google Scholar]
  113. 113.  Park JW, Park SR, Nepal KK, Han AR, Ban YH et al. 2011. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7:843–52
    [Google Scholar]
  114. 114.  Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ 2013. The enzymes of beta-lactam biosynthesis. Nat. Prod. Rep. 30:21–107
    [Google Scholar]
  115. 115.  Kawai S, Murata K 2008. Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci. Biotechnol. Biochem. 72:919–30
    [Google Scholar]
  116. 116.  Zhu G, Golding GB, Dean AM 2005. The selective cause of an ancient adaptation. Science 307:1279–82
    [Google Scholar]
  117. 117.  Cahn JK, Werlang CA, Baumschlager A, Brinkmann-Chen S, Mayo SL, Arnold FH 2017. A general tool for engineering the NAD/NADP cofactor preference of oxidoreductases. ACS Synth. Biol. 6:326–33
    [Google Scholar]
  118. 118.  Cvetesic N, Palencia A, Halasz I, Cusack S, Gruic-Sovulj I 2014. The physiological target for LeuRS translational quality control is norvaline. EMBO J 33:1639–53
    [Google Scholar]
  119. 119.  Cvetesic N, Semanjski M, Soufi B, Krug K, Gruic-Sovulj I, Macek B 2016. Proteome-wide measurement of non-canonical bacterial mistranslation by quantitative mass spectrometry of protein modifications. Sci. Rep. 6:28631
    [Google Scholar]
  120. 120.  Buchan DW, Shepherd AJ, Lee D, Pearl FM, Rison SC et al. 2002. Gene3D: structural assignment for whole genes and genomes using the CATH domain structure database. Genome Res 12:503–14
    [Google Scholar]
  121. 121.  Gophna U, Bapteste E, Doolittle WF, Biran D, Ron EZ 2005. Evolutionary plasticity of methionine biosynthesis. Gene 355:48–57
    [Google Scholar]
  122. 122.  Martin WF, Weiss MC, Neukirchen S, Nelson-Sathi S, Sousa FL 2016. Physiology, phylogeny, and LUCA. Microb. Cell 3:582–87
    [Google Scholar]
  123. 123.  Gumulya Y, Gillam EM 2017. Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the ‘retro’ approach to protein engineering. Biochem. J. 474:1–19
    [Google Scholar]
  124. 124.  Fischer WW, Hemp J, Valentine JS 2016. How did life survive Earth's great oxygenation?. Curr. Opin. Chem. Biol. 31:166–78
    [Google Scholar]
  125. 125.  Raymond J, Segre D 2006. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–67
    [Google Scholar]
  126. 126.  Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M et al. 2016. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1:16116
    [Google Scholar]
  127. 127.  Alva V, Soding J, Lupas AN 2015. A vocabulary of ancient peptides at the origin of folded proteins. eLife 4:e09410
    [Google Scholar]
  128. 128.  Goncearenco A, Berezovsky IN 2015. Protein function from its emergence to diversity in contemporary proteins. Phys. Biol. 12:045002
    [Google Scholar]
  129. 129.  Li L, Francklyn C, Carter CW Jr 2013. Aminoacylating urzymes challenge the RNA world hypothesis. J. Biol. Chem. 288:26856–63
    [Google Scholar]
  130. 130.  Sapienza PJ, Li L, Williams T, Lee AL, Carter CW Jr 2016. An ancestral tryptophanyl-tRNA synthetase precursor achieves high catalytic rate enhancement without ordered ground-state tertiary structures. ACS Chem. Biol. 11:1661–68
    [Google Scholar]
  131. 131.  Delepine B, Libis V, Carbonell P, Faulon JL 2016. SensiPath: computer-aided design of sensing-enabling metabolic pathways. Nucleic Acids Res 44:W226–31
    [Google Scholar]
  132. 132.  Bar-Even A. 2016. Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55:3851–63
    [Google Scholar]
  133. 133.  Szappanos B, Fritzemeier J, Csorgo B, Lazar V, Lu X et al. 2016. Adaptive evolution of complex innovations through stepwise metabolic niche expansion. Nat. Commun. 7:11607
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012023
Loading
/content/journals/10.1146/annurev-biochem-062917-012023
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error