1932

Abstract

This review summarizes current knowledge of synaptic proteins that are central to synaptic vesicle fusion in presynaptic active zones, including SNAREs (oluble -ethylmaleimide sensitive factor ttachment protein ceptors), synaptotagmin, complexin, Munc18 (mammalian uncoordinated-18), and Munc13 (mammalian uncoordinated-13), and highlights recent insights in the cooperation of these proteins for neurotransmitter release. Structural and functional studies of the synaptic fusion machinery suggest new molecular models of synaptic vesicle priming and Ca2+-triggered fusion. These studies will be a stepping-stone toward answering the question of how the synaptic vesicle fusion machinery achieves such high speed and sensitivity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070816-034117
2018-05-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070816-034117.html?itemId=/content/journals/10.1146/annurev-biophys-070816-034117&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Adams DJ, Arthur CP, Stowell MHB 2015. Architecture of the synaptophysin/synaptobrevin complex: structural evidence for an entropic clustering function at the synapse. Sci. Rep. 5:113659
    [Google Scholar]
  2. 2.  Aeffner S, Reusch T, Weinhausen B, Salditt T 2012. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. PNAS 109:259678–79
    [Google Scholar]
  3. 3.  Araç D, Chen X, Khant HA, Ubach J, Ludtke SJ et al. 2006. Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol. 13:3209–17
    [Google Scholar]
  4. 4.  Augustin I, Rosenmund C, Südhof TC, Brose N 1999. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400:457–61
    [Google Scholar]
  5. 5.  Bacaj T, Wu D, Yang X, Morishita W, Zhou P et al. 2013. Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron 80:4947–59
    [Google Scholar]
  6. 6.  Bai H, Xue R, Bao H, Zhang L, Yethiraj A et al. 2016. Different states of synaptotagmin regulate evoked versus spontaneous release. Nat. Commun. 7:1–9
    [Google Scholar]
  7. 7.  Bai J, Tucker WC, Chapman ER 2004. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat. Struct. Mol. Biol. 11:136–44
    [Google Scholar]
  8. 8.  Baker RW, Jeffrey PD, Zick M, Phillips BP, Wickner WT, Hughson FM 2015. A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 349:62521111–14
    [Google Scholar]
  9. 9.  Balch WE, Glick BS, Rothman JE 1984. Sequential intermediates in the pathway of intercompartmental transport in a cell-free system. Cell 39:3525–36
    [Google Scholar]
  10. 10.  Basu J, Shen N, Dulubova I, Lu J, Guan R et al. 2005. A minimal domain responsible for Munc13 activity. Nat. Struct. Mol. Biol. 12:111017–18
    [Google Scholar]
  11. 11.  Baumert M, Maycox PR, Navone F, De Camilli P, Jahn R 1989. Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J 8:2379–84
    [Google Scholar]
  12. 12.  Bennett MK, Calakos N, Scheller RH 1992. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:5067255–59
    [Google Scholar]
  13. 13.  Bouwman J, Spijker S, Schut D, Wächtler B, Ylstra B et al. 2006. Reduced expression of neuropeptide genes in a genome-wide screen of a secretion-deficient mouse. J. Neurochem. 99:184–96
    [Google Scholar]
  14. 14.  Bracher A, Kadlec J, Betz H, Weissenhorn W 2002. X-ray structure of a neuronal complexin-SNARE complex from squid. J. Biol. Chem. 277:2926517–23
    [Google Scholar]
  15. 15.  Brewer KD, Bacaj T, Cavalli A, Camilloni C, Swarbrick JD et al. 2015. Dynamic binding mode of a Synaptotagmin-1–SNARE complex in solution. Nat. Struct. Mol. Biol. 22:7555–64
    [Google Scholar]
  16. 16.  Brose N, Petrenko AG, Südhof TC, Jahn R 1992. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256:50591021–25
    [Google Scholar]
  17. 17.  Brunger AT. 2006. Structure and function of SNARE and SNARE-interacting proteins. Q. Rev. Biophys. 38:11–47
    [Google Scholar]
  18. 18.  Brunger AT, Cipriano DJ, Diao J 2015. Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins. Crit. Rev. Biochem. Mol. Biol. 50:3231–41
    [Google Scholar]
  19. 19.  Burkhardt P, Hattendorf DA, Weis WI, Fasshauer D 2008. Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J 27:7923–33
    [Google Scholar]
  20. 20.  Calloway N, Gouzer G, Xue M, Ryan TA 2015. The active-zone protein Munc13 controls the use-dependence of presynaptic voltage-gated calcium channels. eLife 4:e07728
    [Google Scholar]
  21. 21.  Cao P, Yang X, Südhof TC 2013. Complexin activates exocytosis of distinct secretory vesicles controlled by different synaptotagmins. J. Neurosci. 33:41714–27
    [Google Scholar]
  22. 22.  Chapman ER, Davis AF 1998. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem. 273:2213995–4001
    [Google Scholar]
  23. 23.  Chen X, Lu J, Dulubova I, Rizo J 2008. NMR analysis of the closed conformation of syntaxin-1. J. Biomol. NMR 41:143–54
    [Google Scholar]
  24. 24.  Chen X, Tomchick DR, Kovrigin E, Araç D, Machius M et al. 2002. Three-dimensional structure of the complexin/SNARE complex. Neuron 33:3397–409
    [Google Scholar]
  25. 25.  Chicka MC, Chapman ER 2009. Concurrent binding of complexin and synaptotagmin to liposome-embedded SNARE complexes. Biochemistry 48:4657–59
    [Google Scholar]
  26. 26.  Cho RW, Kümmel D, Li F, Baguley SW, Coleman J et al. 2014. Genetic analysis of the Complexin trans-clamping model for cross-linking SNARE complexes in vivo. PNAS 111:2810317–22
    [Google Scholar]
  27. 27.  Choi UB, Strop P, Vrljic M, Chu S, Brunger AT, Weninger KR 2010. Single-molecule FRET–derived model of the synaptotagmin 1–SNARE fusion complex. Nat. Struct. Mol. Biol. 17:3318–24
    [Google Scholar]
  28. 28.  Choi UB, Zhao M, Zhang Y, Lai Y, Brunger AT 2016. Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex. eLife 5:e16886
    [Google Scholar]
  29. 29.  Cohen FS, Melikyan GB 2004. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199:11–14
    [Google Scholar]
  30. 30.  Cole AA, Chen X, Reese TS 2016. A network of three types of filaments organizes synaptic vesicles for storage, mobilization, and docking. J. Neurosci. 36:113222–30
    [Google Scholar]
  31. 31.  Daily NJ, Boswell KL, James DJ, Martin TFJ 2010. Novel interactions of CAPS (Ca2+-dependent activator protein for secretion) with the three neuronal SNARE proteins required for vesicle fusion. J. Biol. Chem. 285:4635320–29
    [Google Scholar]
  32. 32.  Davletov BA, Südhof TC 1993. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J. Biol. Chem. 268:3526386–90
    [Google Scholar]
  33. 33.  Deák F, Xu Y, Chang W-P, Dulubova I, Khvotchev M et al. 2009. Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming. J. Cell Biol. 184:5751–64
    [Google Scholar]
  34. 34.  Dhara M, Yarzagaray A, Schwarz Y, Dutta S, Grabner C et al. 2014. Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics. J. Cell Biol. 204:71123–40
    [Google Scholar]
  35. 35.  Diao J, Cipriano DJ, Zhao M, Zhang Y, Shah S et al. 2013. Complexin-1 enhances the on-rate of vesicle docking via simultaneous SNARE and membrane interactions. J. Am. Chem. Soc. 135:4115274–77
    [Google Scholar]
  36. 36.  Diao J, Grob P, Cipriano DJ, Kyoung M, Zhang Y et al. 2012. Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion. eLife 1:e00109
    [Google Scholar]
  37. 37.  Dulubova I, Lou X, Lu J, Huryeva I, Alam A et al. 2005. A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity?. EMBO J 24:162839–50
    [Google Scholar]
  38. 38.  Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I et al. 1999. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18:164372–82
    [Google Scholar]
  39. 39.  Evans CS, Ruhl DA, Chapman ER 2015. An engineered metal sensor tunes the kinetics of synaptic transmission. J. Neurosci. 35:3411769–79
    [Google Scholar]
  40. 40.  Fasshauer D, Sutton RB, Brunger AT, Jahn R 1998. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. PNAS 95:2615781–86
    [Google Scholar]
  41. 41.  Fernández-Busnadiego R, Asano S, Oprisoreanu AM, Sakata E, Doengi M et al. 2013. Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering. J. Cell Biol. 201:5725–40
    [Google Scholar]
  42. 42.  Fernández-Chacón R, Königstorfer A, Gerber SHH, García J, Matos MFF et al. 2001. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:682441–49
    [Google Scholar]
  43. 43.  Gao Y, Zorman S, Gundersen G, Xi Z, Ma L et al. 2012. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337:61001340–43
    [Google Scholar]
  44. 44.  Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW et al. 1994. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:4717–27
    [Google Scholar]
  45. 45.  Gipson P, Fukuda Y, Danev R, Lai Y, Chen D-H et al. 2017. Morphologies of synaptic protein membrane fusion interfaces. PNAS 114:349110–15
    [Google Scholar]
  46. 46.  Giraudo CG, Eng WS, Melia TJ, Rothman JE 2006. A clamping mechanism involved in SNARE-dependent exocytosis. Science 313:5787676–80
    [Google Scholar]
  47. 47.  Giraudo CG, Garcia-Diaz A, Eng WS, Chen Y, Hendrickson WA et al. 2009. Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 323:5913512–16
    [Google Scholar]
  48. 48.  Gong J, Lai Y, Li X, Wang M, Leitz J et al. 2016. C-terminal domain of mammalian complexin-1 localizes to highly curved membranes. PNAS 113:47E7590–99
    [Google Scholar]
  49. 49.  Guan R, Dai H, Rizo J 2008. Binding of the Munc13-1 MUN domain to membrane-anchored SNARE complexes. Biochemistry 47:61474–81
    [Google Scholar]
  50. 50.  Gustavsson N, Han W 2009. Calcium-sensing beyond neurotransmitters: functions of synaptotagmins in neuroendocrine and endocrine secretion. Biosci. Rep. 29:4245–59
    [Google Scholar]
  51. 51.  Hammarlund M, Palfreyman MT, Watanabe S, Olsen S, Jorgensen EM 2007. Open syntaxin docks synaptic vesicles. PLOS Biol 5:8e198
    [Google Scholar]
  52. 52.  Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE 1997. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90:3523–35
    [Google Scholar]
  53. 53.  Harrison SC. 2017. Pictures of the prologue to neurotransmitter release. PNAS 114:348920–22
    [Google Scholar]
  54. 54.  He E, Wierda K, van Westen R, Broeke JH, Toonen RF et al. 2017. Munc13-1 and Munc18-1 together prevent NSF-dependent de-priming of synaptic vesicles. Nat. Commun. 8:15915
    [Google Scholar]
  55. 55.  Hernandez JM, Stein A, Behrmann E, Riedel D, Cypionka A et al. 2012. Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336:60881581–84
    [Google Scholar]
  56. 56.  Hobson RJ, Liu Q, Watanabe S, Jorgensen EM 2011. Complexin maintains vesicles in the primed state in C. elegans. Curr. Biol. 21:2106–13
    [Google Scholar]
  57. 57.  Hoffmann A, Becker AH, Zachmann-Brand B, Deuerling E, Bukau B, Kramer G 2012. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol. Cell. 48:163–74
    [Google Scholar]
  58. 58.  Hoffmann A, Bukau B, Kramer G 2010. Structure and function of the molecular chaperone Trigger Factor. Biochim. Biophys. Acta. 1803:6650–61
    [Google Scholar]
  59. 59.  Hu S-H, Christie MP, Saez NJ, Latham CF, Jarrott R et al. 2011. Possible roles for Munc18-1 domain 3a and Syntaxin1 N-peptide and C-terminal anchor in SNARE complex formation. PNAS 108:31040–45
    [Google Scholar]
  60. 60.  Hui E, Bai J, Chapman ER 2006. Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. Biophys. J. 91:51767–77
    [Google Scholar]
  61. 61.  Hui E, Bai J, Wang P, Sugimori M, Llinas RR, Chapman ER 2005. Three distinct kinetic groupings of the synaptotagmin family: candidate sensors for rapid and delayed exocytosis. PNAS 102:145210–14
    [Google Scholar]
  62. 62.  Hui E, Johnson CP, Yao J, Dunning FM, Chapman ER 2009. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca2+-regulated fusion. Cell 138:4709–21
    [Google Scholar]
  63. 63.  Huntwork S, Littleton JT 2007. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci. 10:101235–37
    [Google Scholar]
  64. 64.  Imig C, Min S-W, Krinner S, Arancillo M, Rosenmund C et al. 2014. The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones. Neuron 84:2416–31
    [Google Scholar]
  65. 65.  Jensen MB, Bhatia VK, Jao CC, Rasmussen JE, Pedersen SL et al. 2011. Membrane curvature sensing by amphipathic helices: a single liposome study using α-synuclein and annexin B12. J. Biol. Chem. 286:4942603–14
    [Google Scholar]
  66. 66.  Jockusch WJ, Speidel D, Sigler A, Sørensen JB, Varoqueaux F et al. 2007. CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins. Cell 131:4796–808
    [Google Scholar]
  67. 67.  Jorquera RA, Huntwork-Rodriguez S, Akbergenova Y, Cho RW, Littleton JT 2012. Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity. J. Neurosci. 32:5018234–45
    [Google Scholar]
  68. 68.  Junge HJ, Rhee J, Jahn O, Varoqueaux F, Spiess J et al. 2004. Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell 118:3389–401
    [Google Scholar]
  69. 69.  Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X et al. 2011. RIM proteins tether Ca2+-channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144:2282–95
    [Google Scholar]
  70. 70.  Kaeser PS, Regehr WG 2014. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 76:333–63
    [Google Scholar]
  71. 71.  Kaeser PS, Regehr WG 2017. The readily releasable pool of synaptic vesicles. Curr. Opin. Neurobiol. 43:63–70
    [Google Scholar]
  72. 72.  Kaeser-Woo YJ, Yang X, Südhof TC 2012. C-terminal complexin sequence is selectively required for clamping and priming but not for Ca2+ triggering of synaptic exocytosis. J. Neurosci. 32:82877–85
    [Google Scholar]
  73. 73.  Kaiser CM, Chang H-C, Agashe VR, Lakshmipathy SK, Etchells SA et al. 2006. Real-time observation of trigger factor function on translating ribosomes. Nature 444:7118455–60
    [Google Scholar]
  74. 74.  Koch H, Hofmann K, Brose N 2000. Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochem. J. 349:247–53
    [Google Scholar]
  75. 75.  Kochubey O, Schneggenburger R 2011. Synaptotagmin increases the dynamic range of synapses by driving Ca2+-evoked release and by clamping a near-linear remaining Ca2+ sensor. Neuron 69:4736–48
    [Google Scholar]
  76. 76.  Kreutzberger AJB, Kiessling V, Liang B, Seelheim P, Jakhanwal S et al. 2017. Reconstitution of calcium-mediated exocytosis of dense-core vesicles. Sci. Adv. 3:7e1603208
    [Google Scholar]
  77. 77.  Krishnakumar SS, Li F, Coleman J, Schauder CM, Kümmel D et al. 2015. Re-visiting the trans insertion model for complexin clamping. eLife 4:e04463
    [Google Scholar]
  78. 78.  Kümmel D, Krishnakumar SS, Radoff DT, Li F, Giraudo CG et al. 2011. Complexin cross-links prefusion SNAREs into a zigzag array. Nat. Struct. Mol. Biol. 18:8927–33
    [Google Scholar]
  79. 79.  Kuo W, Herrick DZ, Ellena JF, Cafiso DS 2009. The calcium-dependent and calcium-independent membrane binding of synaptotagmin 1: two modes of C2B binding. J. Mol. Biol. 387:2284–94
    [Google Scholar]
  80. 80.  Kyoung M, Srivastava A, Zhang Y, Diao J, Vrljic M et al. 2011. In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. PNAS 108:29E304–13
    [Google Scholar]
  81. 81.  Kyoung M, Zhang Y, Diao J, Chu S, Brunger AT 2012. Studying calcium-triggered vesicle fusion in a single vesicle-vesicle content and lipid-mixing system. Nat. Protoc. 8:11–16
    [Google Scholar]
  82. 82.  Lai Y, Choi UB, Leitz J, Rhee HJ, Lee C et al. 2017. Molecular mechanisms of synaptic vesicle priming by Munc13 and Munc18. Neuron 95:591–607
    [Google Scholar]
  83. 83.  Lai Y, Choi UB, Zhang Y, Zhao M, Pfuetzner RA et al. 2016. N-terminal domain of complexin independently activates calcium-triggered fusion. PNAS 113:32E4698–707
    [Google Scholar]
  84. 84.  Lai Y, Diao J, Cipriano DJ, Zhang Y, Pfuetzner RA et al. 2014. Complexin inhibits spontaneous release and synchronizes Ca2+-triggered synaptic vesicle fusion by distinct mechanisms. eLife 3:e03756
    [Google Scholar]
  85. 85.  Lai Y, Lou X, Jho Y, Yoon T-Y, Shin Y-K 2013. The synaptotagmin 1 linker may function as an electrostatic zipper that opens for docking but closes for fusion pore opening. Biochem. J 456:25–33
    [Google Scholar]
  86. 86.  Lee J, Guan Z, Akbergenova Y, Littleton JT 2013. Genetic analysis of synaptotagmin C2 domain specificity in regulating spontaneous and evoked neurotransmitter release. J. Neurosci. 33:1187–200
    [Google Scholar]
  87. 87.  Lee J, Littleton JT 2015. Transmembrane tethering of synaptotagmin to synaptic vesicles controls multiple modes of neurotransmitter release. PNAS 112:123793–98
    [Google Scholar]
  88. 88.  Lipstein N, Schaks S, Dimova K, Kalkhof S, Ihling C et al. 2012. Nonconserved Ca2+/calmodulin binding sites in Munc13s differentially control synaptic short-term plasticity. Mol. Cell. Biol. 32:224628–41
    [Google Scholar]
  89. 89.  Liu H, Bai H, Xue R, Takahashi H, Edwardson JM, Chapman ER 2014. Linker mutations reveal the complexity of synaptotagmin 1 action during synaptic transmission. Nat. Neurosci. 17:5670–77
    [Google Scholar]
  90. 90.  Liu X, Seven AB, Camacho M, Esser V, Xu J et al. 2016. Functional synergy between the Munc13 C-terminal C1 and C2 domains. eLife 5:e13696
    [Google Scholar]
  91. 91.  Lou X, Shin J, Yang Y, Kim J, Shin Y-K 2015. Synaptotagmin-1 is an antagonist for Munc18-1 in SNARE zippering. J. Biol. Chem 290:10535–43
    [Google Scholar]
  92. 92.  Ma C, Li W, Xu Y, Rizo J 2011. Munc13 mediates the transition from the closed syntaxin–Munc18 complex to the SNARE complex. Nat. Struct. Mol. Biol. 18:5542–49
    [Google Scholar]
  93. 93.  Ma C, Su L, Seven AB, Xu Y, Rizo J 2013. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339:6118421–25
    [Google Scholar]
  94. 94.  Ma L, Cai Y, Li Y, Jiao J, Wu Z et al. 2017. Single-molecule force spectroscopy of protein-membrane interactions. eLife 6:e30493
    [Google Scholar]
  95. 95.  Madison JM, Nurrish S, Kaplan JM 2005. UNC-13 interaction with Syntaxin is required for synaptic transmission. Curr. Biol. 15:242236–42
    [Google Scholar]
  96. 96.  Martens S, Kozlov MM, McMahon HT 2007. How synaptotagmin promotes membrane fusion. Science 316:58281205–8
    [Google Scholar]
  97. 97.  Martin JA, Hu Z, Fenz KM, Fernandez J, Dittman JS 2011. Complexin has opposite effects on two modes of synaptic vesicle fusion. Curr. Biol. 21:297–105
    [Google Scholar]
  98. 98.  Martinez-Hackert E, Hendrickson WA 2009. Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138:5923–34
    [Google Scholar]
  99. 99.  Mashaghi A, Kramer G, Bechtluft P, Zachmann-Brand B, Driessen AJM et al. 2013. Reshaping of the conformational search of a protein by the chaperone trigger factor. Nature 500:746098–101
    [Google Scholar]
  100. 100.  Maximov A, Tang J, Yang X, Pang ZP, Südhof TC 2009. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323:5913516–21
    [Google Scholar]
  101. 101.  Mayer A, Wickner W, Haas A 1996. Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85:183–94
    [Google Scholar]
  102. 102.  McMahon HT, Missler M, Li C, Südhof TC 1995. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83:1111–19
    [Google Scholar]
  103. 103.  Medine CN, Rickman C, Chamberlain LH, Duncan RR 2007. Munc18-1 prevents the formation of ectopic SNARE complexes in living cells. J. Cell Sci. 120:4407–15
    [Google Scholar]
  104. 104.  Melia TJ, Weber T, McNew JA, Fisher LE, Johnston RJ et al. 2002. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol. 158:5929–40
    [Google Scholar]
  105. 105.  Michelassi F, Liu H, Hu Z, Dittman JS, Michelassi F et al. 2017. A C1-C2 module in Munc13 inhibits calcium-dependent neurotransmitter release. Neuron 95:3577–90
    [Google Scholar]
  106. 106.  Min D, Kim K, Hyeon C, Cho YH, Shin Y-K, Yoon T-Y 2013. Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat. Commun 4:1705
    [Google Scholar]
  107. 107.  Misura KM, Scheller RH, Weis WI 2000. Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex. Nature 404:6776355–62
    [Google Scholar]
  108. 108.  Mittelsteadt T, Seifert G, Alvárez-Barón E, Steinhäuser C, Becker AJ, Schoch S 2009. Differential mRNA expression patterns of the synaptotagmin gene family in the rodent brain. J. Comp. Neurol. 512:4514–28
    [Google Scholar]
  109. 109.  Nicholson KL, Munson M, Miller RB, Filip TJ, Fairman R, Hughson FM 1998. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nat. Struct. Biol. 5:9793–802
    [Google Scholar]
  110. 110.  Nishiki T, Augustine GJ 2004. Dual roles of the C2B domain of synaptotagmin I in synchronizing Ca2+-dependent neurotransmitter release. J. Neurosci. 24:398542–50
    [Google Scholar]
  111. 111.  Pabst S, Hazzard JW, Antonin W, Südhof TC, Jahn R et al. 2000. Selective interaction of complexin with the neuronal SNARE complex: determination of the binding regions. J. Biol. Chem. 275:2619808–18
    [Google Scholar]
  112. 112.  Pabst S, Margittai M, Vainius D, Langen R, Jahn R, Fasshauer D 2002. Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocytosis. J. Biol. Chem. 277:107838–48
    [Google Scholar]
  113. 113.  Park Y, Seo JB, Fraind A, Pérez-Lara A, Yavuz H et al. 2015. Synaptotagmin-1 binds to PIP2-containing membrane but not to SNAREs at physiological ionic strength. Nat. Struct. Mol. Biol. 22:10815–23
    [Google Scholar]
  114. 114.  Pérez-Lara Á, Thapa A, Nyenhuis SBB, Nyenhuis DAA, Halder P et al. 2016. PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium. eLife 5:e15886
    [Google Scholar]
  115. 115.  Perin MS, Johnston PA, Ozcelik T, Jahn R, Francke U, Südhof TC 1991. Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. J. Biol. Chem. 266:1615–22
    [Google Scholar]
  116. 116.  Pertsinidis A, Mukherjee K, Sharma M, Pang ZP, Park SR et al. 2013. Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ. PNAS 110:30E2812–20
    [Google Scholar]
  117. 117.  Pevsner J, Hsu SC, Braun JE, Calakos N, Ting AE et al. 1994. Specificity and regulation of a synaptic vesicle docking complex. Neuron 13:2353–61
    [Google Scholar]
  118. 118.  Pobbati AV, Stein A, Fasshauer D 2006. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313:5787673–76
    [Google Scholar]
  119. 119.  Prinslow EA, Brautigam CA, Rizo J 2017. Reconciling isothermal titration calorimetry analyses of interactions between complexin and truncated SNARE complexes. eLife 6:e30286
    [Google Scholar]
  120. 120.  Radoff DT, Dong Y, Snead D, Bai J, Eliezer D, Dittman JS 2014. The accessory helix of complexin functions by stabilizing central helix secondary structure. eLife 3:e04553
    [Google Scholar]
  121. 121.  Rathore SS, Bend EG, Yu H, Hammarlund M, Jorgensen EM, Shen J 2010. Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE-Sec1/Munc18 membrane fusion complex. PNAS 107:5222399–406
    [Google Scholar]
  122. 122.  Reim K, Mansour M, Varoqueaux F, McMahon HT, Südhof TC et al. 2001. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104:171–81
    [Google Scholar]
  123. 123.  Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F et al. 2002. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108:1121–33
    [Google Scholar]
  124. 124.  Richmond JE, Weimer RM, Jorgensen EM 2001. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412:6844338–41
    [Google Scholar]
  125. 125.  Rothman JE. 2014. The principle of membrane fusion in the cell (Nobel lecture). Angew. Chem. Int. Ed. 53:4712676–94
    [Google Scholar]
  126. 126.  Rowe J, Corradi N, Malosio ML, Taverna E, Halban P et al. 1999. Blockade of membrane transport and disassembly of the Golgi complex by expression of syntaxin 1A in neurosecretion-incompetent cells: prevention by rbSEC1. J. Cell Sci. 112:1865–77
    [Google Scholar]
  127. 127.  Ryu J-K, Min D, Rah S-H, Kim SJ, Park Y et al. 2015. Spring-loaded unraveling of a single SNARE complex by NSF in one round of ATP turnover. Science 347:62291485–89
    [Google Scholar]
  128. 128.  Schonn J-S, Maximov A, Lao Y, Sudhof TC, Sorensen JB 2008. Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. PNAS 105:103998–4003
    [Google Scholar]
  129. 129.  Seiler F, Malsam J, Krause JM, Söllner TH 2009. A role of complexin–lipid interactions in membrane fusion. FEBS Lett 583:142343–48
    [Google Scholar]
  130. 130.  Shao X, Li C, Fernandez I, Zhang X, Südhof TC, Rizo J 1997. Synaptotagmin–syntaxin interaction: the C2 domain as a Ca2+-dependent electrostatic switch. Neuron 18:133–42
    [Google Scholar]
  131. 131.  Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ 2007. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:1183–95
    [Google Scholar]
  132. 132.  Shin O-H, Lu J, Rhee J-S, Tomchick DR, Pang ZP et al. 2010. Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis. Nat. Struct. Mol. Biol. 17:3280–88
    [Google Scholar]
  133. 133.  Shin O-H, Xu J, Rizo J, Südhof TC 2009. Differential but convergent functions of Ca2+ binding to synaptotagmin-1 C2 domains mediate neurotransmitter release. PNAS 106:3816469–74
    [Google Scholar]
  134. 134.  Sinha R, Ahmed S, Jahn R, Klingauf J 2011. Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses. PNAS 108:3414318–23
    [Google Scholar]
  135. 135.  Sitarska E, Xu J, Park S, Liu X, Quade B et al. 2017. Autoinhibition of Munc18-1 modulates synaptobrevin binding and helps to enable Munc13-dependent regulation of membrane fusion. eLife 6:e24278
    [Google Scholar]
  136. 136.  Snead D, Wragg RT, Dittman JS, Eliezer D 2014. Membrane curvature sensing by the C-terminal domain of complexin. Nat. Commun. 5:4955
    [Google Scholar]
  137. 137.  Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE 1993. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:3409–18
    [Google Scholar]
  138. 138.  Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S et al. 1993. SNAP receptors implicated in vesicle targeting and fusion. Nature 362:6418318–24
    [Google Scholar]
  139. 139.  Stein A, Weber G, Wahl MC, Jahn R 2009. Helical extension of the neuronal SNARE complex into the membrane. Nature 460:7254525–28
    [Google Scholar]
  140. 140.  Stevens DR, Wu ZX, Matti U, Junge HJ, Schirra C et al. 2005. Identification of the minimal protein domain required for priming activity of Munc13-1. Curr. Biol. 15:242243–48
    [Google Scholar]
  141. 141.  Südhof TC. 2012. The presynaptic active zone. Neuron 75:111–25
    [Google Scholar]
  142. 142.  Südhof TC. 2013. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:3675–90
    [Google Scholar]
  143. 143.  Südhof TC, Jahn R 1991. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6:5665–77
    [Google Scholar]
  144. 144.  Sugita S, Han W, Butz S, Liu X, Fernández-Chacón R et al. 2001. Synaptotagmin VII as a plasma membrane Ca2+ sensor in exocytosis. Neuron 30:2459–73
    [Google Scholar]
  145. 145.  Sun J, Pang ZP, Qin D, Fahim AT, Adachi R, Südhof TC 2007. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450:7170676–82
    [Google Scholar]
  146. 146.  Sutton RB, Davletov BA, Berghuis AM, Südhof TC, Sprang SR 1995. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80:929–38
    [Google Scholar]
  147. 147.  Sutton RB, Fasshauer D, Jahn R, Brunger AT 1998. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395:6700347–53
    [Google Scholar]
  148. 148.  Tang J, Maximov A, Shin O-H, Dai H, Rizo J et al. 2006. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:61175–87
    [Google Scholar]
  149. 149.  Trimbuch T, Xu J, Flaherty D, Tomchick DR, Rizo J, Rosenmund C 2014. Re-examining how complexin inhibits neurotransmitter release. eLife 3:e02391
    [Google Scholar]
  150. 150.  Tucker WC, Weber T, Chapman ER 2004. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304:5669435–38
    [Google Scholar]
  151. 151.  van den Bogaart G, Holt MG, Bunt G, Riedel D, Wouters FS, Jahn R 2010. One SNARE complex is sufficient for membrane fusion. Nat. Struct. Mol. Biol. 17:3358–64
    [Google Scholar]
  152. 152.  van den Bogaart G, Meyenberg K, Risselada HJ, Amin H, Willig KI et al. 2011. Membrane protein sequestering by ionic protein–lipid interactions. Nature 479:7374552–55
    [Google Scholar]
  153. 153.  van den Bogaart G, Thutupalli S, Risselada JH, Meyenberg K, Holt M et al. 2011. Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation. Nat. Struct. Mol. Biol. 18:7805–12
    [Google Scholar]
  154. 154.  Varoqueaux F, Sigler A, Rhee J-S, Brose N, Enk C et al. 2002. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. PNAS 99:139037–42
    [Google Scholar]
  155. 155.  Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH et al. 2000. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:5454864–69
    [Google Scholar]
  156. 156.  Vrljic M, Strop P, Hill RCC, Hansen KCC, Chu S, Brunger ATT 2011. Post-translational modifications and lipid binding profile of insect cell-expressed full-length mammalian synaptotagmin 1. Biochemistry 50:469998–10012
    [Google Scholar]
  157. 157.  Wang J, Bello O, Auclair SM, Coleman J, Pincet F et al. 2014. Calcium sensitive ring-like oligomers formed by synaptotagmin. PNAS 111:3813966–71
    [Google Scholar]
  158. 158.  Wang J, Li F, Bello OD, Sindelar CV, Pincet F et al. 2017. Circular oligomerization is an intrinsic property of synaptotagmin. eLife 6:e27441
    [Google Scholar]
  159. 159.  Wang S, Choi UB, Gong J, Yang X, Li Y et al. 2017. Conformational change of syntaxin linker region induced by Munc13s initiates SNARE complex formation in synaptic exocytosis. EMBO J 36:6816–29
    [Google Scholar]
  160. 160.  Wang S, Li Y, Ma C 2016. Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion. eLife 5:9e14211
    [Google Scholar]
  161. 161.  Wang SSH, Held RG, Wong MY, Liu C, Karakhanyan A, Kaeser PS 2016. Fusion competent synaptic vesicles persist upon active zone disruption and loss of vesicle docking. Neuron 91:4777–91
    [Google Scholar]
  162. 162.  Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M et al. 1998. SNAREpins: minimal machinery for membrane fusion. Cell 92:6759–72
    [Google Scholar]
  163. 163.  Weimer RM, Gracheva EO, Meyrignac O, Miller KG, Richmond JE, Bessereau J 2006. UNC-13 and UNC-10/Rim localize synaptic vesicles to specific membrane domains. J. Neurosci. 26:318040–47
    [Google Scholar]
  164. 164.  Wen H, Linhoff MW, McGinley MJ, Li G-L, Corson GM et al. 2010. Distinct roles for two synaptotagmin isoforms in synchronous and asynchronous transmitter release at zebrafish neuromuscular junction. PNAS 107:3113906–11
    [Google Scholar]
  165. 165.  Weninger K, Bowen ME, Choi UB, Chu S, Brunger AT 2008. Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. Structure 16:2308–20
    [Google Scholar]
  166. 166.  Weninger K, Bowen ME, Chu S, Brunger AT 2003. Single-molecule studies of SNARE complex assembly reveal parallel and antiparallel configurations. PNAS 100:2514800–5
    [Google Scholar]
  167. 167.  Wragg RT, Snead D, Dong Y, Ramlall TF, Menon I et al. 2013. Synaptic vesicles position complexin to block spontaneous fusion. Neuron 77:2323–34
    [Google Scholar]
  168. 168.  Wu D, Bacaj T, Morishita W, Goswami D, Arendt KL et al. 2017. Postsynaptic synaptotagmins mediate AMPA receptor exocytosis during LTP. Nature 544:7650316–21
    [Google Scholar]
  169. 169.  Wu Z, Schulten K 2014. Synaptotagmin's role in neurotransmitter release likely involves Ca2+-induced conformational transition. Biophys. J. 107:51156–66
    [Google Scholar]
  170. 170.  Xu J, Camacho M, Xu Y, Esser V, Liu X et al. 2017. Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C1C2BMUN. eLife 6:e22567
    [Google Scholar]
  171. 171.  Xu J, Mashimo T, Südhof TC 2007. Synaptotagmin-1, -2, and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54:4567–81
    [Google Scholar]
  172. 172.  Xu J, Pang ZP, Shin O-H, Südhof TC 2009. Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat. Publ. Gr. 12:6759–66
    [Google Scholar]
  173. 173.  Xu Y, Su L, Rizo J 2010. Binding of Munc18-1 to synaptobrevin and to the SNARE four-helix bundle. Biochemistry 49:81568–76
    [Google Scholar]
  174. 174.  Xue M, Craig TK, Xu J, Chao H-T, Rizo J, Rosenmund C 2010. Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nat. Struct. Mol. Biol. 17:5568–75
    [Google Scholar]
  175. 175.  Xue M, Lin YQ, Pan H, Reim K, Deng H et al. 2009. Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila Complexins orchestrates synaptic vesicle exocytosis. Neuron 64:3367–80
    [Google Scholar]
  176. 176.  Xue M, Reim K, Chen X, Chao H-T, Deng H et al. 2007. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol. 14:10949–58
    [Google Scholar]
  177. 177.  Xue M, Stradomska A, Chen H, Brose N, Zhang W et al. 2008. Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system. PNAS 105:227875–80
    [Google Scholar]
  178. 178.  Yang B, Steegmaier M, Gonzalez LC, Scheller RH 2000. nSec1 binds a closed conformation of syntaxin1A. J. Cell Biol. 148:2247–52
    [Google Scholar]
  179. 179.  Yang X, Cao P, Sudhof TC 2013. Deconstructing complexin function in activating and clamping Ca2+-triggered exocytosis by comparing knockout and knockdown phenotypes. PNAS 110:5120777–82
    [Google Scholar]
  180. 180.  Yang X, Kaeser-Woo YJ, Pang ZP, Xu W, Südhof TC 2010. Complexin clamps asynchronous release by blocking a secondary Ca2+ sensor via its accessory α helix. Neuron 68:5907–20
    [Google Scholar]
  181. 181.  Yang X, Pei J, Kaeser-Woo YJ, Bacaj T, Grishin NV, Südhof TC 2015. Evolutionary conservation of complexins: from choanoflagellates to mice. EMBO Rep 16:101308–17
    [Google Scholar]
  182. 182.  Yang X, Wang S, Sheng Y, Zhang M, Zou W et al. 2015. Syntaxin opening by the MUN domain underlies the function of Munc13 in synaptic-vesicle priming. Nat. Struct. Mol. Biol. 22:7547–54
    [Google Scholar]
  183. 183.  Zanetti MN, Bello OD, Wang J, Coleman J, Cai Y et al. 2016. Ring-like oligomers of Synaptotagmins and related C2 domain proteins. eLife 5:e17262
    [Google Scholar]
  184. 184.  Zhao M, Brunger AT 2016. Recent advances in deciphering the structure and molecular mechanism of the AAA + ATPase N-ethylmaleimide-sensitive factor (NSF). J. Mol. Biol. 428:91912–26
    [Google Scholar]
  185. 185.  Zhao M, Wu S, Zhou Q, Vivona S, Cipriano DJ et al. 2015. Mechanistic insights into the recycling machine of the SNARE complex. Nature 518:61–67
    [Google Scholar]
  186. 186.  Zhou K, Stawicki TM, Goncharov A, Jin Y 2013. Position of UNC-13 in the active zone regulates synaptic vesicle release probability and release kinetics. eLife 2:e01180
    [Google Scholar]
  187. 187.  Zhou P, Pang ZP, Yang X, Zhang Y, Rosenmund C et al. 2013. Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. EMBO J 32:1159–71
    [Google Scholar]
  188. 188.  Zhou Q, Lai Y, Bacaj T, Zhao M, Lyubimov AY et al. 2015. Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis. Nature 525:756762–67
    [Google Scholar]
  189. 189.  Zhou Q, Zhou P, Wang AL, Wu D, Zhao M et al. 2017. The primed SNARE–complexin-synaptotagmin complex for neuronal exocytosis. Nature 548:420–25
    [Google Scholar]
  190. 190.  Zick M, Wickner WT 2014. A distinct tethering step is vital for vacuole membrane fusion. eLife 3:e03251
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070816-034117
Loading
/content/journals/10.1146/annurev-biophys-070816-034117
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error