1932

Abstract

Nuclear proteins participate in diverse cellular processes, many of which are essential for cell survival and viability. To maintain optimal nuclear physiology, the cell employs the ubiquitin-proteasome system to eliminate damaged and misfolded proteins in the nucleus that could otherwise harm the cell. In this review, we highlight the current knowledge about the major ubiquitin-protein ligases involved in protein quality control degradation (PQCD) in the nucleus and how they orchestrate their functions to eliminate misfolded proteins in different nuclear subcompartments. Many human disorders are causally linked to protein misfolding in the nucleus, hence we discuss major concepts that still need to be clarified to better understand the basis of the nuclear misfolded proteins’ toxic effects. Additionally, we touch upon potential strategies for manipulating nuclear PQCD pathways to ameliorate diseases associated with protein misfolding and aggregation in the nucleus.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012730
2018-06-20
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012730.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012730&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Hartl FU. 2017. Protein misfolding diseases. Annu. Rev. Biochem. 86:21–26
    [Google Scholar]
  2. 2.  Walsh DM, Selkoe DJ 2016. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat. Rev. Neurosci. 17:251–60
    [Google Scholar]
  3. 3.  Yang H, Hu HY 2016. Sequestration of cellular interacting partners by protein aggregates: implication in a loss-of-function pathology. FEBS J 283:3705–17
    [Google Scholar]
  4. 4.  Hartl FU. 2016. Cellular homeostasis and aging. Annu. Rev. Biochem. 85:1–4
    [Google Scholar]
  5. 5.  Fredrickson EK, Gardner RG 2012. Selective destruction of abnormal proteins by ubiquitin-mediated protein quality control degradation. Semin. Cell Dev. Biol. 23:530–37
    [Google Scholar]
  6. 6.  Preissler S, Deuerling E 2012. Ribosome-associated chaperones as key players in proteostasis. Trends Biochem. Sci. 37:274–83
    [Google Scholar]
  7. 7.  Ellgaard L, McCaul N, Chatsisvili A, Braakman I 2016. Co- and post-translational protein folding in the ER. Traffic 17:615–38
    [Google Scholar]
  8. 8.  Shiber A, Ravid T 2014. Chaperoning proteins for destruction: diverse roles of Hsp70 chaperones and their co-chaperones in targeting misfolded proteins to the proteasome. Biomolecules 4:704–24
    [Google Scholar]
  9. 9.  Taddei A, Gasser SM 2012. Structure and function in the budding yeast nucleus. Genetics 192:107–29
    [Google Scholar]
  10. 10.  Nunes VS, Moretti NS 2017. Nuclear subcompartments: an overview. Cell Biol. Int. 41:2–7
    [Google Scholar]
  11. 11.  Gruenbaum Y, Foisner R 2015. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84:131–64
    [Google Scholar]
  12. 12.  Chang HR, Munkhjargal A, Kim M-J, Park SY, Jung E et al. 2018. The functional roles of PML nuclear bodies in genome maintenance. Mutat. Res. press https://doi.org/10.1016/j.mrfmmm.2017.05.002
    [Crossref]
  13. 13.  Timney BL, Raveh B, Mironska R, Trivedi JM, Kim SJ et al. 2016. Simple rules for passive diffusion through the nuclear pore complex. J. Cell Biol. 215:57–76
    [Google Scholar]
  14. 14.  Görlich D, Kutay U 1999. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15:607–60
    [Google Scholar]
  15. 15.  Anderson DJ, Hetzer MW 2008. The life cycle of the metazoan nuclear envelope. Curr. Opin. Cell Biol. 20:386–92
    [Google Scholar]
  16. 16.  Meseroll RA, Cohen-Fix O 2016. The malleable nature of the budding yeast nuclear envelope: flares, fusion, and fenestrations. J. Cell. Physiol. 231:2353–60
    [Google Scholar]
  17. 17.  D'Angelo MA, Raices M, Panowski SH, Hetzer MW 2009. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136:284–95
    [Google Scholar]
  18. 18.  Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW 2013. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154:47–60
    [Google Scholar]
  19. 19.  Hatch E, Hetzer M 2014. Breaching the nuclear envelope in development and disease. J. Cell Biol. 205:133–41
    [Google Scholar]
  20. 20.  David A, Dolan BP, Hickman HD, Knowlton JJ, Clavarino G et al. 2012. Nuclear translation visualized by ribosome-bound nascent chain puromycylation. J. Cell Biol. 197:45–57
    [Google Scholar]
  21. 21.  Panse VG, Johnson AW 2010. Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem. Sci. 35:260–66
    [Google Scholar]
  22. 22.  Skoneczna A, Kaniak A, Skoneczny M 2015. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol. Rev. 39:917–67
    [Google Scholar]
  23. 23.  Eberle AB, Visa N 2014. Quality control of mRNP biogenesis: networking at the transcription site. Semin. Cell Dev. Biol. 32:37–46
    [Google Scholar]
  24. 24.  Heyer W-D. 2015. Regulation of recombination and genomic maintenance. Cold Spring Harb. Perspect. Biol. 7:a016501
    [Google Scholar]
  25. 25.  Nielsen S, Poulsen E, Rebula C, Hartmann-Petersen R 2014. Protein quality control in the nucleus. Biomolecules 4:646–61
    [Google Scholar]
  26. 26.  Gardner RG, Nelson ZW, Gottschling DE 2005. Degradation-mediated protein quality control in the nucleus. Cell 120:803–15
    [Google Scholar]
  27. 27.  Schnell R, D'Ari L, Foss M, Goodman D, Rine J 1989. Genetic and molecular characterization of suppressors of SIR4 mutations in Saccharomyces cerevisiae. Genetics 122:29–46
    [Google Scholar]
  28. 28.  Xu Q, Johnston GC, Singer RA 1993. The Saccharomyces cerevisiae Cdc68 transcription activator is antagonized by San1, a protein implicated in transcriptional silencing. Mol. Cell. Biol. 13:7553–65
    [Google Scholar]
  29. 29.  Kevei E, Pokrzywa W, Hoppe T 2017. Repair or destruction—an intimate liaison between ubiquitin ligases and molecular chaperones in proteostasis. FEBS Lett 591:2616–35
    [Google Scholar]
  30. 30.  Heck JW, Cheung SK, Hampton RY 2010. Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. PNAS 107:1106–11
    [Google Scholar]
  31. 31.  Prasad R, Kawaguchi S, Ng DT 2010. A nucleus-based quality control mechanism for cytosolic proteins. Mol. Biol. Cell 21:2117–27
    [Google Scholar]
  32. 32.  Guerriero CJ, Weiberth KF, Brodsky JL 2013. Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase. J. Biol. Chem. 288:18506–20
    [Google Scholar]
  33. 33.  Rosenbaum JC, Fredrickson EK, Oeser ML, Garrett-Engele CM, Locke MN et al. 2011. Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates. Mol. Cell 41:93–106
    [Google Scholar]
  34. 34.  Prasad R, Kawaguchi S, Ng DTW 2012. Biosynthetic mode can determine the mechanism of protein quality control. Biochem. Biophys. Res. Commun. 425:689–95
    [Google Scholar]
  35. 35.  Park SH, Kukushkin Y, Gupta R, Chen T, Konagai A et al. 2013. PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154:134–45
    [Google Scholar]
  36. 36.  Boomsma W, Nielsen SV, Lindorff-Larsen K, Hartmann-Petersen R, Ellgaard L 2016. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases. PeerJ 4:e1725
    [Google Scholar]
  37. 37.  Mandart E, Dufour ME, Lacroute F 1994. Inactivation of SSM4, a new Saccharomyces cerevisiae gene, suppresses mRNA instability due to rna14 mutations. Mol. Gen. Genet. 245:323–33
    [Google Scholar]
  38. 38.  Hochstrasser M, Varshavsky A 1990. In vivo degradation of a transcriptional regulator: the yeast a2 repressor. Cell 61:697–708
    [Google Scholar]
  39. 39.  Swanson R, Locher M, Hochstrasser M 2001. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Genes Dev 15:2660–74
    [Google Scholar]
  40. 40.  Deng M, Hochstrasser M 2006. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature 443:827–31
    [Google Scholar]
  41. 41.  Shiber A, Breuer W, Brandeis M, Ravid T 2013. Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting. Mol. Biol. Cell 24:2076–87
    [Google Scholar]
  42. 42.  Park S-H, Bolender N, Eisele F, Kostova Z, Takeuchi J et al. 2007. The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. Mol. Biol. Cell 18:153–65
    [Google Scholar]
  43. 43.  Hassink G, Kikkert M, van Voorden S, Lee SJ, Spaapen R et al. 2005. TEB4 is a C4HC3 RING finger-containing ubiquitin ligase of the endoplasmic reticulum. Biochem. J. 388:647–55
    [Google Scholar]
  44. 44.  Zelcer N, Sharpe LJ, Loregger A, Kristiana I, Cook ECL et al. 2014. The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol. Cell. Biol. 34:1262–70
    [Google Scholar]
  45. 45.  Foresti O, Rodriguez-Vaello V, Funaya C, Carvalho P 2014. Quality control of inner nuclear membrane proteins by the Asi complex. Science 346:751–55
    [Google Scholar]
  46. 46.  Khmelinskii A, Blaszczak E, Pantazopoulou M, Fischer B, Omnus DJ et al. 2014. Protein quality control at the inner nuclear membrane. Nature 516:410–13
    [Google Scholar]
  47. 47.  Forsberg H, Hammar M, Andréasson C, Molinér A, Ljungdahl PO 2001. Suppressors of ssy1 and ptr3 null mutations define novel amino acid sensor-independent genes in Saccharomyces cerevisiae. Genetics 158:973–88
    [Google Scholar]
  48. 48.  Omnus DJ, Ljungdahl PO 2014. Latency of transcription factor Stp1 depends on a modular regulatory motif that functions as cytoplasmic retention determinant and nuclear degron. Mol. Biol. Cell 25:3823–33
    [Google Scholar]
  49. 49.  Boban M, Zargari A, Andréasson C, Heessen S, Thyberg J, Ljungdahl PO 2006. Asi1 is an inner nuclear membrane protein that restricts promoter access of two latent transcription factors. J. Cell Biol. 173:695–707
    [Google Scholar]
  50. 50.  Zargari A, Boban M, Heessen S, Andreasson C, Thyberg J, Ljungdahl PO 2007. Inner nuclear membrane proteins Asi1, Asi2, and Asi3 function in concert to maintain the latent properties of transcription factors Stp1 and Stp2. J. Biol. Chem. 282:594–605
    [Google Scholar]
  51. 51.  Utsugi T, Toh-e A, Kikuchi Y 1995. A high dose of the STM1 gene suppresses the temperature sensitivity of the tom1 and htr1 mutants in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1263:285–88
    [Google Scholar]
  52. 52.  Saleh A, Collart M, Martens JA, Genereaux J, Allard S et al. 1998. TOM1p, a yeast hect-domain protein which mediates transcriptional regulation through the ADA/SAGA coactivator complexes. J. Mol. Biol. 282:933–46
    [Google Scholar]
  53. 53.  Singh RK, Kabbaj MH, Paik J, Gunjan A 2009. Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat. Cell Biol. 11:925–33
    [Google Scholar]
  54. 54.  Sung MK, Porras-Yakushi TR, Reitsma JM, Huber FM, Sweredoski MJ et al. 2016. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. eLife 5:e19105
    [Google Scholar]
  55. 55.  Mullen JR, Kaliraman V, Ibrahim SS, Brill SJ 2001. Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 157:103–18
    [Google Scholar]
  56. 56.  Yang L, Mullen JR, Brill SJ 2006. Purification of the yeast Slx5-Slx8 protein complex and characterization of its DNA-binding activity. Nucleic Acids Res 34:5541–51
    [Google Scholar]
  57. 57.  Geoffroy MC, Hay RT 2009. An additional role for SUMO in ubiquitin-mediated proteolysis. Nat. Rev. Mol. Cell Biol. 10:564–68
    [Google Scholar]
  58. 58.  Xie Y, Kerscher O, Kroetz MB, McConchie HF, Sung P, Hochstrasser M 2007. The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem. 282:34176–84
    [Google Scholar]
  59. 59.  Uzunova K, Gottsche K, Miteva M, Weisshaar SR, Glanemann C et al. 2007. Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem. 282:34167–75
    [Google Scholar]
  60. 60.  Wang Z, Prelich G 2009. Quality control of a transcriptional regulator by SUMO-targeted degradation. Mol. Cell. Biol. 29:1694–706
    [Google Scholar]
  61. 61.  Gallina I, Colding C, Henriksen P, Beli P, Nakamura K et al. 2015. Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat. Commun. 6:6533
    [Google Scholar]
  62. 62.  Guo L, Giasson BI, Glavis-Bloom A, Brewer MD, Shorter J et al. 2014. A cellular system that degrades misfolded proteins and protects against neurodegeneration. Mol. Cell 55:15–30
    [Google Scholar]
  63. 63.  Tomko RJ Jr, Hochstrasser M. 2013. Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 82:415–45
    [Google Scholar]
  64. 64.  Chowdhury M, Enenkel C 2015. Intracellular dynamics of the ubiquitin-proteasome-system. F1000Research 4:367
    [Google Scholar]
  65. 65.  Pack CG, Yukii H, Toh-e A, Kudo T, Tsuchiya H et al. 2014. Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nat. Commun. 5:3396
    [Google Scholar]
  66. 66.  Kimura A, Kato Y, Hirano H 2012. N-Myristoylation of the Rpt2 subunit regulates intracellular localization of the yeast 26S proteasome. Biochemistry 51:8856–66
    [Google Scholar]
  67. 67.  Dang FW, Chen L, Madura K 2016. Catalytically active proteasomes function predominantly in the cytosol. J. Biol. Chem. 291:18765–77
    [Google Scholar]
  68. 68.  Ravid T, Hochstrasser M 2008. Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 9:679–89
    [Google Scholar]
  69. 69.  Filipcik P, Curry JR, Mace PD 2017. When worlds collide—mechanisms at the interface between phosphorylation and ubiquitination. J. Mol. Biol. 429:1097–113
    [Google Scholar]
  70. 70.  Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B 1997. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–7
    [Google Scholar]
  71. 71.  Geffen Y, Appleboim A, Gardner RG, Friedman N, Sadeh R, Ravid T 2016. Mapping the landscape of a eukaryotic degronome. Mol. Cell 63:1055–65
    [Google Scholar]
  72. 72.  Fredrickson EK, Rosenbaum JC, Locke MN, Milac TI, Gardner RG 2011. Exposed hydrophobicity is a key determinant of nuclear quality control degradation. Mol. Biol. Cell 22:2384–95
    [Google Scholar]
  73. 73.  Johnson PR, Swanson R, Rakhilina L, Hochstrasser M 1998. Degradation signal masking by heterodimerization of MATα2 and MATa1 blocks their mutual destruction by the ubiquitin-proteasome pathway. Cell 94:217–27
    [Google Scholar]
  74. 74.  Furth N, Gertman O, Shiber A, Alfassy OS, Cohen I et al. 2011. Exposure of bipartite hydrophobic signal triggers nuclear quality control of Ndc10 at the endoplasmic reticulum/nuclear envelope. Mol. Biol. Cell 22:4726–39
    [Google Scholar]
  75. 75.  Smith N, Wei W, Zhao M, Qin X, Seravalli J et al. 2016. Cadmium and secondary structure-dependent function of a degron in the Pca1p cadmium exporter. J. Biol. Chem. 291:12420–31
    [Google Scholar]
  76. 76.  Gilon T, Chomsky O, Kulka RG 2000. Degradation signals recognized by the Ubc6p-Ubc7p ubiquitin-conjugating enzyme pair. Mol. Cell. Biol. 20:7214–19
    [Google Scholar]
  77. 77.  Rosenbaum JC, Gardner RG 2011. How a disordered ubiquitin ligase maintains order in nuclear protein homeostasis. Nucleus 2:264–70
    [Google Scholar]
  78. 78.  Fredrickson EK, Gallagher PS, Clowes Candadai SV, Gardner RG 2013. Substrate recognition in nuclear protein quality control degradation is governed by exposed hydrophobicity that correlates with aggregation and insolubility. J. Biol. Chem. 288:6130–39
    [Google Scholar]
  79. 79.  Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M 2011. The structure of the eukaryotic ribosome at 3.0 resolution. Science 334:1524–29
    [Google Scholar]
  80. 80.  Ruggiano A, Mora G, Buxó L, Carvalho P 2016. Spatial control of lipid droplet proteins by the ERAD ubiquitin ligase Doa10. EMBO J 35:1644–55
    [Google Scholar]
  81. 81.  Habeck G, Ebner FA, Shimada-Kreft H, Kreft SG 2015. The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron. J. Cell Biol. 209:261–73
    [Google Scholar]
  82. 82.  Maurer MJ, Spear ED, Yu AT, Lee EJ, Shahzad S, Michaelis S 2016. Degradation signals for ubiquitin-proteasome dependent cytosolic protein quality control (CytoQC) in yeast. G3 6:1853–66
    [Google Scholar]
  83. 83.  Hickey CM. 2016. Degradation elements coincide with cofactor binding sites in a short-lived transcription factor. Cell. Logist. 6:e1157664
    [Google Scholar]
  84. 84.  Xie Y, Rubenstein EM, Matt T, Hochstrasser M 2010. SUMO-independent in vivo activity of a SUMO-targeted ubiquitin ligase toward a short-lived transcription factor. Genes Dev 24:893–903
    [Google Scholar]
  85. 85.  Khosrow-Khavar F, Fang NN, Ng AH, Winget JM, Comyn SA, Mayor T 2012. The yeast Ubr1 ubiquitin ligase participates in a prominent pathway that targets cytosolic thermosensitive mutants for degradation. G3 2:619–28
    [Google Scholar]
  86. 86.  Amm I, Wolf DH 2016. Molecular mass as a determinant for nuclear San1-dependent targeting of misfolded cytosolic proteins to proteasomal degradation. FEBS Lett 590:1765–75
    [Google Scholar]
  87. 87.  Varshavsky A. 2011. The N-end rule pathway and regulation by proteolysis. Protein Sci 20:1298–345
    [Google Scholar]
  88. 88.  Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB et al. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11:4241–57
    [Google Scholar]
  89. 89.  Yiu G, McCord A, Wise A, Jindal R, Hardee J et al. 2008. Pathways change in expression during replicative aging in Saccharomyces cerevisiae. J. Gerontol. Ser. A 63:21–34
    [Google Scholar]
  90. 90.  Kaganovich D, Kopito R, Frydman J 2008. Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088–95
    [Google Scholar]
  91. 91.  Miller SB, Ho CT, Winkler J, Khokhrina M, Neuner A et al. 2015. Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. EMBO J 34:778–97
    [Google Scholar]
  92. 92.  Hill SM, Hanzén S, Nyström T 2017. Restricted access: spatial sequestration of damaged proteins during stress and aging. EMBO Rep 18:377–91
    [Google Scholar]
  93. 93.  Miller SB, Mogk A, Bukau B 2015. Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. J. Mol. Biol. 427:1564–74
    [Google Scholar]
  94. 94.  Woulfe J. 2008. Nuclear bodies in neurodegenerative disease. Biochim. Biophys. Acta 1783:2195–206
    [Google Scholar]
  95. 95.  Ciechanover A, Kwon YT 2015. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp. Mol. Med. 47:e147
    [Google Scholar]
  96. 96.  Wang J, Farr GW, Zeiss CJ, Rodriguez-Gil DJ, Wilson JH et al. 2009. Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS. PNAS 106:1392–97
    [Google Scholar]
  97. 97.  Arlow T, Scott K, Wagenseller A, Gammie A 2013. Proteasome inhibition rescues clinically significant unstable variants of the mismatch repair protein Msh2. PNAS 110:246–51
    [Google Scholar]
  98. 98.  Muller PA, Vousden HH 2014. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25:304–17
    [Google Scholar]
  99. 99.  Kim S, An SS 2016. Role of p53 isoforms and aggregations in cancer. Medicine 95:e3993
    [Google Scholar]
  100. 100.  Bernassola F, Karin M, Ciechanover A, Melino G 2008. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14:10–21
    [Google Scholar]
  101. 101.  Chen D, Kon N, Li M, Zhang W, Qin J, Gu W 2005. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121:1071–83
    [Google Scholar]
  102. 102.  Inoue S, Hao Z, Elia AJ, Cescon D, Zhou L et al. 2013. Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15. Genes Dev 27:1101–14
    [Google Scholar]
  103. 103.  Keller JN, Huang FF, Markesbery WR 2000. Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98:149–56
    [Google Scholar]
  104. 104.  Ciechanover A, Kwon YT 2017. Protein quality control by molecular chaperones in neurodegeneration. Front. Neurosci. 11:185
    [Google Scholar]
  105. 105.  Torres C, Lewis L, Cristofalo VJ 2006. Proteasome inhibitors shorten replicative life span and induce a senescent-like phenotype of human fibroblasts. J. Cell. Physiol. 207:845–53
    [Google Scholar]
  106. 106.  Chondrogianni N, Georgila K, Kourtis N, Tavernarakis N, Gonos ES 2015. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB J 29:611–22
    [Google Scholar]
  107. 107.  Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C et al. 2012. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489:263–68
    [Google Scholar]
  108. 108.  Manasanch EE, Orlowski RZ 2017. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 14:417–33
    [Google Scholar]
  109. 109.  Obeng EA, Carlson LM, Gutman DM, Harrington WJ, Lee KP, Boise LH 2006. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107:4907–16
    [Google Scholar]
  110. 110.  Landre V, Rotblat B, Melino S, Bernassola F, Melino G 2014. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget 5:7988–8013
    [Google Scholar]
  111. 111.  Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F et al. 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–48
    [Google Scholar]
  112. 112.  Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K et al. 2006. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. PNAS 103:1888–93
    [Google Scholar]
  113. 113.  Tisato V, Voltan R, Gonelli A, Secchiero P, Zauli G 2017. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J. Hematol. Oncol. 10:133
    [Google Scholar]
  114. 114.  Shabek N, Zheng N 2014. Plant ubiquitin ligases as signaling hubs. Nat. Struct. Mol. Biol. 21:293–96
    [Google Scholar]
  115. 115.  Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV et al. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–45
    [Google Scholar]
  116. 116.  Westerheide SD, Bosman JD, Mbadugha BN, Kawahara TL, Matsumoto G et al. 2004. Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem. 279:56053–60
    [Google Scholar]
  117. 117.  Whitesell L, Lindquist SL 2005. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5:761–72
    [Google Scholar]
  118. 118.  Huang X, Dixit VM 2016. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res 26:484–98
    [Google Scholar]
  119. 119.  Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ 2001. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. PNAS 98:8554–59
    [Google Scholar]
  120. 120.  Neklesa TK, Tae HS, Schneekloth AR, Stulberg MJ, Corson TW et al. 2011. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat. Chem. Biol. 7:538–43
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012730
Loading
/content/journals/10.1146/annurev-biochem-062917-012730
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error