1932

Abstract

Recapitulating the architecture of native tissue remains a significant challenge, impeding the progress of engineering tissues. Imposing appropriate organization is especially challenging in tissues that contain multiple cellular components in complex structural units. One solution is to mimic developmental processes in embryos. In an embryo, cells are organized by tissue patterning, whereby induction of fate-determining genes is spatially controlled to generate patterns of cell differentiation and maturation. Following patterning, the imposed cell organization is further reinforced by implementation of compartment boundaries, which prevent intermingling of cells from distinct phenotypic domains, thereby ensuring preservation of proper cell organization in growing and reorganizing tissues. Both morphogenic processes utilize a conserved set of fundamental principles, the implementation of which leads to highly regulated cell organization. In this article, we review these patterning principles in vivo and reflect on the progress made by tissue engineers in mimicking tissue patterning ex vivo.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-083115-032943
2016-07-11
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/18/1/annurev-bioeng-083115-032943.html?itemId=/content/journals/10.1146/annurev-bioeng-083115-032943&mimeType=html&fmt=ahah

Literature Cited

  1. Lenas P, Moos M Jr, Luyten FP. 1.  2009. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: From three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng. B 15:381–94 [Google Scholar]
  2. Lenas P, Luyten FP. 2.  2011. An emerging paradigm in tissue engineering: from chemical engineering to developmental engineering for bioartificial tissue formation through a series of unit operations that simulate the in vivo successive developmental stages. Ind. Eng. Chem. Res. 50:482–522 [Google Scholar]
  3. Chan C, Berthiaume F, Nath BD, Tilles AW, Toner M, Yarmush ML. 3.  2004. Hepatic tissue engineering for adjunct and temporary liver support: critical technologies. Liver Transplant. 10:1331–42 [Google Scholar]
  4. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G. 4.  2010. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001 [Google Scholar]
  5. Jakab K, Norotte C, Damon B, Marga F, Neagu A. 5.  2008. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. A 14:413–21 [Google Scholar]
  6. Norotte C, Marga FS, Niklason LE, Forgacs G. 6.  2009. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–17 [Google Scholar]
  7. Hoben GM, Hu JC, James RA, Athanasiou KA. 7.  2007. Self-assembly of fibrochondrocytes and chondrocytes for tissue engineering of the knee meniscus. Tissue Eng. 13:939–46 [Google Scholar]
  8. Peck M, Dusserre N, McAllister TN, L'Heureux N. 8.  2011. Tissue engineering by self-assembly. Mater. Today 14:218–24 [Google Scholar]
  9. Waters J, Kluger MS, Graham M, Chang WG, Bradley JR, Pober JS. 9.  2013. In vitro self-assembly of human pericyte–supported endothelial microvessels in three-dimensional coculture: a simple model for interrogating endothelial–pericyte interactions. J. Vasc. Res. 50:324–31 [Google Scholar]
  10. Ingber DE, Mow VC, Butler D, Niklason L, Huard J. 10.  et al. 2006. Tissue engineering and developmental biology: going biomimetic. Tissue Eng. 12:3265–83 [Google Scholar]
  11. Lewis WH.11.  1904. Experimental studies on the development of the eye in Amphibia. I. On the origin of the lens. Rana palustris. Am. J. Anat. 3:505–36 [Google Scholar]
  12. Spemann H, Mangold H. 12.  1924. Über induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Dev. Genes Evol. 100:599–638 [Google Scholar]
  13. Gurdon J, Bourillot P-Y. 13.  2001. Morphogen gradient interpretation. Nature 413:797–803 [Google Scholar]
  14. Tabata T, Takei Y. 14.  2004. Morphogens, their identification and regulation. Development 131:703–12 [Google Scholar]
  15. Kay RR, Thompson CR. 15.  2009. Forming patterns in development without morphogen gradients: scattered differentiation and sorting out. Cold Spring Harb. Perspect. Biol. 1:a001503 [Google Scholar]
  16. Ozaki T, Nakao H, Orii H, Morio T, Takeuchi I, Tasaka M. 16.  1993. Developmental regulation of transcription of a novel prespore-specific gene (Dp87) in Dictyostelium discoideum. Development 117:1299–308 [Google Scholar]
  17. Stern CD, Canning DR. 17.  1990. Origin of cells giving rise to mesoderm and endoderm in chick embryo. Nature 343:273–75 [Google Scholar]
  18. Streit A.18.  2002. Extensive cell movements accompany formation of the otic placode. Dev. Biol. 249:237–54 [Google Scholar]
  19. Ohnishi Y, Huber W, Tsumura A, Kang M, Xenopoulos P. 19.  et al. 2013. Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol. 16:27–37 [Google Scholar]
  20. Morris SA, Teo RTY, Li H, Robson P, Glover DM. 20.  et al. 2010. Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. PNAS 107:6364–69 [Google Scholar]
  21. Xiong F, Tentner AR, Huang P, Gelas A, Mosaliganti KR. 21.  et al. 2013. Specified neural progenitors sort to form sharp domains after noisy Shh signaling. Cell 153:550–61 [Google Scholar]
  22. Rogers KW, Schier AF. 22.  2011. Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27:377–407 [Google Scholar]
  23. Driever W, Nüsslein-Volhard C. 23.  1988. A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93 [Google Scholar]
  24. Driever W, Nüsslein-Volhard C. 24.  1988. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104 [Google Scholar]
  25. Driever W, Thoma G, Nüsslein-Volhard C. 25.  1989. Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature 340:363–67 [Google Scholar]
  26. Struhl G, Struhl K, Macdonald PM. 26.  1989. The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57:1259–73 [Google Scholar]
  27. Roth S, Stein D, Nüsslein-Volhard C. 27.  1989. A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59:1189–202 [Google Scholar]
  28. Ferguson EL, Anderson KV. 28.  1992. decapentaplegic acts as a morphogen to organize dorsal–ventral pattern in the Drosophila embryo. Cell 71:451–61 [Google Scholar]
  29. Green J, New HV, Smith J. 29.  1992. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71:731–39 [Google Scholar]
  30. Heemskerk J, DiNardo S. 30.  1994. Drosophila hedgehog acts as a morphogen in cellular patterning. Cell 76:449–60 [Google Scholar]
  31. Lander AD.31.  2011. Pattern, growth, and control. Cell 144:955–69 [Google Scholar]
  32. Mullor JL, Calleja M, Capdevila J, Guerrero I. 32.  1997. Hedgehog activity, independent of decapentaplegic, participates in wing disc patterning. Development 124:1227–37 [Google Scholar]
  33. Strigini M, Cohen SM. 33.  1997. A hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124:4697–705 [Google Scholar]
  34. Briscoe J, Chen Y, Jessell TM, Struhl G. 34.  2001. A Hedgehog-insensitive form of Patched provides evidence for direct long-range morphogen activity of Sonic hedgehog in the neural tube. Mol. Cell 7:1279–91 [Google Scholar]
  35. Dessaud E, McMahon AP, Briscoe J. 35.  2008. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135:2489–503 [Google Scholar]
  36. Jiang J, Hui C-C. 36.  2008. Hedgehog signaling in development and cancer. Dev. Cell 15:801–12 [Google Scholar]
  37. Neumann CJ, Cohen SM. 37.  1997. Long-range action of Wingless organizes the dorsal–ventral axis of the Drosophila wing. Development 124:871–80 [Google Scholar]
  38. Zecca M, Basler K, Struhl G. 38.  1996. Direct and long-range action of a wingless morphogen gradient. Cell 87:833–44 [Google Scholar]
  39. Freese JL, Pino D, Pleasure SJ. 39.  2010. Wnt signaling in development and disease. Neurobiol. Dis. 38:148–53 [Google Scholar]
  40. MacDonald BT, Tamai K, He X. 40.  2009. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17:9–26 [Google Scholar]
  41. Lecuit T, Brook WJ, Ng M, Calleja M, Sun H, Cohen SM. 41.  1996. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381:387–93 [Google Scholar]
  42. Lecuit T, Cohen SM. 42.  1998. Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc. Development 125:4901–7 [Google Scholar]
  43. Nellen D, Burke R, Struhl G, Basler K. 43.  1996. Direct and long-range action of a Dpp morphogen gradient. Cell 85:357–68 [Google Scholar]
  44. Bollenbach T, Pantazis P, Kicheva A, Bökel C, González-Gaitán M, Jülicher F. 44.  2008. Precision of the Dpp gradient. Development 135:1137–46 [Google Scholar]
  45. Zakin L, De Robertis E. 45.  2010. Extracellular regulation of BMP signaling. Curr. Biol. 20:R89–92 [Google Scholar]
  46. Wolpert L.46.  1968. The French flag problem: a contribution to the discussion on pattern formation and regulation. Towards a Theoretical Biology: I Prolegomena CH Waddington 125–33 Edinburgh, UK: Edinburgh Univ. Press [Google Scholar]
  47. Wolpert L.47.  1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25:1–47 [Google Scholar]
  48. Stathopoulos A, Levine M. 48.  2002. Dorsal gradient networks in the Drosophila embryo. Dev. Biol. 246:57–67 [Google Scholar]
  49. Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A. 49.  et al. 1997. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90:169–80 [Google Scholar]
  50. Ashe HL.50.  2005. BMP signalling: Synergy and feedback create a step gradient. Curr. Biol. 15:R375–77 [Google Scholar]
  51. Ashe HL, Briscoe J. 51.  2006. The interpretation of morphogen gradients. Development 133:385–94 [Google Scholar]
  52. Wolpert L.52.  2009. Diffusible gradients are out—an interview with Lewis Wolpert. Interviewed by Richardson, Michael K. Int. J. Dev. Biol. 53:659–62 [Google Scholar]
  53. Kerszberg M, Wolpert L. 53.  2007. Specifying positional information in the embryo: looking beyond morphogens. Cell 130:205–209 [Google Scholar]
  54. Abu-Arish A, Porcher A, Czerwonka A, Dostatni N, Fradin C. 54.  2010. High mobility of bicoid captured by fluorescence correlation spectroscopy: implication for the rapid establishment of its gradient. Biophys. J. 99:L33–35 [Google Scholar]
  55. Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y, Bittig T. 55.  et al. 2007. Kinetics of morphogen gradient formation. Science 315:521–25 [Google Scholar]
  56. Yu SR, Burkhardt M, Nowak M, Ries J, Petrásek Z. 56.  et al. 2009. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:533–36 [Google Scholar]
  57. Kornberg TB, Guha A. 57.  2007. Understanding morphogen gradients: a problem of dispersion and containment. Curr. Opin. Genet. Dev. 17:264–71 [Google Scholar]
  58. Kornberg TB.58.  2012. The imperatives of context and contour for morphogen dispersion. Biophys. J. 103:2252–56 [Google Scholar]
  59. Zhu AJ, Scott MP. 59.  2004. Incredible journey: How do developmental signals travel through tissue?. Genes Dev. 18:2985–97 [Google Scholar]
  60. Belenkaya TY, Han C, Yan D, Opoka RJ, Khodoun M. 60.  et al. 2004. Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell 119:231–44 [Google Scholar]
  61. Takei Y, Ozawa Y, Sato M, Watanabe A, Tabata T. 61.  2004. Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131:73–82 [Google Scholar]
  62. Kornberg TB, Roy S. 62.  2014. Cytonemes as specialized signaling filopodia. Development 141:729–36 [Google Scholar]
  63. Panáková D, Sprong H, Marois E, Thiele C, Eaton S. 63.  2005. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435:58–65 [Google Scholar]
  64. Eaton S.64.  2008. Multiple roles for lipids in the Hedgehog signalling pathway. Nat. Rev. Mol. Cell Biol. 9:437–45 [Google Scholar]
  65. Steinhauer J, Treisman JE. 65.  2009. Lipid-modified morphogens: functions of fats. Curr. Opin. Genet. Dev. 19:308–14 [Google Scholar]
  66. González-Gaitán M.66.  2003. Signal dispersal and transduction through the endocytic pathway. Nat. Rev. Mol. Cell Biol. 4:213–24 [Google Scholar]
  67. Entchev EV, Schwabedissen A, González-Gaitán M. 67.  2000. Gradient formation of the TGF-β homolog Dpp. Cell 103:981–92 [Google Scholar]
  68. Kruse K, Pantazis P, Bollenbach T, Jülicher F, González-Gaitán M. 68.  2004. Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. Development 131:4843–56 [Google Scholar]
  69. Greco V, Hannus M, Eaton S. 69.  2001. Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106:633–45 [Google Scholar]
  70. Ochoa-Espinosa A. 70.  et al. 2005. The role of binding site cluster strength in bicoid-dependent patterning in Drosophila. PNAS 102:4960–65 [Google Scholar]
  71. Briscoe J, Ericson J. 71.  2001. Specification of neuronal fates in the ventral neural tube. Curr. Opin. Neurobiol. 11:43–49 [Google Scholar]
  72. Cowden J, Levine M. 72.  2003. Ventral dominance governs sequential patterns of gene expression across the dorsal–ventral axis of the neuroectoderm in the Drosophila embryo. Dev. Biol. 262:335–49 [Google Scholar]
  73. Gould A, Itasaki N, Krumlauf R. 73.  1998. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 21:39–51 [Google Scholar]
  74. Gould A, Morrison A, Sproat G, White R, Krumlauf R. 74.  1997. Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev. 11:900–13 [Google Scholar]
  75. Xu M, Kirov N, Rushlow C. 75.  2005. Peak levels of BMP in the Drosophila embryo control target genes by a feed-forward mechanism. Development 132:1637–47 [Google Scholar]
  76. Affolter M, Marty T, Vigano MA, Jaźwińska A. 76.  2001. Nuclear interpretation of Dpp signaling in Drosophila. EMBO J. 20:3298–305 [Google Scholar]
  77. Gregor T, Wieschaus EF, McGregor AP, Bialek W, Tank DW. 77.  2007. Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130:141–52 [Google Scholar]
  78. Balaskas N, Ribeiro A, Panovska J, Dessaud E, Sasai N. 78.  et al. 2012. Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the vertebrate neural tube. Cell 148:273–84 [Google Scholar]
  79. Dessaud E, Yang LL, Hill K, Cox B, Ulloa F. 79.  et al. 2007. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450:717–20 [Google Scholar]
  80. Irvine KD, Rauskolb C. 80.  2001. Boundaries in development: formation and function. Annu. Rev. Cell Dev. Biol. 17:189–214 [Google Scholar]
  81. Tepass U, Godt D, Winklbauer R. 81.  2002. Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev. 12:572–82 [Google Scholar]
  82. Monier B, Pélissier-Monier A, Sanson B. 82.  2011. Establishment and maintenance of compartmental boundaries: role of contractile actomyosin barriers. Cell Mol. Life Sci. 68:1897–910 [Google Scholar]
  83. Monier B, Pélissier-Monier A, Brand AH, Sanson B. 83.  2010. An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos. Nat. Cell Biol. 12:60–65 [Google Scholar]
  84. Batlle E, Wilkinson DG. 84.  2012. Molecular mechanisms of cell segregation and boundary formation in development and tumorigenesis. Cold Spring Harb. Perspect. Biol. 4:a008227 [Google Scholar]
  85. Lecuit T, Lenne PF. 85.  2007. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8:633–44 [Google Scholar]
  86. Pérez-Pomares JM, Foty RA. 86.  2006. Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. BioEssays 28:809–21 [Google Scholar]
  87. Cortina C, Palomo-Ponce S, Iglesias M, Fernández-Masip JL, Vivancos A. 87.  et al. 2007. EphB–ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat. Genet. 39:1376–83 [Google Scholar]
  88. Janes PW, Adikari S, Lackmann M. 88.  2008. Eph/ephrin signalling and function in oncogenesis: lessons from embryonic development. Curr. Cancer Drug Targets 8:473–89 [Google Scholar]
  89. Wieland I, Jakubiczka S, Muschke P, Cohen M, Thiele H. 89.  et al. 2004. Mutations of the ephrin-B1 gene cause craniofrontonasal syndrome. Am. J. Hum. Genet. 74:1209–15 [Google Scholar]
  90. Townes PL, Holtfreter J. 90.  1955. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128:53–120 [Google Scholar]
  91. Weiss P.91.  1950. Perspectives in the field of morphogenesis. Q. Rev. Biol. 25:177–98 [Google Scholar]
  92. Steinberg MS.92.  1963. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141:401–8 [Google Scholar]
  93. Steinberg MS.93.  1962. On the mechanism of tissue reconstruction by dissociated cells. III. Free energy relations and the reorganization of fused, heteronomic tissue fragments. PNAS 48:1769–76 [Google Scholar]
  94. Manning ML, Foty RA, Steinberg MS, Schoetz EM. 94.  2010. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. PNAS 107:12517–22 [Google Scholar]
  95. Fung S, Wang F, Chase M, Godt D, Hartenstein V. 95.  2008. Expression profile of the cadherin family in the developing Drosophila brain. J. Comp. Neurol. 506:469–88 [Google Scholar]
  96. Inoue T, Tanaka T, Takeichi M, Chisaka O, Nakamura S, Osumi N. 96.  2001. Role of cadherins in maintaining the compartment boundary between the cortex and striatum during development. Development 128:561–69 [Google Scholar]
  97. Harris AK.97.  1976. Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J. Theor. Biol. 61:267–85 [Google Scholar]
  98. Ninomiya H, David R, Damm EW, Fagotto F, Niessen CM, Winklbauer R. 98.  2012. Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo. J. Cell Sci. 125:1877–83 [Google Scholar]
  99. Adam NK.99.  1930. The Physics and Chemistry of Surfaces Oxford, UK: Clarendon
  100. Krieg M, Arboleda-Estudillo Y, Puech PH, Käfer J. 100.  et al. 2008. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10:429–36 [Google Scholar]
  101. Fagotto F, Rohani N, Touret AS, Li R. 101.  2013. A molecular base for cell sorting at embryonic boundaries: contact inhibition of cadherin adhesion by ephrin/Eph-dependent contractility. Dev. Cell 27:72–87 [Google Scholar]
  102. Chang LH, Chen P, Lien MT, Ho YH, Lin CM. 102.  et al. 2011. Differential adhesion and actomyosin cable collaborate to drive Echinoid-mediated cell sorting. Development 138:3803–12 [Google Scholar]
  103. Laplante C, Nilson LA. 103.  2006. Differential expression of the adhesion molecule Echinoid drives epithelial morphogenesis in Drosophila. Development 133:3255–64 [Google Scholar]
  104. Krens SF, Heisenberg CP. 104.  2011. Cell sorting in development. Curr. Top. Dev. Biol. 95:189–213 [Google Scholar]
  105. Brodland GW.105.  2002. The differential interfacial tension hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J. Biomech. Eng. 124:188–97 [Google Scholar]
  106. Brodland GW, Chen HH. 106.  2000. The mechanics of heterotypic cell aggregates: insights from computer simulations. J. Biomech. Eng. 122:402–7 [Google Scholar]
  107. Steinberg MS, Takeichi M. 107.  1994. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. PNAS 91:206–9 [Google Scholar]
  108. Pasquale EB.108.  2005. Eph receptor signalling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell Biol. 6:462–75 [Google Scholar]
  109. Lisabeth EM, Falivelli G, Pasquale EB. 109.  2013. Eph receptor signaling and ephrins. Cold Spring Harb. Perspect. Biol. 5:a009159 [Google Scholar]
  110. Pasquale EB.110.  2004. Eph–ephrin promiscuity is now crystal clear. Nat. Neurosci. 7:417–18 [Google Scholar]
  111. Konstantinova I, Nikolova G, Ohara-Imaizumi M, Meda P, Kucera T. 111.  et al. 2007. EphA–Ephrin-A–mediated β cell communication regulates insulin secretion from pancreatic islets. Cell 129:359–70 [Google Scholar]
  112. Poliakov A, Cotrina ML, Pasini A, Wilkinson DG. 112.  2008. Regulation of EphB2 activation and cell repulsion by feedback control of the MAPK pathway. J. Cell Biol. 183:933–47 [Google Scholar]
  113. Phillips JE, Burns KL, Le Doux JM, Guldberg RE, Garcia AJ. 113.  2008. Engineering traded tissue interfaces. PNAS 104:12170–75 [Google Scholar]
  114. Zhang Y, Gazit Z, Pelled G, Gazit D, Vunjak-Novakovic G. 114.  2011. Patterning osteogenesis by inducible gene expression in microfluidic culture systems. Integr. Biol. 3:39–47 [Google Scholar]
  115. Tanaka M, Kamo T, Ota S, Sugimura H. 115.  2003. Association of Dishevelled with Eph tyrosine kinase receptor and ephrin mediates cell repulsion. EMBO J. 22:847–58 [Google Scholar]
  116. Kao TJ, Law C, Kania A. 116.  2012. Eph and ephrin signaling: lessons learned from spinal motor neurons. Semin. Cell Dev. Biol. 23:83–91 [Google Scholar]
  117. Marston DJ, Dickinson S, Nobes CD. 117.  2003. Rac-dependent trans-endocytosis of ephrinBs regulates Eph–ephrin contact repulsion. Nat. Cell Biol. 5:879–88 [Google Scholar]
  118. Schaupp A, Sabet O, Dudanova I, Ponserre M, Bastiaens P, Klein R. 118.  2014. The composition of EphB2 clusters determines the strength in the cellular repulsion response. J. Cell Biol. 204:409–22 [Google Scholar]
  119. Fraser S, Keynes R, Lumsden A. 119.  1990. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–35 [Google Scholar]
  120. Becker N, Seitanidou T, Murphy P, Mattéi MG, Topilko P. 120.  et al. 1994. Several receptor tyrosine kinase genes of the Eph family are segmentally expressed in the developing hindbrain. Mech. Dev. 47:3–17 [Google Scholar]
  121. Bergemann AD, Cheng HJ, Brambilla R, Klein R, Flanagan JG. 121.  1995. ELF-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites. Mol. Cell. Biol. 15:4921–29 [Google Scholar]
  122. Flenniken AM, Gale NW, Yancopoulos GD, Wilkinson DG. 122.  1996. Distinct and overlapping expression patterns of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis. Dev. Biol. 179:382–401 [Google Scholar]
  123. Chan J, Mably JD, Serluca FC, Chen JN, Goldstein NB. 123.  et al. 2001. Morphogenesis of prechordal plate and notochord requires intact Eph/ephrin B signaling. Dev. Biol. 234:470–82 [Google Scholar]
  124. Xu Q, Mellitzer G, Robinson V, Wilkinson DG. 124.  1999. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399:267–71 [Google Scholar]
  125. Durbin L, Sordino P, Barrios A, Gering M, Thisse C. 125.  et al. 2000. Anteroposterior patterning is required within segments for somite boundary formation in developing zebrafish. Development 127:1703–13 [Google Scholar]
  126. Rohani N, Canty L, Luu O, Fagotto F, Winklbauer R. 126.  2011. EphrinB/EphB signaling controls embryonic germ layer separation by contact-induced cell detachment. PLOS Biol. 9:e1000597 [Google Scholar]
  127. Cavodeassi F, Ivanovitch K, Wilson SW. 127.  2013. Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis. Development 140:4193–202 [Google Scholar]
  128. Adams RH, Klein R. 128.  2000. Eph receptors and ephrin ligands. Essential mediators of vascular development. Trends Cardiovasc. Med. 10:183–88 [Google Scholar]
  129. Russell M.129.  1999. Inducible mammalian expression systems. Gene Expression Systems: Using Nature for the Art of Expression JM Fernandez, JP Hoeffler 235–59 New York: Academic [Google Scholar]
  130. Gossen M, Bujard H. 130.  1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. PNAS 89:5547–51 [Google Scholar]
  131. Rivera VM, Clackson T, Natesan S, Pollock R, Amara JF. 131.  et al. 1996. A humanized system for pharmacologic control of gene expression. Nat. Med. 2:1028–32 [Google Scholar]
  132. Lewandoski M.132.  2001. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2:743–55 [Google Scholar]
  133. Javaherian S, Anesiadis N, Mahadevan R, McGuigan AP. 133.  2013. Design principles for generating robust gene expression patterns in dynamic engineered tissues. Integr. Biol. 5:578–89 [Google Scholar]
  134. Müller K, Weber W. 134.  2013. Optogenetic tools for mammalian systems. Mol. Biosyst. 9:596–608 [Google Scholar]
  135. Lin W, Albanese C, Pestell RG, Lawrence DS. 135.  2002. Spatially discrete, light-driven protein expression. Chem. Biol. 9:1347–53 [Google Scholar]
  136. Cambridge SB, Geissler D, Calegari F, Anastassiadis K, Hasan MT. 136.  et al. 2009. Doxycycline-dependent photoactivated gene expression in eukaryotic systems. Nat. Methods 6:527–31 [Google Scholar]
  137. Sauers DJ, Temburni MK, Biggins JB, Ceo LM, Galileo DS, Koh JT. 137.  2010. Light-activated gene expression directs segregation of co-cultured cells in vitro. ACS Chem. Biol. 5:313–20 [Google Scholar]
  138. Lee H-M, Larson DR, Lawrence DS. 138.  2009. Illuminating the chemistry of life: design, synthesis, and applications of “caged” and related photoresponsive compounds. ACS Chem. Biol. 4:409–27 [Google Scholar]
  139. Shi Y, Koh JT. 139.  2004. Light-activated transcription and repression by using photocaged SERMs. ChemBioChem 5:788–96 [Google Scholar]
  140. Jain PK, Shah S, Friedman SH. 140.  2010. Patterning of gene expression using new photolabile groups applied to light activated RNAi. J. Am. Chem. Soc. 133:440–46 [Google Scholar]
  141. Tang X, Dmochowski IJ. 141.  2007. Regulating gene expression with light-activated oligonucleotides. Mol. Biosyst. 3:100–10 [Google Scholar]
  142. Hemphill J, Chou C, Chin JW, Deiters A. 142.  2013. Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. J. Am. Chem. Soc. 135:13433–39 [Google Scholar]
  143. Rome C, Couillaud F, Moonen CT. 143.  2005. Spatial and temporal control of expression of therapeutic genes using heat shock protein promoters. Methods 35:188–98 [Google Scholar]
  144. Xu L, Zhao Y, Zhang Q, Li Y, Xu Y. 144.  2004. Regulation of transgene expression in muscles by ultrasound-mediated hyperthermia. Gene Ther. 11:894–900 [Google Scholar]
  145. Vekris A, Maurange C, Moonen C, Mazurier F, De Verneuil H. 145.  et al. 2000. Control of transgene expression using local hyperthermia in combination with a heat-sensitive promoter. J. Gene Med. 2:89–96 [Google Scholar]
  146. Smith RC, Machluf M, Bromley P, Atala A, Walsh K. 146.  2002. Spatial and temporal control of transgene expression through ultrasound-mediated induction of the heat shock protein 70B promoter in vivo. Hum. Gene Ther. 13:697–706 [Google Scholar]
  147. Bhatia SN, Yarmush ML, Toner M. 147.  1997. Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J. Biomed. Mater. Res. 34:189–99 [Google Scholar]
  148. Paz AC, Javaherian S, McGuigan AP. 148.  2012. Micropatterning co-cultures of epithelial cells on filter insert substrates. J. Epithel. Biol. Pharmacol. 5:77–85 [Google Scholar]
  149. Tien J, Nelson CM, Chen CS. 149.  2002. Fabrication of aligned microstructures with a single elastomeric stamp. PNAS 99:1758–62 [Google Scholar]
  150. Yamato M, Konno C, Utsumi M, Kikuchi A, Okano T. 150.  2002. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23:561–67 [Google Scholar]
  151. Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T. 151.  2001. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng. 7:473–80 [Google Scholar]
  152. Yousaf MN, Houseman BT, Mrksich M. 152.  2001. Turning on cell migration with electroactive substrates. Angew. Chem. 113:1127–30 [Google Scholar]
  153. Yousaf MN, Houseman BT, Mrksich M. 153.  2001. Using electroactive substrates to pattern the attachment of two different cell populations. PNAS 98:5992–96 [Google Scholar]
  154. Javaherian S, O'Donnell KA, McGuigan AP. 154.  2011. A fast and accessible methodology for micro-patterning cells on standard culture substrates using Parafilm inserts. PLOS ONE 6:e20909 [Google Scholar]
  155. Wright D, Rajalingam B, Karp JM, Selvarasah S, Ling Y. 155.  et al. 2008. Reusable, reversibly sealable parylene membranes for cell and protein patterning. J. Biomed. Mater. Res. A 85:530–38 [Google Scholar]
  156. Torisawa Y-S, Mosadegh B, Luker GD, Morell M, O'Shea KS, Takayama S. 156.  2009. Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr. Biol. 1:649–54 [Google Scholar]
  157. Chiu DT, Jeon NL, Huang S, Kane RS, Wargo CJ. 157.  et al. 2000. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. PNAS 97:2408–13 [Google Scholar]
  158. Tasoglu S, Demirci U. 158.  2013. Bioprinting for stem cell research. Trends Biotechnol. 31:10–19 [Google Scholar]
  159. Ozbolat I, Yu Y. 159.  2013. Bioprinting towards organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 60:691–99 [Google Scholar]
  160. Ringeisen BR, Pirlo RK, Wu PK, Boland T, Huang Y. 160.  et al. 2013. Cell and organ printing turns 15: diverse research to commercial transitions. MRS Bull. 38:834–43 [Google Scholar]
  161. Javaherian S, D'Arcangelo E, Slater B, Zulueta-Coarasa T, Fernandez-Gonzalez R, McGuigan AP. 161.  2015. An in vitro model of tissue boundary formation for dissecting the contribution of different boundary forming mechanisms. Integr. Biol. 7:298–312 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-083115-032943
Loading
/content/journals/10.1146/annurev-bioeng-083115-032943
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error