1932

Abstract

-adenosylmethionine (AdoMet) has been referred to as both “a poor man's adenosylcobalamin (AdoCbl)” and “a rich man's AdoCbl,” but today, with the ever-increasing number of functions attributed to each cofactor, both appear equally rich and surprising. The recent characterization of an organometallic species in an AdoMet radical enzyme suggests that the line that differentiates them in nature will be constantly challenged. Here, we compare and contrast AdoMet and cobalamin (Cbl) and consider why Cbl-dependent AdoMet radical enzymes require two cofactors that are so similar in their reactivity. We further carry out structural comparisons employing the recently determined crystal structure of oxetanocin-A biosynthetic enzyme OxsB, the first three-dimensional structural data on a Cbl-dependent AdoMet radical enzyme. We find that the structural motifs responsible for housing the AdoMet radical machinery are largely conserved, whereas the motifs responsible for binding additional cofactors are much more varied.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012500
2018-06-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012500.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012500&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Stubbe J. 1994. Binding site revealed of nature's most beautiful cofactor. Science 266:1663–64
    [Google Scholar]
  2. 2.  Cantoni GL. 1953. S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J. Biol. Chem. 204:403–16
    [Google Scholar]
  3. 3.  Krebs C, Broderick WE, Henshaw TF, Broderick JB, Huynh BH 2002. Coordination of adenosyl-methionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: a Mössbauer spectroscopic study. J. Am. Chem. Soc. 124:912–13
    [Google Scholar]
  4. 4.  Frey PA. 2001. Radical mechanisms of enzymatic catalysis. Annu. Rev. Biochem. 70:121–48
    [Google Scholar]
  5. 5.  Magnusson OT, Reed GH, Frey PA 2001. Characterization of an allylic analogue of the 5′-deoxyadenosyl radical: an intermediate in the reaction of lysine 2,3-aminomutase. Biochemistry 40:7773–82
    [Google Scholar]
  6. 6.  Akiva E, Brown S, Almonacid DE, Barber AE, Custer AF et al. 2014. The structure function linkage database. Nucleic Acids Res 42:D521–30
    [Google Scholar]
  7. 7.  De Clercq PJ 1997. Biotin: a timeless challenge for total synthesis. Chem. Rev. 97:1755–92
    [Google Scholar]
  8. 8.  Blaszczyk AJ, Wang RX, Booker SJ 2017. TsrM as a model for purifying and characterizing cobalamin-dependent radical S-adenosylmethionine methylases. Methods Enzymol 595:303–29
    [Google Scholar]
  9. 9.  Lanz N, Blaszczyk AJ, McCarthy E, Wang B, Wang R et al. 2018. Enhanced solubilization of Class B radical S-adenosylmethionine methylases by improved cobalamin uptake in Escherichia coli. Biochemistry 571475–90
  10. 10.  Haft DH, Basu MK 2011. Biological systems discovery in silico: radical S-adenosylmethionine protein families and their target peptides for posttranslational modification. J. Bacteriol. 193:2745–55
    [Google Scholar]
  11. 11.  Haft DH. 2011. Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners. BMC Genom 12:21
    [Google Scholar]
  12. 12.  Goldman PJ, Grove TL, Sites LA, McLaughlin MI, Booker SJ, Drennan CL 2013. X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification. PNAS 110:8519–24
    [Google Scholar]
  13. 13.  Goldman PJ, Grove TL, Booker SJ, Drennan CL 2013. X-ray analysis of butirosin biosynthetic enzyme BtrN redefines structural motifs for AdoMet radical chemistry. PNAS 110:15949–54
    [Google Scholar]
  14. 14.  Maiocco SJ, Grove TL, Booker SJ, Elliott SJ 2015. Electrochemical resolution of the [4Fe-4S] centers of the AdoMet radical enzyme BtrN: evidence of proton coupling and an unusual, low-potential auxiliary cluster. J. Am. Chem. Soc. 137:8664–67
    [Google Scholar]
  15. 15.  Hanzelmann P, Schindelin H 2006. Binding of 5′-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism. PNAS 103:6829–34
    [Google Scholar]
  16. 16.  Grell TA, Goldman PJ, Drennan CL 2015. SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes. J. Biol. Chem. 290:3964–71
    [Google Scholar]
  17. 17.  Bridwell-Rabb J, Zhong A, Sun HG, Drennan CL, Liu HW 2017. A B12-dependent radical SAM enzyme involved in oxetanocin A biosynthesis. Nature 544:322–26
    [Google Scholar]
  18. 18.  Allen KD, Wang SC 2014. Spectroscopic characterization and mechanistic investigation of P-methyl transfer by a radical SAM enzyme from the marine bacterium Shewanella denitrificans OS217. Biochim. Biophys. Acta 1844:2135–44
    [Google Scholar]
  19. 19.  Blaszczyk AJ, Silakov A, Zhang B, Maiocco SJ, Lanz ND et al. 2016. Spectroscopic and electrochemical characterization of the iron–sulfur and cobalamin cofactors of TsrM, an unusual radical S-adenosylmethionine methylase. J. Am. Chem. Soc. 138:3416–26
    [Google Scholar]
  20. 20.  Kim HJ, McCarty RM, Ogasawara Y, Liu YN, Mansoorabadi SO et al. 2013. GenK-catalyzed C-6′ methylation in the biosynthesis of gentamicin: isolation and characterization of a cobalamin-dependent radical SAM enzyme. J. Am. Chem. Soc. 135:8093–96
    [Google Scholar]
  21. 21.  Marous DR, Lloyd EP, Buller AR, Moshos KA, Grove TL et al. 2015. Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis. PNAS 112:10354–58
    [Google Scholar]
  22. 22.  Pierre S, Guillot A, Benjdia A, Sandstrom C, Langella P, Berteau O 2012. Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Nat. Chem. Biol. 8:957–59
    [Google Scholar]
  23. 23.  Werner WJ, Allen KD, Hu K, Helms GL, Chen BS, Wang SC 2011. In vitro phosphinate methylation by PhpK from Kitasatospora phosalacinea. Biochemistry 50:8986–88
    [Google Scholar]
  24. 24.  Wang Y, Schnell B, Baumann S, Muller R, Begley TP 2017. Biosynthesis of branched alkoxy groups: iterative methyl group alkylation by a cobalamin-dependent radical SAM enzyme. J. Am. Chem. Soc. 139:1742–45
    [Google Scholar]
  25. 25.  Benjdia A, Pierre S, Gherasim C, Guillot A, Carmona M et al. 2015. The thiostrepton A tryptophan methyltransferase TsrM catalyses a cob(II)alamin-dependent methyl transfer reaction. Nat. Commun. 6:8377
    [Google Scholar]
  26. 26.  Sato S, Kudo F, Kim SY, Kuzuyama T, Eguchi T 2017. Methylcobalamin-dependent radical SAM C-methyltransferase Fom3 recognizes cytidylyl-2-hydroxyethylphosphonate and catalyzes the nonste-reoselective C-methylation in fosfomycin biosynthesis. Biochemistry 56:3519–22
    [Google Scholar]
  27. 27.  Gough SP, Petersen BO, Duus JO 2000. Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. PNAS 97:6908–13
    [Google Scholar]
  28. 28.  Ouchane S, Steunou AS, Picaud M, Astier C 2004. Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system. J. Biol. Chem. 279:6385–94
    [Google Scholar]
  29. 29.  Parent A, Guillot A, Benjdia A, Chartier G, Leprince J, Berteau O 2016. The B12-radical SAM enzyme PoyC catalyzes valine Cβ-methylation during polytheonamide biosynthesis. J. Am. Chem. Soc. 138:15515–18
    [Google Scholar]
  30. 30.  Costilow RN, Rochovansky OM, Barker HA 1966. Isolation and identification of beta-lysine as an intermediate in lysine fermentation. J. Biol. Chem. 241:1573–80
    [Google Scholar]
  31. 31.  Chirpich TP, Zappia V, Costilow RN, Barker HA 1970. Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. J. Biol. Chem. 245:1778–89
    [Google Scholar]
  32. 32.  Petrovich RM, Ruzicka FJ, Reed GH, Frey PA 1991. Metal cofactors of lysine-2,3-aminomutase. J. Biol. Chem. 266:7656–60
    [Google Scholar]
  33. 33.  Fontecave M, Eliasson R, Reichard P 1989. Oxygen-sensitive ribonucleoside triphosphate reductase is present in anaerobic Escherichia coli.. PNAS 86:2147–51
    [Google Scholar]
  34. 34.  Tamao Y, Blakley RL 1973. Direct spectrophotometric observation of an intermediate formed from deoxyadenosylcobalamin in ribonucleotide reduction. Biochemistry 12:24–34
    [Google Scholar]
  35. 35.  Kim HJ, LeVieux J, Yeh YC, Liu HW 2016. C3′-Deoxygenation of paromamine catalyzed by a radical S-adenosylmethionine enzyme: characterization of the enzyme AprD4 and its reductase partner AprD3. Angew. Chem. Int. Ed. Engl. 55:3724–28
    [Google Scholar]
  36. 36.  Grove TL, Benner JS, Radle MI, Ahlum JH, Landgraf BJ et al. 2011. A radically different mechanism for S-adenosylmethionine–dependent methyltransferases. Science 332:604–7
    [Google Scholar]
  37. 37.  Ortiz-Guerrero JM, Polanco MC, Murillo FJ, Padmanabhan S, Elias-Arnanz M 2011. Light-dependent gene regulation by a coenzyme B12-based photoreceptor. PNAS 108:7565–70
    [Google Scholar]
  38. 38.  Jost M, Fernandez-Zapata J, Polanco MC, Ortiz-Guerrero JM, Chen PY et al. 2015. Structural basis for gene regulation by a B12-dependent photoreceptor. Nature 526:536–41
    [Google Scholar]
  39. 39.  Krone UE, Thauer RK, Hogenkamp HPC 1989. Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28:4908–14
    [Google Scholar]
  40. 40.  Miles ZD, McCarty RM, Molnar G, Bandarian V 2011. Discovery of epoxyqueuosine (oQ) reductase reveals parallels between halorespiration and tRNA modification. PNAS 108:7368–72
    [Google Scholar]
  41. 41.  Frey B, McCloskey J, Kersten W, Kersten H 1988. New function of vitamin B12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 170:2078–82
    [Google Scholar]
  42. 42.  Zhang Y, Zhu X, Torelli AT, Lee M, Dzikovski B et al. 2010. Diphthamide biosynthesis requires an Fe-S enzyme-generated organic radical. Nature 465:891–96
    [Google Scholar]
  43. 43.  Demick JM, Lanzilotta WN 2011. Radical SAM activation of the B-12-independent glycerol dehydratase results in formation of 5′-deoxy-5′-(methylthio)adenosine and not 5′-deoxyadenosine. Biochemistry 50:440–42
    [Google Scholar]
  44. 44.  Frey PA. 1993. Lysine 2,3-aminomutase: Is adenosylmethionine a poor man's adenosylcobalamin?. FASEB J 7:662–70
    [Google Scholar]
  45. 45.  Frey PA, Ballinger MD, Reed GH 1998. S-adenosylmethionine: a ‘poor man's coenzyme B12′ in the reaction of lysine 2,3-aminomutase. Biochem. Soc. Trans. 26:304–10
    [Google Scholar]
  46. 46.  Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H 2014. Structural basis for organohalide respiration. Science 346:455–58
    [Google Scholar]
  47. 47.  Dowling DP, Bruender NA, Young AP, McCarty RM, Bandarian V, Drennan CL 2014. Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism. Nat. Chem. Biol. 10:106–12
    [Google Scholar]
  48. 48.  Payne KA, Quezada CP, Fisher K, Dunstan MS, Collins FA et al. 2015. Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517:513–16
    [Google Scholar]
  49. 49.  Scott AI, Roessner CA 2002. Biosynthesis of cobalamin (vitamin B12). Biochem. Soc. Trans. 30:613–20
    [Google Scholar]
  50. 50.  Bassford PJ Jr, Kadner RJ. 1977. Genetic analysis of components involved in vitamin B12 uptake in Escherichia coli. J. Bacteriol 132:796–805
    [Google Scholar]
  51. 51.  Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93
    [Google Scholar]
  52. 52.  Banerjee R, Gherasim C, Padovani D 2009. The tinker, tailor, soldier in intracellular B12 trafficking. Curr. Opin. Chem. Biol. 13:484–91
    [Google Scholar]
  53. 53.  Hay BP, Finke RG 1986. Thermolysis of the Co-C bond of adenosylcobalamin 2. Products, kinetics, and Co-C bond-dissociation energy in aqueous-solution. J. Am. Chem. Soc. 108:4820–29
    [Google Scholar]
  54. 54.  Padovani D, Banerjee R 2009. A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria. PNAS 106:21567–72
    [Google Scholar]
  55. 55.  Korotkova N, Lidstrom ME 2004. MeaB is a component of the methylmalonyl-CoA mutase complex required for protection of the enzyme from inactivation. J. Biol. Chem. 279:13652–58
    [Google Scholar]
  56. 56.  Toraya T. 2014. Cobalamin-dependent dehydratases and a deaminase: radical catalysis and reactivating chaperones. Arch. Biochem. Biophys. 544:40–57
    [Google Scholar]
  57. 57.  Mori K, Toraya T 1999. Mechanism of reactivation of coenzyme B12-dependent diol dehydratase by a molecular chaperone-like reactivating factor. Biochemistry 38:13170–78
    [Google Scholar]
  58. 58.  Jost M, Simpson JH, Drennan CL 2015. The transcription factor CarH safeguards use of adenosylcobalamin as a light sensor by altering the photolysis products. Biochemistry 54:3231–34
    [Google Scholar]
  59. 59.  Vey JL, Yang J, Li M, Broderick WE, Broderick JB, Drennan CL 2008. Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. PNAS 105:16137–41
    [Google Scholar]
  60. 60.  Banerjee RV, Harder SR, Ragsdale SW, Matthews RG 1990. Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study. Biochemistry 29:1129–35
    [Google Scholar]
  61. 61.  Bandarian V, Pattridge KA, Lennon BW, Huddler DP, Matthews RG, Ludwig ML 2002. Domain alternation switches B(12)-dependent methionine synthase to the activation conformation. Nat. Struct. Biol. 9:53–56
    [Google Scholar]
  62. 62.  Bandarian V, Ludwig ML, Matthews RG 2003. Factors modulating conformational equilibria in large modular proteins: a case study with cobalamin-dependent methionine synthase. PNAS 100:8156–63
    [Google Scholar]
  63. 63.  Drennan CL, Huang S, Drummond JT, Matthews RG, Ludwig ML 1994. How a protein binds B12: a 3.0 A X-ray structure of B12-binding domains of methionine synthase. Science 266:1669–74
    [Google Scholar]
  64. 64.  Jarrett JT, Drennan CL, Amaratunga M, Scholten JD, Ludwig ML, Matthews RG 1996. A protein radical cage slows photolysis of methylcobalamin in methionine synthase from Escherichia coli. Bioorg. Med. Chem 4:1237–46
    [Google Scholar]
  65. 65.  De La Haba G, Cantoni GL 1959. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J. Biol. Chem. 234:603–8
    [Google Scholar]
  66. 66.  Guest JR, Friedman S, Woods DD, Smith EL 1962. A methyl analogue of cobamide coenzyme in relation to methionine synthesis by bacteria. Nature 195:340–42
    [Google Scholar]
  67. 67.  Dowling DP, Croft AK, Drennan CL 2012. Radical use of Rossmann and TIM barrel architectures for controlling coenzyme B12 chemistry. Annu. Rev. Biophys. 41:403–27
    [Google Scholar]
  68. 68.  Berkovitch F, Behshad E, Tang KH, Enns EA, Frey PA, Drennan CL 2004. A locking mechanism preventing radical damage in the absence of substrate, as revealed by the x-ray structure of lysine 5,6-aminomutase. PNAS 101:15870–75
    [Google Scholar]
  69. 69.  Mancia F, Keep NH, Nakagawa A, Leadlay PF, McSweeney S et al. 1996. How coenzyme B12 radicals are generated: the crystal structure of methylmalonyl-coenzyme A mutase at 2 Å resolution. Structure 4:339–50
    [Google Scholar]
  70. 70.  Banerjee RV, Johnston NL, Sobeski JK, Datta P, Matthews RG 1989. Cloning and sequence analysis of the Escherichia coli metH gene encoding cobalamin-dependent methionine synthase and isolation of a tryptic fragment containing the cobalamin-binding domain. J. Biol. Chem. 264:13888–95
    [Google Scholar]
  71. 71.  Kellermeyer RW, Allen SH, Stjernholm R, Wood HG 1964. Methylmalonyl isomerase. I.V. Purification and properties of the enzyme from propionibacteria. J. Biol. Chem. 239:2562–69
    [Google Scholar]
  72. 72.  Baker JJ, van der Drift C, Stadtman TC 1973. Purification and properties of β-lysine mutase, a pyridoxal phosphate and B12 coenzyme dependent enzyme. Biochemistry 12:1054–63
    [Google Scholar]
  73. 73.  Dowling DP, Vey JL, Croft AK, Drennan CL 2012. Structural diversity in the AdoMet radical enzyme superfamily. Biochim. Biophys. Acta 1824:1178–95
    [Google Scholar]
  74. 74.  Vey JL, Drennan CL 2011. Structural insights into radical generation by the radical SAM superfamily. Chem. Rev. 111:2487–506
    [Google Scholar]
  75. 75.  Chatterjee A, Li Y, Zhang Y, Grove TL, Lee M et al. 2008. Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily. Nat. Chem. Biol. 4:758–65
    [Google Scholar]
  76. 76.  McGlynn SE, Boyd ES, Shepard EM, Lange RK, Gerlach R et al. 2010. Identification and characterization of a novel member of the radical AdoMet enzyme superfamily and implications for the biosynthesis of the Hmd hydrogenase active site cofactor. J. Bacteriol. 192:595–98
    [Google Scholar]
  77. 77.  Nicolet Y, Rubach JK, Posewitz MC, Amara P, Mathevon C et al. 2008. X-ray structure of the [FeFe]-hydrogenase maturase HydE from Thermotoga maritima. J. Biol. Chem 283:18861–72
    [Google Scholar]
  78. 78.  Berkovitch F, Nicolet Y, Wan JT, Jarrett JT, Drennan CL 2004. Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303:76–79
    [Google Scholar]
  79. 79.  Seweryn P, Van LB, Kjeldgaard M, Russo CJ, Passmore LA et al. 2015. Structural insights into the bacterial carbon-phosphorus lyase machinery. Nature 525:68–72
    [Google Scholar]
  80. 80.  Bridwell-Rabb J, Drennan CL 2017. Vitamin B12 in the spotlight again. Curr. Opin. Chem. Biol. 37:63–70
    [Google Scholar]
  81. 81.  Broderick JB, Duffus BR, Duschene KS, Shepard EM 2014. Radical S-adenosylmethionine enzymes. Chem. Rev. 114:4229–317
    [Google Scholar]
  82. 82.  McCarty RM, Krebs C, Bandarian V 2013. Spectroscopic, steady-state kinetic, and mechanistic characterization of the radical SAM enzyme QueE, which catalyzes a complex cyclization reaction in the biosynthesis of 7-deazapurines. Biochemistry 52:188–98
    [Google Scholar]
  83. 83.  Moss ML, Frey PA 1990. Activation of lysine 2,3-aminomutase by S-adenosylmethionine. J. Biol. Chem. 265:18112–15
    [Google Scholar]
  84. 84.  Cheek J, Broderick JB 2002. Direct H atom abstraction from spore photoproduct C-6 initiates DNA repair in the reaction catalyzed by spore photoproduct lyase: evidence for a reversibly generated adenosyl radical intermediate. J. Am. Chem. Soc. 124:2860–61
    [Google Scholar]
  85. 85.  Wetmore SD, Smith DM, Bennett JT, Radom L 2002. Understanding the mechanism of action of B12-dependent ethanolamine ammonia-lyase: synergistic interactions at play. J. Am. Chem. Soc. 124:14054–65
    [Google Scholar]
  86. 86.  Horitani M, Shisler K, Broderick WE, Hutcheson RU, Duschene KS et al. 2016. Radical SAM catalysis via an organometallic intermediate with an Fe–[5′-C]-deoxyadenosyl bond. Science 352:822–25
    [Google Scholar]
  87. 87.  Booker SJ. 2009. Anaerobic functionalization of unactivated C–H bonds. Curr. Opin. Chem. Biol. 13:58–73
    [Google Scholar]
  88. 88.  Allen KD, Wang SC 2014. Initial characterization of Fom3 from Streptomyces wedmorensis: the methyltransferase in fosfomycin biosynthesis. Arch. Biochem. Biophys. 543:67–73
    [Google Scholar]
  89. 89.  van der Donk WA 2006. Rings, radicals, and regeneration: the early years of a bioorganic laboratory. J. Org. Chem. 71:9561–71
    [Google Scholar]
  90. 90.  Woodyer RD, Li G, Zhao H, van der Donk WA 2007. New insight into the mechanism of methyl transfer during the biosynthesis of fosfomycin. Chem. Commun. 4:359–61
    [Google Scholar]
  91. 91.  Zhang Q, van der Donk WA, Liu W 2012. Radical-mediated enzymatic methylation: a tale of two SAMs. Acc. Chem. Res. 45:555–64
    [Google Scholar]
  92. 92.  Mosimann H, Kräutler B 2000. Methylcorrinoids methylate radicals—their second biological mode of action?. Angew. Chem. Int. Ed. Engl. 39:393–95
    [Google Scholar]
  93. 93.  Morita M, Tomita K, Ishizawa M, Takagi K, Kawamura F et al. 1999. Cloning of oxetanocin A biosynthetic and resistance genes that reside on a plasmid of Bacillus megaterium strain NK84-0128. Biosci. Biotechnol. Biochem. 63:563–66
    [Google Scholar]
  94. 94.  Bridwell-Rabb J, Kang G, Zhong A, Liu HW, Drennan CL 2016. An HD domain phosphohydrolase active site tailored for oxetanocin-A biosynthesis. PNAS 113:13750–55
    [Google Scholar]
  95. 95.  Lexa D, Saveant JM 1983. The electrochemistry of vitamin B12. Acc. Chem. Res. 16:235–43
    [Google Scholar]
  96. 96.  Dowd P, Shapiro M, Kang K 1975. Mechanism of action of vitamin B12. J. Am. Chem. Soc. 97:4754–57
    [Google Scholar]
  97. 97.  Schrauzer GN. 1974. Mechanisms of corrin dependent enzymatic reactions. Fortschr. Chem. Org. Naturstoffe. 31:583–628
    [Google Scholar]
  98. 98.  Dowling DP, Miles ZD, Kohrer C, Maiocco SJ, Elliott SJ et al. 2016. Molecular basis of cobalamin-dependent RNA modification. Nucleic Acids Res 44:9965–76
    [Google Scholar]
  99. 99.  Schrauzer GN, Windgassen RJ 1967. On hydroxyalkylcobaloximes and mechanism of a cobamide-dependent diol dehydrase. J. Am. Chem. Soc. 89:143–47
    [Google Scholar]
  100. 100.  Shey J, van der Donk WA 2000. Mechanistic studies on the vitamin B12 catalyzed dechlorination of chlorinated alkenes. J. Am. Chem. Soc. 122:12403–4
    [Google Scholar]
  101. 101.  Pietra F. 2015. Uptake of organohalide pollutants, and release of partially dehalogenated products, by NpRdhA, a ‘base-off’ cob(II)alamin-dependent reductive dehalogenase from a deep sea bacterium. A molecular dynamics investigation. Chem. Biodivers. 12:1945–53
    [Google Scholar]
  102. 102.  Schmitz RP, Wolf J, Habel A, Neumann A, Ploss K et al. 2007. Evidence for a radical mechanism of the dechlorination of chlorinated propenes mediated by the tetrachloroethene reductive dehalogenase of Sulfurospirillum muftivorans. Environ. Sci. Technol. 41:7370–75
    [Google Scholar]
  103. 103.  Schumacher W, Holliger C, Zehnder AJ, Hagen WR 1997. Redox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus. FEBS Lett 409:421–25
    [Google Scholar]
  104. 104.  Glod G, Angst W, Holliger C, Schwarzenbach RP 1997. Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: reaction kinetics and reaction mechanisms. Environ. Sci. Technol. 31:253–60
    [Google Scholar]
  105. 105.  Layer G, Moser J, Heinz DW, Jahn D, Schubert WD 2003. Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes. EMBO J 22:6214–24
    [Google Scholar]
  106. 106.  Forouhar F, Arragain S, Atta M, Gambarelli S, Mouesca JM et al. 2013. Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases. Nat. Chem. Biol. 9:333–38
    [Google Scholar]
  107. 107.  Benjdia A, Heil K, Barends TR, Carell T, Schlichting I 2012. Structural insights into recognition and repair of UV-DNA damage by Spore Photoproduct Lyase, a radical SAM enzyme. Nucleic Acids Res 40:9308–18
    [Google Scholar]
  108. 108.  McLaughlin MI, Lanz ND, Goldman PJ, Lee KH, Booker SJ, Drennan CL 2016. Crystallographic snapshots of sulfur insertion by lipoyl synthase. PNAS 113:9446–50
    [Google Scholar]
  109. 109.  Harmer JE, Hiscox MJ, Dinis PC, Fox SJ, Iliopoulos A et al. 2014. Structures of lipoyl synthase reveal a compact active site for controlling sequential sulfur insertion reactions. Biochem. J. 464:123–33
    [Google Scholar]
  110. 110.  Holm L, Rosenstrom P 2010. Dali server: conservation mapping in 3D. Nucleic Acids Res 38:W545–49
    [Google Scholar]
  111. 111.  Koutmos M, Datta S, Pattridge KA, Smith JL, Matthews RG 2009. Insights into the reactivation of cobalamin-dependent methionine synthase. PNAS 106:18527–32
    [Google Scholar]
  112. 112.  Frey PA. 1992. Nucleotidyltransferases and phosphotransferases: stereochemistry and covalent intermediates. The Enzymes, ed. DS Sigman, pp.141–86 San Diego, CA: Academic
    [Google Scholar]
  113. 113.  Boal AK, Grove TL, McLaughlin MI, Yennawar NH, Booker SJ, Rosenzweig AC 2011. Structural basis for methyl transfer by a radical SAM enzyme. Science 332:1089–92
    [Google Scholar]
  114. 114.  Nicolet Y, Pagnier A, Zeppieri L, Martin L, Amara P, Fontecilla-Camps JC 2015. Crystal structure of HydG from Carboxydothermus hydrogenoformans: a trifunctional [FeFe]-hydrogenase maturase. ChemBioChem 16:397–402
    [Google Scholar]
  115. 115.  Dinis P, Suess DL, Fox SJ, Harmer JE, Driesener RC et al. 2015. X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly. PNAS 112:1362–67
    [Google Scholar]
  116. 116.  Ugulava NB, Sacanell CJ, Jarrett JT 2001. Spectroscopic changes during a single turnover of biotin synthase: destruction of a [2Fe-2S] cluster accompanies sulfur insertion. Biochemistry 40:8352–58
    [Google Scholar]
  117. 117.  Bui BT, Florentin D, Fournier F, Ploux O, Mejean A, Marquet A 1998. Biotin synthase mechanism: on the origin of sulphur. FEBS Lett 440:226–30
    [Google Scholar]
  118. 118.  Lanz ND, Pandelia ME, Kakar ES, Lee KH, Krebs C, Booker SJ 2014. Evidence for a catalytically and kinetically competent enzyme-substrate cross-linked intermediate in catalysis by lipoyl synthase. Biochemistry 53:4557–72
    [Google Scholar]
  119. 119.  McCarthy EL, Booker SJ 2017. Destruction and reformation of an iron-sulfur cluster during catalysis by lipoyl synthase. Science 358:373–77
    [Google Scholar]
  120. 120.  Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML 2004. Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J. Biol. Chem. 279:25711–20
    [Google Scholar]
  121. 121.  Rubach JK, Brazzolotto X, Gaillard J, Fontecave M 2005. Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritima. FEBS Lett 579:5055–60
    [Google Scholar]
  122. 122.  King PW, Posewitz MC, Ghirardi ML, Seibert M 2006. Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J. Bacteriol. 188:2163–72
    [Google Scholar]
  123. 123.  Grove TL, Himes PM, Hwang S, Yumerefendi H, Bonanno JB et al. 2017. Structural insights into thioether bond formation in the biosynthesis of sactipeptides. J. Am. Chem. Soc. 139:11734–44
    [Google Scholar]
  124. 124.  Davis KM, Schramma KR, Hansen WA, Bacik JP, Khare SD et al. 2017. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition. PNAS 114:10420–25
    [Google Scholar]
  125. 125.  Grove TL, Lee KH, St. Clair J, Krebs C, Booker SJ 2008. In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters. Biochemistry 47:7523–38
    [Google Scholar]
  126. 126.  Grove TL, Ahlum JH, Sharma P, Krebs C, Booker SJ 2010. A consensus mechanism for Radical SAM-dependent dehydrogenation? BtrN contains two [4Fe-4S] clusters. Biochemistry 49:3783–85
    [Google Scholar]
  127. 127.  Zhou J, Riccardi D, Beste A, Smith JC, Parks JM 2014. Mercury methylation by HgcA: theory supports carbanion transfer to Hg(II). Inorg. Chem. 53:772–77
    [Google Scholar]
  128. 128.  Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC 2009. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLOS ONE 4:e4345
    [Google Scholar]
  129. 129.  Gerlt JA, Bouvier JT, Davidson DB, Imker HJ, Sadkhin B et al. 2015. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854:1019–37
    [Google Scholar]
  130. 130.  Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genom. Res. 13:2498–504
    [Google Scholar]
  131. 131.  Shisler KA, Hutcheson RU, Horitani M, Duschene KS, Crain AV et al. 2017. Monovalent cation activation of the radical SAM enzyme pyruvate formate-lyase activating enzyme. J. Am. Chem. Soc. 139:11803–13
    [Google Scholar]
  132. 132.  Shibata N, Masuda J, Morimoto Y, Yasuoka N, Toraya T 2002. Substrate-induced conformational change of a coenzyme B12-dependent enzyme: crystal structure of the substrate-free form of diol dehydratase. Biochemistry 41:12607–17
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012500
Loading
/content/journals/10.1146/annurev-biochem-062917-012500
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error