1932

Abstract

We discuss new developments in the nonequilibrium dynamics and thermodynamics of living systems, giving a few examples to demonstrate the importance of nonequilibrium thermodynamics for understanding biological dynamics and functions. We study single-molecule enzyme dynamics, in which the nonequilibrium thermodynamic and dynamic driving forces of chemical potential and flux are crucial for the emergence of non-Michaelis-Menten kinetics. We explore single-gene expression dynamics, in which nonequilibrium dissipation can suppress fluctuations. We investigate the cell cycle and identify the nutrition supply as the energy input that sustains the stability, speed, and coherence of cell cycle oscillation, from which the different vital phases of the cell cycle emerge. We examine neural decision-making processes and find the trade-offs among speed, accuracy, and thermodynamic costs that are important for neural function. Lastly, we consider the thermodynamic cost for specificity in cellular signaling and adaptation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-121219-081656
2020-05-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biophys/49/1/annurev-biophys-121219-081656.html?itemId=/content/journals/10.1146/annurev-biophys-121219-081656&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abbott L 2008. Theoretical neuroscience rising. Neuron 60:489–95
    [Google Scholar]
  2. 2. 
    Ackers GK, Johnson AD, Shea MA 1982. Quantitative model for gene regulation by lambda phage repressor. PNAS 79:1129–33
    [Google Scholar]
  3. 3. 
    Alberts B, Johnson A, Lewis J, Morgan D, Raff M et al. 2015. Molecular Biology of the Cell New York: Garland Sci. 6th ed.
  4. 4. 
    Alex R, Anders L 2008. Neurobiological models of two-choice decision making can be reduced to a one-dimensional nonlinear diffusion equation. PLOS Comput. Biol. 4:e1000046
    [Google Scholar]
  5. 5. 
    Alon U 2007. An Introduction to Systems Biology London: Chapman & Hall
  6. 6. 
    Artyomov MN, Das J, Kardar M, Chakraborty A 2007. Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities. PNAS 104:18958–63
    [Google Scholar]
  7. 7. 
    Becker NB, Mugler A, ten Wolde PR 2015. Optimal prediction by cellular signaling networks. Phys. Rev. Lett. 115:258103
    [Google Scholar]
  8. 8. 
    Becskei A, Serrano L 2000. Engineering stability in gene networks by autoregulation. Nature 405:590–93
    [Google Scholar]
  9. 9. 
    Berg HC, Purcell EM 1977. Physics of chemoreception. Biophys. J. 20:193–219
    [Google Scholar]
  10. 10. 
    Bishop LM, Qian H 2010. Stochastic bistability and bifurcation in a mesoscopic signaling system with autocatalytic kinase. Biophys. J. 98:1–11
    [Google Scholar]
  11. 11. 
    Boeckh J, Kaissling KE, Schneider D 1965. Insect olfactory receptors. Cold Spring Harb. Symp. Quant. Biol. 30:263–80
    [Google Scholar]
  12. 12. 
    Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ 2004. Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15:3841–62
    [Google Scholar]
  13. 13. 
    Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ 2000. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11:369–91
    [Google Scholar]
  14. 14. 
    Choi PJ, Long C, Kirsten F, Xie XS 2008. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322:442–46
    [Google Scholar]
  15. 15. 
    Churchland AK, Roozbeh K, Shadlen MN 2008. Decision-making with multiple alternatives. Nat. Neurosci. 11:693–702
    [Google Scholar]
  16. 16. 
    Claude G, Albert G 2009. Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. PNAS 106:21643–48
    [Google Scholar]
  17. 17. 
    Davidson E 2001. Genomic Regulatory Systems: Development and Evolution Amsterdam: Elsevier
  18. 18. 
    Dubuis JO, Tkaik G, Wieschaus EF, Gregor T, Bialek W 2013. Positional information, in bits. PNAS 110:16301–8
    [Google Scholar]
  19. 19. 
    Edman L, Földes-Papp Z, Wennmalm S, Rigler R 1999. The fluctuating enzyme: a single molecule approach. Chem. Phys. 247:11–22
    [Google Scholar]
  20. 20. 
    Edman L, Rigler R 2000. Memory landscapes of single-enzyme molecules. PNAS 97:8266–71
    [Google Scholar]
  21. 21. 
    English BP, Min W, van Oijen AM, Lee KT, Luo G et al. 2006. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat. Chem. Biol. 2:87–94
    [Google Scholar]
  22. 22. 
    Erdmann T, Howard M, ten Wolde PR 2009. Role of spatial averaging in the precision of gene expression patterns. Phys. Rev. Lett. 103:258101
    [Google Scholar]
  23. 23. 
    Feng H, Han B, Wang J 2011. Adiabatic and non-adiabatic non-equilibrium stochastic dynamics of single regulating genes. J. Phys. Chem. B 115:1254–61
    [Google Scholar]
  24. 24. 
    Feng H, Wang J 2011. Potential and flux decomposition for dynamical systems and non-equilibrium thermodynamics: curvature, gauge field, and generalized fluctuation-dissipation theorem. J. Chem. Phys. 135:234511
    [Google Scholar]
  25. 25. 
    Ferrell J, Xiong W 2001. Bistability in cell signaling: how to make continuous processes discontinuous, and reversible processes irreversible. Chaos 11:227–36
    [Google Scholar]
  26. 26. 
    Gardiner C 2004. Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences Berlin: Springer. 3rd ed.
  27. 27. 
    Gasper T, Thomas G, William B 2008. The role of input noise in transcriptional regulation. PLOS ONE 3:e2774
    [Google Scholar]
  28. 28. 
    Gérard C, Goldbeter A 2010. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits. Chaos 20:045109
    [Google Scholar]
  29. 29. 
    Gérard C, Goldbeter A 2012. Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms. PLOS Comput. Biol. 8:e1002516
    [Google Scholar]
  30. 30. 
    Gold JI, Shadlen MN 2007. The neural basis of decision making. Annu. Rev. Neurosci. 30:535–74
    [Google Scholar]
  31. 31. 
    Goldbeter A, Koshland D 1981. An amplified sensitivity arising from covalent modification in biological systems. PNAS 78:6841–44
    [Google Scholar]
  32. 32. 
    Goldstein B, Faeder J, Hlavacek W 2004. Mathematical and computational models of immune-receptor signalling. Nat. Rev. Immunol. 4:445–56
    [Google Scholar]
  33. 33. 
    Govern CC, ten Wolde PR 2012. Fundamental limits on sensing chemical concentrations with linear biochemical networks. Phys. Rev. Lett. 109:218103
    [Google Scholar]
  34. 34. 
    Govern CC, ten Wolde PR 2014. Energy dissipation and noise correlations in biochemical sensing. Phys. Rev. Lett. 113:258102
    [Google Scholar]
  35. 35. 
    Govern CC, ten Wolde PR 2014. Optimal resource allocation in cellular sensing systems. PNAS 111:17486–91
    [Google Scholar]
  36. 36. 
    Gregor T, Tank DW, Wieschaus EF, Bialek W 2007. Probing the limits to positional information. Cell 130:153–64
    [Google Scholar]
  37. 37. 
    Haken H 1987. Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices Berlin: Springer
  38. 38. 
    Han B, Wang J 2007. Quantifying robustness and dissipation cost of yeast cell cycle network: the funneled energy landscape perspectives. Biophys. J. 92:3755–63
    [Google Scholar]
  39. 39. 
    Hassler K, Rigler P, Blom H, Rigler R, Widengren J, Lasser T 2007. Dynamic disorder in horseradish peroxidase observed with total internal reflection fluorescence correlation spectroscopy. Opt. Express 15:5366–75
    [Google Scholar]
  40. 40. 
    Hazelbauer GL, Falke JJ, Parkinson JS 2008. Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem. Sci. 33:9–19
    [Google Scholar]
  41. 41. 
    Hejmadi M 2009. Introduction to Cancer Biology London: Bookboon
  42. 42. 
    Hohmann S 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66:300–72
    [Google Scholar]
  43. 43. 
    Hong Q, Elson EL 2002. Single-molecule enzymology: stochastic Michaelis-Menten kinetics. Biophys. Chem. 101:565–76
    [Google Scholar]
  44. 44. 
    Hopfield J 1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. PNAS 71:4135–39
    [Google Scholar]
  45. 45. 
    Hopfield JJ 1982. Neural networks and physical systems with emergent collective computational abilities. PNAS 79:2554–58
    [Google Scholar]
  46. 46. 
    Hornos J, Schultz D, Innocentini G, Wang J, Walczak A et al. 2005. Self-regulating gene: an exact solution. Phys. Rev. E 72:051907
    [Google Scholar]
  47. 47. 
    Jackson EA 1989. Perspectives of Nonlinear Dynamics Cambridge, UK: Cambridge Univ. Press
  48. 48. 
    Jiang Z, Tian L, Fang X, Zhang K, Liu Q 2019. The emergence of the two cell fates and their associated switching for a negative auto-regulating gene. BMC Biol 17149
  49. 49. 
    Jianshu C 2011. Michaelis-Menten equation and detailed balance in enzymatic networks. J. Phys. Chem. B 115:5493–98
    [Google Scholar]
  50. 50. 
    Kepler TB, Elston TC 2001. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81:3116–36
    [Google Scholar]
  51. 51. 
    Lan G, Sartori P, Neumann S, Sourjik V, Tu Y 2012. The energy-speed-accuracy trade-off in sensory adaptation. Nat. Phys. 8:422–28
    [Google Scholar]
  52. 52. 
    Li C, Wang J 2014. Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle. PNAS 111:14130–35
    [Google Scholar]
  53. 53. 
    Li Z, Hertz J 2000. Odour recognition and segmentation by a model olfactory bulb and cortex. Network 11:83–102
    [Google Scholar]
  54. 54. 
    Liu Q, Wang J 2020. Quantifying the flux as the driving force for nonequilibrium dynamics and thermodynamics in non-Michaelis-Menten enzyme kinetics. PNAS 1172923–30
  55. 55. 
    Lu Q, Lu PH, Wang J 2007. Exploring the mechanism of flexible biomolecular recognition with single molecule dynamics. Phys. Rev. Lett. 98:128105
    [Google Scholar]
  56. 56. 
    Luo X, Xu L, Han B, Wang J 2017. Funneled potential and flux landscapes dictate the stabilities of both the states and the flow: fission yeast cell cycle. PLOS Comput. Biol. 13:e1005710
    [Google Scholar]
  57. 57. 
    McKeithan T 1995. Kinetic proofreading in T-cell receptor signal transduction. PNAS 92:5042–46
    [Google Scholar]
  58. 58. 
    Menini A 1999. Calcium signalling and regulation in olfactory neurons. Curr. Opin. Neurobiol. 9:419–26
    [Google Scholar]
  59. 59. 
    Moerner WE, Fromm DP 2003. Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74:3597–619
    [Google Scholar]
  60. 60. 
    Mohr PN, Biele G, Heekeren HR 2010. Neural processing of risk. J. Neurosci. 30:6613–19
    [Google Scholar]
  61. 61. 
    Nakatani K, Tamura T, Yau KW 1991. Light adaptation in retinal rods of the rabbit and two other nonprimate mammals. J. Gen. Physiol. 97:413–35
    [Google Scholar]
  62. 62. 
    Nelson JM, Vosburgh WC 1927. Kinetics of invertase action. J. Am. Chem. Soc. 13:223–36
    [Google Scholar]
  63. 63. 
    Nicolis G 1986. Dissipative systems. Rep. Prog. Phys. 49:873–949
    [Google Scholar]
  64. 64. 
    Nicolis G, Prigogine I 1977. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations New York: Wiley
  65. 65. 
    Ninio J 1975. Kinetic amplification of enzyme discrimination. Biochimie 57:587–95
    [Google Scholar]
  66. 66. 
    Niwa M, Ditterich J 2008. Perceptual decisions between multiple directions of visual motion. J. Neurosci. 28:4435–45
    [Google Scholar]
  67. 67. 
    Ouldridge TE, Govern CC, ten Wolde PR 2017. The thermodynamics of computational copying in biochemical systems. Phys. Rev. X 7:021004
    [Google Scholar]
  68. 68. 
    Pankaj M, Schwab DJ 2012. Energetic costs of cellular computation. PNAS 109:17978–82
    [Google Scholar]
  69. 69. 
    Qi H, Blanchard A, Lu T 2013. Engineered genetic information processing circuits. Wiley Interdiscip. Rev. Syst. Biol. Med. 5:273–87
    [Google Scholar]
  70. 70. 
    Qian H 2003. Thermodynamic and kinetic analysis of sensitivity amplification in biological signal transduction. Biophys. Chem. 105:585–93
    [Google Scholar]
  71. 71. 
    Qian H 2007. Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys. Chem. 58:113–42
    [Google Scholar]
  72. 72. 
    Qian H 2008. Cooperativity and specificity in enzyme kinetics: a single-molecule time-based perspective. Biophys. J. 95:10–17
    [Google Scholar]
  73. 73. 
    Qian H 2009. Entropy demystified: the “thermo”-dynamics of stochastically fluctuating systems. Methods Enzymol. 467:111–34
    [Google Scholar]
  74. 74. 
    Qian MP, Qian M 1979. Decomposition into a detailed balance part and a circulation part of an irreversible stationary Markov chain. Sci. Sin. Special Issue II 69–79
  75. 75. 
    Ratcliff R, Rouder JN 2010. Modeling response times for two-choice decisions. Psychol. Sci. 9:347–56
    [Google Scholar]
  76. 76. 
    Ratcliff R, Zandt TV, McKoon G 1999. Connectionist and diffusion models of reaction time. Psychol. Rev. 106:261–300
    [Google Scholar]
  77. 77. 
    Reichl LE 2009. A Modern Course in Statistical Physics New York: Wiley. 3rd ed.
  78. 78. 
    Sagawa T 2013. Thermodynamics of Information Processing in Small Systems Berlin: Springer
  79. 79. 
    Schnakenberg J 1976. Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48:571–85
    [Google Scholar]
  80. 80. 
    Schultz D, Onuchic J, Wolynes P 2007. Understanding stochastic simulations of the smallest genetic networks. J. Chem. Phys. 126:245102
    [Google Scholar]
  81. 81. 
    Seifert U 2008. Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64:423–31
    [Google Scholar]
  82. 82. 
    Shadlen MN, Newsome WT 2001. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86:1916–36
    [Google Scholar]
  83. 83. 
    Singh A, Weinberger LS 2009. Stochastic gene expression as a molecular switch for viral latency. Curr. Opin. Microbiol. 12:460–66
    [Google Scholar]
  84. 84. 
    Swain P, Elowitz M, Siggia E 2002. Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS 99:12795–800
    [Google Scholar]
  85. 85. 
    Tyson JJ, Bela N 2008. Temporal organization of the cell cycle. Curr. Biol. 18:R759–68
    [Google Scholar]
  86. 86. 
    Tyson JJ, Novak B 2001. Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210:249–63
    [Google Scholar]
  87. 87. 
    Van den Broeck C, Esposito M 2010. Three faces of the second law. II. Fokker-Planck formulation. Phys. Rev. E 82:011144
    [Google Scholar]
  88. 88. 
    Van Kampen N 2007. Stochastic Processes in Physics and Chemistry Amsterdam: Elsevier
  89. 89. 
    Vellela M, Qian H 2010. On the Poincar-Hill cycle map of rotational random walk: locating the stochastic limit cycle in a reversible Schnakenberg model. Proc. Math. Phys. Eng. Sci. 466:771–88
    [Google Scholar]
  90. 90. 
    Victor S, Berg HC 2002. Receptor sensitivity in bacterial chemotaxis. PNAS 99:123–27
    [Google Scholar]
  91. 91. 
    Vogels T, Rajan K, Abbott L 2005. Neural network dynamics. Annu. Rev. Neurosci. 28:357–76
    [Google Scholar]
  92. 92. 
    Wang J 2015. Landscape and flux theory of non-equilibrium dynamical systems with application to biology. Adv. Phys. 64:1–137
    [Google Scholar]
  93. 93. 
    Wang J, Verkhivker GM 2003. Energy landscape theory, funnels, specificity and optimal criterion of biomolecular binding. Phys. Rev. Lett. 90:188101
    [Google Scholar]
  94. 94. 
    Wang J, Xu L, Wang E 2008. Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. PNAS 105:12271–76
    [Google Scholar]
  95. 95. 
    Wang J, Zhang K, Wang E 2010. Kinetic paths, time scale, and underlying landscapes: a path integral framework to study global natures of nonequilibrium systems and networks. J. Chem. Phys. 133:125103
    [Google Scholar]
  96. 96. 
    Wang XJ 2002. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36:955–68
    [Google Scholar]
  97. 97. 
    Wang XJ 2008. Decision making in recurrent neuronal circuits. Neuron 60:215–34
    [Google Scholar]
  98. 98. 
    Wei M, Gopich IV, English BP, Kou SC, Xie XS, Szabo A 2006. When does the Michaelis-Menten equation hold for fluctuating enzymes?. J. Phys. Chem. B 11020093–97
  99. 99. 
    William B, Sima S 2005. Physical limits to biochemical signaling. PNAS 102:10040–45
    [Google Scholar]
  100. 100. 
    Wong K, Huk A, Shadlen M, Wang X 2007. Neural circuit dynamics underlying accumulation of time-varying evidence during perceptual decision making. Front. Comput. Neurosci. 1:6
    [Google Scholar]
  101. 101. 
    Wong K, Wang X 2006. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26:1314–28
    [Google Scholar]
  102. 102. 
    Xu L, Shi H, Feng H, Wang J 2012. The energy pump and the origin of the non-equilibrium flux of the dynamical systems and the networks. J. Chem. Phys. 136:165102
    [Google Scholar]
  103. 103. 
    Yan H, Li B, Wang J 2019. Non-equilibrium landscape and flux reveal how the central amygdala circuit gates passive and active defensive responses. J. R. Soc. Interface 16:20180756
    [Google Scholar]
  104. 104. 
    Yan H, Wang J 2017. Quantification of motor network dynamics in Parkinson's disease by means of landscape and flux theory. PLOS ONE 12:e0174364
    [Google Scholar]
  105. 105. 
    Yan H, Zhang K, Wang J 2016. Physical mechanism of mind changes and tradeoffs among speed, accuracy, and energy cost in brain decision making: landscape, flux, and path perspectives. Chin. Phys. B 25:078702
    [Google Scholar]
  106. 106. 
    Yan H, Zhao L, Hu L, Wang X, Wang E, Wang J 2013. Nonequilibrium landscape theory of neural networks. PNAS 110:E4185–94
    [Google Scholar]
  107. 107. 
    Yan Z, Zheng X, Wang E, Wang J 2013. Thermodynamic and kinetic specificities of ligand binding. Chem. Sci. 4:2387–95
    [Google Scholar]
  108. 108. 
    Zhang F, Xu L, Zhang K, Wang E, Wang J 2012. The potential and flux landscape theory of evolution. J. Chem. Phys. 137:065102
    [Google Scholar]
  109. 109. 
    Zhang K, Wang J 2018. Exploring the underlying mechanisms of the Xenopus laevis embryonic cell cycle. J. Phys. Chem. B 122:5487–99
    [Google Scholar]
  110. 110. 
    Zhang Z, Wang J 2014. Curl flux, coherence, and population landscape of molecular systems: nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics. J. Chem. Phys. 140:245101
    [Google Scholar]
  111. 111. 
    Zhang Z, Wang J 2015. Landscape, kinetics, paths and statistics of curl flux, coherence, entanglement and energy transfer in non-equilibrium quantum systems. New J. Phys. 17:043053
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-121219-081656
Loading
/content/journals/10.1146/annurev-biophys-121219-081656
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error