1932

Abstract

Understanding and predicting the mechanical behavior of myocardium under healthy and pathophysiological conditions are vital to developing novel cardiac therapies and promoting personalized interventions. Within the past 30 years, various constitutive models have been proposed for the passive mechanical behavior of myocardium. These models cover a broad range of mathematical forms, microstructural observations, and specific test conditions to which they are fitted. We present a critical review of these models, covering both phenomenological and structural approaches, and their relations to the underlying structure and function of myocardium. We further explore the experimental and numerical techniques used to identify the model parameters. Next, we provide a brief overview of continuum-level electromechanical models of myocardium, with a focus on the methods used to integrate the active and passive components of myocardial behavior. We conclude by pointing to future directions in the areas of optimal form as well as new approaches for constitutive modeling of myocardium.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-062117-121129
2019-06-04
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/21/1/annurev-bioeng-062117-121129.html?itemId=/content/journals/10.1146/annurev-bioeng-062117-121129&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kehat I, Molkentin J 2010. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122:2727–35
    [Google Scholar]
  2. 2.
    D'Ambra M, LaRaia P, Philbin D, Watkins W, Hilgenberg A, Buckley M 1985. Prostaglandin E1. A new therapy for refractory right heart failure and pulmonary hypertension after mitral valve replacement. J. Thorac. Cardiovasc. Surg. 89:567–72
    [Google Scholar]
  3. 3.
    Bogaard HJ, Abe K, Von Noordegraaf A, Voelkel NF 2009. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 135:794–804
    [Google Scholar]
  4. 4.
    Feldman A, McNamara D 2000. Myocarditis. N. Engl. J. Med. 343:1388–98
    [Google Scholar]
  5. 5.
    Jordan J, Todd R, Vasu S, Hundley W 2018. Cardiovascular magnetic resonance in the oncology patient. JACC Cardiovasc. Imaging 11:1150–72
    [Google Scholar]
  6. 6.
    Sukhovershin R, Cooke J 2016. How may proton pump inhibitors impair cardiovascular health. Am. J. Cardiovasc. Drugs 16:15361
    [Google Scholar]
  7. 7.
    Rosenzweig A 2012. Cardiac regeneration. Science 338:1549–50
    [Google Scholar]
  8. 8.
    Nadruz W 2015. Myocardial remodeling in hypertension. J. Hum. Hypertens. 29:1–6
    [Google Scholar]
  9. 9.
    Holmes J, Borg T, Covell J 2005. Structure and mechanics of healing myocardial infarcts. Annu. Rev. Biomed. Eng. 7:223–53
    [Google Scholar]
  10. 10.
    Wall S, Walker J, Healy K, Ratcliffe M, Guccione J 2006. Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation 114:2627–35
    [Google Scholar]
  11. 11.
    Humphrey J 2013.Cardiovascular Solid Mechanics: Cells, Tissues, and Organs Berlin: Springer Sci. Bus. Media
  12. 12.
    Soares J, Feaver K, Zhang W, Kamensky D, Aggarwal A, Sacks M 2016. Biomechanical behavior of bioprosthetic heart valve heterograft tissues: characterization, simulation, and performance. Cardiovasc. Eng. Technol. 7:309–51
    [Google Scholar]
  13. 13.
    Avazmohammadi R, Li D, Leahy T, Shih E, Soares J et al. 2018. An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium. Biomech. Model. Mechanobiol. 17:31–53
    [Google Scholar]
  14. 14.
    Bers D 2002. Cardiac excitation–contraction coupling. Nature 415:198–205
    [Google Scholar]
  15. 15.
    de Tombe P 2003. Cardiac myofilaments: mechanics and regulation. J. Biomech. 36:721–30
    [Google Scholar]
  16. 16.
    Hunter P, Smaill B 1988. The analysis of cardiac function: a continuum approach. Prog. Biophys. Mol. Biol. 52:101–64
    [Google Scholar]
  17. 17.
    ter Keurs H 1995. Sarcomere function and crossbridge cycling. In Molecular and Subcellular Cardiology S Sideman, R Beyar125–35 Berlin: Springer
    [Google Scholar]
  18. 18.
    Sengupta P, Krishnamoorthy V, Korinek J, Narula J, Vannan M et al. 2007. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J. Am. Soc. Echocardiogr. 20:539–51
    [Google Scholar]
  19. 19.
    Clayton R, Bernus O, Cherry E, Dierckx H, Fenton F et al. 2011. Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog. Biophys. Mol. Biol. 104:22–48
    [Google Scholar]
  20. 20.
    Streeter D Jr., Spotnitz H, Patel D, Ross J Jr., Sonnenblick E 1969. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24:339–47
    [Google Scholar]
  21. 21.
    Lunkenheimer P, Redmann K, Kling N, Jiang X, Rothaus K et al. 2006. Three-dimensional architecture of the left ventricular myocardium. Anat. Rec. A 288:565–78
    [Google Scholar]
  22. 22.
    Curtis M, Russell B 2011. Micromechanical regulation in cardiac myocytes and fibroblasts: implications for tissue remodeling. Pflüg. Arch. Eur. J. Physiol. 462:105–17
    [Google Scholar]
  23. 23.
    Kelly DE, Wood RL, Enders AC 1984.Textbook of Microscopic Anatomy Baltimore: Williams & Wilkins http://www.columbia.edu/itc/hs/medical/sbpm_histology_old/lab/micro_popup21.html
  24. 24.
    Rausch M, Dam A 2011. Computational modeling of growth: systemic and pulmonary hypertension in the heart. Biomech. Model. Mechanobiol. 10:799–811
    [Google Scholar]
  25. 25.
    LeGrice I, Smaill B, Chai L, Edgar S, Gavin J, Hunter P 1995. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. Heart Circ. Physiol. 269:H571–82
    [Google Scholar]
  26. 26.
    Intrigila B, Melatti I, Tofani A, Macchiarelli G 2007. Computational models of myocardial endomysial collagen arrangement. Comput. Methods Programs Biomed. 86:232–44
    [Google Scholar]
  27. 27.
    Anderson R, Smerup M, Sanchez-Quintana D, Loukas M, Lunkenheimer P 2009. The three-dimensional arrangement of the myocytes in the ventricular walls. Clin. Anat. 22:64–76
    [Google Scholar]
  28. 28.
    Peterson DR, Bronzino JD 2007. Biomechanics: Principles and Applications. Boca Raton, FL: CRC
    [Google Scholar]
  29. 29.
    Macchiarelli G, Ohtani O, Nottola S, Stallone T, Camboni A et al. 2002. A micro-anatomical model of the distribution of myocardial endomysial collagen. Histol. Histopathol. 17:699–706
    [Google Scholar]
  30. 30.
    Fomovsky G, Thomopoulos S, Holmes J 2010. Contribution of extracellular matrix to the mechanical properties of the heart. J. Mol. Cell. Cardiol. 48:490–96
    [Google Scholar]
  31. 31.
    Leonard B, Smaill B, LeGrice I 2012. Structural remodeling and mechanical function in heart failure. Microsc. Microanal. 18:50–67
    [Google Scholar]
  32. 32.
    Robinson T, Factor S, Sonnenblick E 1986. The heart as a suction pump. Sci. Am. 254:84–91
    [Google Scholar]
  33. 33.
    Rohmer D, Sitek A, Gullberg G 2007. Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Investig. Radiol. 42:777–89
    [Google Scholar]
  34. 34.
    Robinson T, Cohen-Gould L, Factor S 1983. Skeletal framework of mammalian heart muscle. Arrangement of inter- and pericellular connective tissue structures. Lab. Investig. 49:482–98
    [Google Scholar]
  35. 35.
    Caulfield J, Borg T 1979. The collagen network of the heart. Lab. Investig. 40:364–72
    [Google Scholar]
  36. 36.
    Borg T, Caulfield J 1981. The collagen matrix of the heart. Fed. Proc. 40:2037–41
    [Google Scholar]
  37. 37.
    Borg T, Johnson L, Lill P 1983. Specific attachment of collagen to cardiac myocytes: in vivo and in vitro. Dev. Biol. 97:417–23
    [Google Scholar]
  38. 38.
    Torrent-Guasp F, Buckberg GD, Clemente C, Cox JL, Coghlan HC, Gharib M 2001. The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart. Semin. Thorac. Cardiovasc. Surg 13:20119
    [Google Scholar]
  39. 39.
    Buckberg G 2002. Basic science review: the helix and the heart. J. Thorac. Cardiovasc. Surg. 124:863–83
    [Google Scholar]
  40. 40.
    Burton R, Plank G, Schneider J, Grau V, Ahammer H et al. 2006. Three-dimensional models of individual cardiac histoanatomy: tools and challenges. Ann. N. Y. Acad. Sci. 1080:301–19
    [Google Scholar]
  41. 41.
    Nash M, Hunter P 2000. Computational mechanics of the heart. J. Elast. 61:113–41
    [Google Scholar]
  42. 42.
    Nielles-Vallespin S, Mekkaoui C, Gatehouse P, Reese TG, Keegan J et al. 2013. In vivo diffusion tensor MRI of the human heart: reproducibility of breath-hold and navigator-based approaches. Magn. Reson. Med. 70:454–65
    [Google Scholar]
  43. 43.
    Helm P, Tseng H, Younes L, McVeigh E, Winslow R 2005. Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn. Reson. Med. 54:850–59
    [Google Scholar]
  44. 44.
    Jang S, Vanderpool R, Avazmohammedi R, Lapshin E, Bachman TN et al. 2017. Biomechanical and hemodynamic measures of right ventricular diastolic function: translating tissue biomechanics to clinical relevance. J. Am. Heart Assoc. 6:e006084
    [Google Scholar]
  45. 45.
    Lin D, Yin F 1998. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Eng. 120:504–17
    [Google Scholar]
  46. 46.
    Parker K, Ingber D 2007. Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos. Trans. R. Soc. B 362:1267–79
    [Google Scholar]
  47. 47.
    Avazmohammadi R, Hill M, Simon M, Sacks M 2017. Transmural remodeling of right ventricular myocardium in response to pulmonary arterial hypertension. APL Bioeng. 1:016105
    [Google Scholar]
  48. 48.
    Couade M, Pernot M, Messas E, Bel A, Ba M et al. 2011. In vivo quantitative mapping of myocardial stiffening and transmural anisotropy during the cardiac cycle. IEEE Trans. Med. Imaging 30:295–305
    [Google Scholar]
  49. 49.
    Arts T, Costa K, Covell J, McCulloch A 2001. Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am. J. Physiol. Heart Circ. Physiol. 280:H2222–29
    [Google Scholar]
  50. 50.
    Sandler H, Dodge H 1963. Left ventricular tension and stress in man. Circ. Res. 13:91–104
    [Google Scholar]
  51. 51.
    Falsetti H, Mates R, Grant C, Greene D, Bunnell I 1970. Left ventricular wall stress calculated from one-plane cineangiography: an approach to force–velocity analysis in man. Circ. Res. 26:71–83
    [Google Scholar]
  52. 52.
    Gaasch W, Levine H, Quinones M, Alexander J 1976. Left ventricular compliance: mechanisms and clinical implications. Am. J. Cardiol. 38:645–53
    [Google Scholar]
  53. 53.
    Yin F 1981. Ventricular wall stress. Circ. Res. 49:829–42
    [Google Scholar]
  54. 54.
    Fifer M, Grossman W 2013. Measurement of ventricular volumes, ejection fraction, mass, wall stress, and regional wall motion. In Grossman & Baim's Cardiac Catheterization, Angiography, and Intervention M Moscucci310–12 Baltimore: Lippincott, Williams & Wilkins. 8th ed.
    [Google Scholar]
  55. 55.
    Basford J 2002. The Law of Laplace and its relevance to contemporary medicine and rehabilitation. Arch. Phys. Med. Rehabil. 83:1165–70
    [Google Scholar]
  56. 56.
    Genet M, Lee L, Nguyen R, Haraldsson H, Acevedo-Bolton G et al. 2014. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments. J. Appl. Physiol. 117:142–52
    [Google Scholar]
  57. 57.
    Lee L, Ge L, Zhang Z, Pease M, Nikolic S et al. 2014. Patient-specific finite element modeling of the Cardiokinetix Parachute® device: effects on left ventricular wall stress and function. Med. Biol. Eng. 52:557–66
    [Google Scholar]
  58. 58.
    Bosi G, Capelli C, Khambadkone S, Taylor A, Schievano S 2015. Patient-specific finite element models to support clinical decisions: a lesson learnt from a case study of percutaneous pulmonary valve implantation. Catheter. Cardiovasc. Interv. 86:1120–30
    [Google Scholar]
  59. 59.
    Wenk J, Wall S, Peterson R, Helgerson S, Sabbah H et al. 2009. A method for automatically optimizing medical devices for treating heart failure: designing polymeric injection patterns. J. Biomech. Eng. 131:121011
    [Google Scholar]
  60. 60.
    Lee L, Wall S, Genet M, Hinson A, Guccione J 2014. Bioinjection treatment: effects of post-injection residual stress on left ventricular wall stress. J. Biomech. 47:3115–19
    [Google Scholar]
  61. 61.
    Fung Y 2013.Biomechanics: Mechanical Properties of Living Tissues Berlin: Springer Sci. Bus. Media
  62. 62.
    Chadwick P 2012.Continuum Mechanics: Concise Theory and Problems North Chelmsford, MA: Courier
  63. 63.
    Gurtin ME 1982. An Introduction to Continuum Mechanics. Math. Sci. Eng. 158 San Diego: Academic
    [Google Scholar]
  64. 64.
    Fuchs R, Brinker J, Maughan W, Weisfeldt M, Yin F 1981. Coronary flow limitation during the development of ischemia: effect of atrial pacing in patients with left anterior descending coronary artery disease. Am. J. Cardiol. 48:1029–36
    [Google Scholar]
  65. 65.
    Yeoh O 1993. Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66:754–71
    [Google Scholar]
  66. 66.
    Guccione J, McCulloch A, Waldman L 1991. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113:42–55
    [Google Scholar]
  67. 67.
    Humphrey J, Yin F 1987. On constitutive relations and finite deformations of passive cardiac tissue. I. A pseudostrain–energy function. J. Biomech. Eng. 109:298–304
    [Google Scholar]
  68. 68.
    Humphrey J, Strumpf R, Yin F 1990. Determination of a constitutive relation for passive myocardium. II. Parameter estimation. J. Biomech. Eng. 112:340–46
    [Google Scholar]
  69. 69.
    Kerckhoffs R, Bovendeerd P, Kotte J, Prinzen F, Smits K, Arts T 2003. Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann. Biomed. Eng. 31:536–47
    [Google Scholar]
  70. 70.
    Holzapfel G, Ogden R 2009. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. R. Soc. A 367:3445–75
    [Google Scholar]
  71. 71.
    Schmid H, Wang Y, Ashton J, Ehret A, Krittian S et al. 2009. Myocardial material parameter estimation: a comparison of invariant based orthotropic constitutive equations. Comput. Methods Biomech. Biomed. Eng. 12:283–95
    [Google Scholar]
  72. 72.
    Yin F, Strumpf R, Chew P, Zeger S 1987. Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20:577–89
    [Google Scholar]
  73. 73.
    Hill M, Simon M, Valdez-Jasso D, Zhang W, Champion H, Sacks M 2014. Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Ann. Biomed. Eng. 42:2451–65
    [Google Scholar]
  74. 74.
    Hunter P, Nash M, Sands G 1997. Computational biology of the heart. In Computational Electromechanics of the Heart AV Panfilov, AV Holden345–407 West Sussex, UK: Wiley
    [Google Scholar]
  75. 75.
    Costa K, Holmes J, McCulloch A 2001. Modelling cardiac mechanical properties in three dimensions. Philos. Trans. R. Soc. A 359:1233–50
    [Google Scholar]
  76. 76.
    Schmid H, Nash M, Young A, Hunter P 2006. Myocardial material parameter estimation: a comparative study for simple shear. J. Biomech. Eng. 128:742–50
    [Google Scholar]
  77. 77.
    Murphy J 2013. Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech. A 42:90–96
    [Google Scholar]
  78. 78.
    Humphrey J, Strumpf R, Yin F 1990. Determination of a constitutive relation for passive myocardium. I. A new functional form. J. Biomech. Eng. 112:333–39
    [Google Scholar]
  79. 79.
    Dokos S, Smaill B, Young A, LeGrice I 2002. Shear properties of passive ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol. 283:H2650–59
    [Google Scholar]
  80. 80.
    Humphrey J, Yin F 1989. Biomechanical experiments on excised myocardium: theoretical considerations. J. Biomech. 22:377–83
    [Google Scholar]
  81. 81.
    Merodio J, Ogden RW 2006. The influence of the invariant on the stress–deformation and ellipticity characteristics of doubly fiber-reinforced non-linearly elastic solids. Int. J. Non-Linear Mech. 41:556–63
    [Google Scholar]
  82. 82.
    Lanir Y, Lichtenstein O, Imanuel O 1996. Optimal design of biaxial tests for structural material characterization of flat tissues. J. Biomech. Eng. 118:41–47
    [Google Scholar]
  83. 83.
    Sacks M 2000. Biaxial mechanical evaluation of planar biological materials. J. Elast. 61:199
    [Google Scholar]
  84. 84.
    Choi H, Vito R 1990. Two-dimensional stress–strain relationship for canine pericardium. J. Biomech. Eng. 112:153–59
    [Google Scholar]
  85. 85.
    Costa K, Takayama Y, McCulloch A, Covell J 1999. Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol. 276:H595–607
    [Google Scholar]
  86. 86.
    Smaill B, Hunter P 1991. Structure and function of the diastolic heart: material properties of passive myocardium. In Theory of Heart L Glass, P Hunter, A McCulloch1–29 New York: Springer
    [Google Scholar]
  87. 87.
    Horowitz A, Lanir Y, Yin F, Perl M, Sheinman I, Strumpf R 1988. Structural three-dimensional constitutive law for the passive myocardium. J. Biomech. Eng. 110:200–7
    [Google Scholar]
  88. 88.
    Avazmohammadi R, Hill M, Simon MA, Zhang W, Sacks MS 2017. A novel constitutive model for passive right ventricular myocardium: evidence for myofiber–collagen fiber mechanical coupling. Biomech. Model. Mechanobiol. 16:561–81
    [Google Scholar]
  89. 89.
    Lanir Y 1983. Constitutive equations for the lung tissue. J. Biomech. Eng. 105:374–80
    [Google Scholar]
  90. 90.
    Sacks M, Chuong C 1993. A constitutive relation for passive right-ventricular free wall myocardium. J. Biomech. 26:1341–45
    [Google Scholar]
  91. 91.
    Lee L, Wenk J, Klepach D, Kassab G, Guccione J 2016. Structural-based models of ventricular myocardium. In Structure-Based Mechanics of Tissues and Organs G Kassab, MS Sacks249–63 Berlin: Springer
    [Google Scholar]
  92. 92.
    Eriksson T, Prassl A, Plank G, Holzapfel G 2013. Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math. Mech. Solids 18:592–606
    [Google Scholar]
  93. 93.
    Krishnamurthy A, Coppola B, Tangney J, Kerckhoffs R, Omens J, McCulloch A 2016. A microstructurally based multi-scale constitutive model of active myocardial mechanics. In Structure-Based Mechanics of Tissues and Organs G Kassab, MS Sacks439–60 Berlin: Springer
    [Google Scholar]
  94. 94.
    Ostoja-Starzewski M 2007.Microstructural Randomness and Scaling in Mechanics of Materials Boca Raton, FL: Chapman & Hall/CRC
  95. 95.
    Sommer G, Schriefl A, Andrä M, Sacherer M, Viertler C et al. 2015. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 24:172–92
    [Google Scholar]
  96. 96.
    Palit A, Bhudia S, Arvanitis T, Turley G, Williams M 2015. Computational modelling of left-ventricular diastolic mechanics: effect of fibre orientation and right-ventricle topology. J. Biomech. 48:604–12
    [Google Scholar]
  97. 97.
    Nikou A, Gorman R, Wenk J 2016. Sensitivity of left ventricular mechanics to myofiber architecture: a finite element study. Proc. Inst. Mech. Eng. H. 230:594–98
    [Google Scholar]
  98. 98.
    Rodríguez-Cantano R, Sundnes J, Rognes M 2018. Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response. arXiv:1801.02989 [physics.comp-ph]
    [Google Scholar]
  99. 99.
    Pathmanathan P, Chapman S, Gavaghan D, Whiteley J 2010. Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme. Q. J. Mech. Appl. Math. 63:375–99
    [Google Scholar]
  100. 100.
    Trayanova N, Rice J 2011. Cardiac electromechanical models: from cell to organ. Front. Physiol. 2:43
    [Google Scholar]
  101. 101.
    Hunter P, McCulloch A, Ter Keurs H 1998. Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69:289–331
    [Google Scholar]
  102. 102.
    Guccione J, McCulloch A 1993. Mechanics of active contraction in cardiac muscle. Part I. Constitutive relations for fiber stress that describe deactivation. J. Biomech. Eng. 115:72–81
    [Google Scholar]
  103. 103.
    Guccione J, McCulloch A 1993. Mechanics of active contraction in cardiac muscle. Part II. Cylindrical models of the systolic left ventricle. J. Biomech. Eng. 115:82–90
    [Google Scholar]
  104. 104.
    Wang Y 2012.Modelling in vivo cardiac mechanics using MRI and FEM PhD thesis, Univ. Auckland, Auckland, N. Z.
  105. 105.
    Costabal F, Concha F, Hurtado D, Kuhl E 2017. The importance of mechano-electrical feedback and inertia in cardiac electromechanics. Comput. Methods Appl. Mech. Eng. 320:352–68
    [Google Scholar]
  106. 106.
    Nardinocchi P, Teresi L 2007. On the active response of soft living tissues. J. Elast. 88:27–39
    [Google Scholar]
  107. 107.
    Cherubini C, Filippi S, Nardinocchi P, Teresi L 2008. An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Prog. Biophys. Mol. Biol. 97:562–73
    [Google Scholar]
  108. 108.
    Ambrosi D, Arioli G, Nobile F, Quarteroni A 2011. Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J. Appl. Math. 71:605–21
    [Google Scholar]
  109. 109.
    Nobile F, Quarteroni A, Ruiz-Baier R 2012. An active strain electromechanical model for cardiac tissue. Int. J. Numer. Methods Biomed. Eng. 28:52–71
    [Google Scholar]
  110. 110.
    Ruiz-Baier R, Gizzi A, Rossi S, Cherubini C, Laadhari A et al. 2013. Mathematical modelling of active contraction in isolated cardiomyocytes. Math. Med. Biol. 31:259–83
    [Google Scholar]
  111. 111.
    Quarteroni A, Lassila T, Rossi S, Ruiz-Baier R 2017. Integrated heart coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput. Methods Appl. Mech. Eng. 314:345–407
    [Google Scholar]
  112. 112.
    Rossi S, Lassila T, Ruiz-Baier R, Sequeira A, Quarteroni A 2014. Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics. Eur. J. Mech. A 48:129–42
    [Google Scholar]
  113. 113.
    Hill A 1938. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B 126:136–95
    [Google Scholar]
  114. 114.
    Göktepe S, Menzel A, Kuhl E 2014. The generalized Hill model: a kinematic approach towards active muscle contraction. J. Mech. Phys. Solids 72:20–39
    [Google Scholar]
  115. 115.
    Ponnaluri A, Perotti L, Ennis D, Klug W 2017. A viscoactive constitutive modeling framework with variational updates for the myocardium. Comput. Methods Appl. Mech. Eng. 314:85–101
    [Google Scholar]
  116. 116.
    Cansız B, Dal H, Kaliske M 2017. Computational cardiology: a modified Hill model to describe the electro-visco-elasticity of the myocardium. Comput. Methods Appl. Mech. Eng. 315:434–66
    [Google Scholar]
  117. 117.
    Ponnaluri AVS 2018.Cardiac electromechanics modeling and validation. PhD thesis, Univ. Calif., Los Angeles
  118. 118.
    Sallin E 1969. Fiber orientation and ejection fraction in the human left ventricle. Biophys. J. 9:954–64
    [Google Scholar]
  119. 119.
    Criscione J, McCulloch A, Hunter W 2002. Constitutive framework optimized for myocardium and other high-strain, laminar materials with one fiber family. J. Mech. Phys. Solids 50:1681–702
    [Google Scholar]
  120. 120.
    Criscione J 2004. Rivlin's representation formula is ill-conceived for the determination of response functions via biaxial testing. In The Rational Spirit in Modern Continuum Mechanics C-S Man, RL Fosdick197–215 Berlin: Springer
    [Google Scholar]
  121. 121.
    Zhang W, Zakerzadeh R, Zhang W, Sacks M 2019. A material modeling approach for the effective response of planar soft tissues for efficient computational simulations. J. Mech. Behav. Biomed. Mater. 89:168–98
    [Google Scholar]
  122. 122.
    Dorsey S, McGarvey J, Wang H, Nikou A, Arama L et al. 2015. MRI evaluation of injectable hyaluronic acid–based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials 69:65–75
    [Google Scholar]
  123. 123.
    Wang H, Rodell CB, Zhang X, Dusaj N, Gorman J et al. 2018. Effects of hydrogel injection on borderzone contractility post-myocardial infarction. Biomech. Model. Mechanobiol. 17:1533–42
    [Google Scholar]
  124. 124.
    Xi J, Lamata P, Shi W, Niederer S, Land S et al. 2011. An automatic data assimilation framework for patient-specific myocardial mechanical parameter estimation. In Proceedings of the 6th International Conference on Functional Imaging and Modeling of the Heart DN Metaxas, L Axel392–400 Berlin: Springer
    [Google Scholar]
  125. 125.
    Asner L, Hadjicharalambous M, Chabiniok R, Peresutti D, Sammut E et al. 2016. Estimation of passive and active properties in the human heart using 3D tagged MRI. Biomech. Model. Mechanobiol. 15:1121–39
    [Google Scholar]
  126. 126.
    Nasopoulou A, Shetty A, Lee J, Nordsletten D, Rinaldi C et al. 2017. Improved identifiability of myocardial material parameters by an energy-based cost function. Biomech. Model. Mechanobiol. 16:971–88
    [Google Scholar]
  127. 127.
    Perotti L, Ponnaluri A, Krishnamoorthi S, Balzani D, Ennis D, Klug W 2017. Method for the unique identification of hyperelastic material properties using full-field measures. Application to the passive myocardium material response. Int. J. Numer. Methods Biomed. Eng. 33:e2866
    [Google Scholar]
  128. 128.
    Palit A, Bhudia S, Arvanitis T, Turley G, Williams M 2018. In vivo estimation of passive biomechanical properties of human myocardium. Med. Biol. Eng. 56:1615–31
    [Google Scholar]
  129. 129.
    Johnstone R, Chang E, Bardenet R, De Boer T, Gavaghan D 2016. Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models. J. Mol. Cell. Cardiol. 96:4962
    [Google Scholar]
  130. 130.
    Perdikaris P, Karniadakis G 2016. Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond. J. R. Soc. Interface. 13:20151107
    [Google Scholar]
  131. 131.
    Giffard-Roisin S, Delingette H, Jackson T, Fovargue L, Lee J et al. 2017. Sparse Bayesian non-linear regression for multiple onsets estimation in non-invasive cardiac electrophysiology. In Proceedings of the 9th International Conference on Functional Imaging and Modeling of the Heart M Pop, GA Wright230–38 Berlin: Springer
    [Google Scholar]
  132. 132.
    Balaban G, Alnæs M, Sundnes J, Rognes M 2016. Adjoint multi-start-based estimation of cardiac hyperelastic material parameters using shear data. Biomech. Model. Mechanobiol. 15:1509–21
    [Google Scholar]
  133. 133.
    Cansız F, Dal H, Kaliske M 2015. An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Comput. Methods Biomech. Biomed. Eng. 18:1160–72
    [Google Scholar]
  134. 134.
    Cansız B, Dal H, Kaliske M 2015. Fully coupled cardiac electromechanics with orthotropic viscoelastic effects. Proc. IUTAM 12:124–33
    [Google Scholar]
  135. 135.
    Gültekin O, Sommer G, Holzapfel G 2016. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Comput. Methods Biomech. Biomed. Eng. 19:1647–64
    [Google Scholar]
  136. 136.
    Soares J, Li D, Lai E, Gorman J, Gorman R, Sacks M 2017. Modeling of myocardium compressibility and its impact in computational simulations of the healthy and infarcted heart. In Proceedings of the 9th International Conference on Functional Imaging and Modeling of the Hearted M Pop, GA Wright493–501 Berlin: Springer
    [Google Scholar]
  137. 137.
    Lasher R, Hitchcock R, Sachse F 2009. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization. IEEE Trans. Med. Imaging 28:1156–64
    [Google Scholar]
  138. 138.
    Wang V, Hussan J, Yousefi H, Bradley C, Hunter P, Nash M 2017. Modelling cardiac tissue growth and remodelling. J. Elast. 129:283–305
    [Google Scholar]
  139. 139.
    Fung Y 2002. Celebrating the inauguration of the journal: Biomechanics and Modeling in Mechanobiology. Biomech. Model. Mechanobiol. 1:3–4
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-062117-121129
Loading
/content/journals/10.1146/annurev-bioeng-062117-121129
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error