1932

Abstract

Although less studied than their closed-shell counterparts, materials containing stable open-shell chemistries have played a key role in many energy storage and energy conversion devices. In particular, the oxidation-reduction (redox) properties of these stable radicals have made them a substantial contributor to the progress of organic batteries. Moreover, the use of radical-based materials in photovoltaic devices and thermoelectric systems has allowed for these emerging molecules to have impacts in the energy conversion realm. Additionally, the unique doublet states of radical-based materials provide access to otherwise inaccessible spin states in optoelectronic devices, offering many new opportunities for efficient usage of energy in light-emitting devices. Here, we review the current state of the art regarding the molecular design, synthesis, and application of stable radicals in these energy-related applications. Finally, we point to fundamental and applied arenas of future promise for these designer open-shell molecules, which have only just begun to be evaluated in full.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060817-083945
2018-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/9/1/annurev-chembioeng-060817-083945.html?itemId=/content/journals/10.1146/annurev-chembioeng-060817-083945&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Nishinaga T 2015. Organic Redox Systems: Synthesis, Properties, and Applications Hoboken, NJ: Wiley
  2. 2.  Casado N, Hernández G, Sardon H, Mecerreyes D 2016. Current trends in redox polymers for energy and medicine. Prog. Polym. Sci. 52:107–35
    [Google Scholar]
  3. 3.  Gracia R, Mecerreyes D 2013. Polymers with redox properties: materials for batteries, biosensors and more. Polym. Chem. 4:2206–14
    [Google Scholar]
  4. 4.  Ostroverkhova O 2013. Handbook of Organic Materials for Optical and (Opto)Electronic Devices: Properties and Applications Sawston, UK: Woodhead
  5. 5.  Boudouris BW 2013. Engineering optoelectronically active macromolecules for polymer-based photovoltaic and thermoelectric devices. Curr. Opin. Chem. Eng. 2:3294–301
    [Google Scholar]
  6. 6.  Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ 2017. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 117:6467–99
    [Google Scholar]
  7. 7.  Skotheim TA, Reynolds J 2006. Conjugated Polymers: Theory, Synthesis, Properties, and Characterization Boca Raton, FL: CRC Press
  8. 8.  Baradwaj AG, Rostro L, Alam MA, Boudouris BW 2014. Quantification of the solid-state charge mobility in a model radical polymer. Appl. Phys. Lett. 104:213306
    [Google Scholar]
  9. 9.  Rostro L, Wong SH, Boudouris BW 2014. Solid state electrical conductivity of radical polymers as a function of pendant group oxidation state. Macromolecules 47:113713–19
    [Google Scholar]
  10. 10.  Mukherjee S, Boudouris BW 2017. Organic Radical Polymers: New Avenues in Organic Electronics New York: Springer
  11. 11.  McNaught AD, Wilkinson A 1997. IUPAC Compendium of Chemical Terminology Oxford, UK: Blackwell Sci. Publ, 2nd ed..
  12. 12.  Castellanos S, Gaidelis V, Jankauskas V, Grazulevicius JV, Brillas E et al. 2010. Stable radical cores: a key for bipolar charge transport in glass forming carbazole and indole derivatives. Chem. Commun. 46:5130–32
    [Google Scholar]
  13. 13.  Tomlinson EP, Hay ME, Boudouris BW 2014. Radical polymers and their application to organic electronic devices. Macromolecules 47:186145–58
    [Google Scholar]
  14. 14.  Rostro L, Baradwaj AG, Boudouris BW 2013. Controlled radical polymerization and quantification of solid state electrical conductivities of macromolecules bearing pendant stable radical groups. ACS Appl. Mater. Interfaces 5:209896–901
    [Google Scholar]
  15. 15.  Dediu VA, Hueso LE, Bergenti I, Taliani C 2009. Spin routes in organic semiconductors. Nat. Mater. 8:9707–16
    [Google Scholar]
  16. 16.  Wingate AJ, Boudouris BW 2016. Recent advances in the syntheses of radical-containing macromolecules. J. Polym. Sci. A 54:1875–94
    [Google Scholar]
  17. 17.  Roncali J, Leriche P, Blanchard P 2014. Molecular materials for organic photovoltaics: Small is beautiful. Adv. Mater. 26:233821–38
    [Google Scholar]
  18. 18.  Halary JL, Laupretre F, Monnerie L 2011. Polymer Materials: Macroscopic Properties and Molecular Interpretations Hoboken, NJ: Wiley
  19. 19.  Rajca A 1994. Organic diradicals and polyradicals: From spin coupling to magnetism?. Chem. Rev. 94:4871–93
    [Google Scholar]
  20. 20.  Gallagher NM, Olankitwanit A, Rajca A 2015. High-spin organic molecules. J. Org. Chem. 80:1291–98
    [Google Scholar]
  21. 21.  Rajca A, Wongsriratanakul J, Rajca S, Cerny RL 2004. Organic spin clusters: annelated macrocyclic polyarylmethyl polyradicals and a polymer with very high spin S = 6–18. Chem. Eur. J. 10:3144–57
    [Google Scholar]
  22. 22.  Suguro M, Iwasa S, Kusachi Y, Morioka Y, Nakahara K 2007. Cationic polymerization of poly(vinyl ether) bearing a TEMPO radical: a new cathode-active material for organic radical batteries. Macromol. Rapid Commun. 28:1929–33
    [Google Scholar]
  23. 23.  Mike JF, Lutkenhaus JL 2013. Electrochemically active polymers for electrochemical energy storage: opportunities and challenges. ACS Macro Lett 2:839–44
    [Google Scholar]
  24. 24.  Nishide H, Oyaizu K 2008. Toward flexible batteries. Science 319:737–38
    [Google Scholar]
  25. 25.  Choi W, Ohtani S, Oyaizu K, Nishide H, Geckeler KE 2011. Radical polymer-wrapped SWNTs at a molecular level: high-rate redox mediation through a percolation network for a transparent charge-storage material. Adv. Mater. 23:384440–43
    [Google Scholar]
  26. 26.  Guo W, Yin Y-X, Xin S, Guo Y-G, Wan L-J 2012. Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ. Sci. 5:15221
    [Google Scholar]
  27. 27.  Huang Q, Choi D, Cosimbescu L, Lemmon JP 2013. Multi-electron redox reaction of an organic radical cathode induced by a mesopore carbon network with nitroxide polymers. Phys. Chem. Chem. Phys. 15:4820921–28
    [Google Scholar]
  28. 28.  Choi W, Endo S, Oyaizu K, Nishide H, Geckeler KE 2013. Robust and efficient charge storage by uniform grafting of TEMPO radical polymer around multi-walled carbon nanotubes. J. Mater. Chem. A 1:92999–3003
    [Google Scholar]
  29. 29.  Aqil A, Vlad A, Piedboeuf M-L, Aqil M, Job N et al. 2015. A new design of organic radical batteries (ORBs): carbon nanotube buckypaper electrode functionalized by electrografting. Chem. Commun. 51:459301–4
    [Google Scholar]
  30. 30.  Kim J-K, Kim Y, Park S, Ko H, Kim Y 2015. Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries. Energy Environ. Sci. 9:41264–69
    [Google Scholar]
  31. 31.  Ernould B, Devos M, Bourgeois J-P, Rolland J, Vlad A, Gohy J-F 2015. Grafting of a redox polymer onto carbon nanotubes for high capacity battery materials. J. Mater. Chem. A 3:168832–39
    [Google Scholar]
  32. 32.  Li Y, Jian Z, Lang M, Zhang C, Huang X 2016. Covalently functionalized graphene by radical polymers for graphene-based high-performance cathode materials. ACS Appl. Mater. Interfaces 8:2717352–59
    [Google Scholar]
  33. 33.  Vlad A, Singh N, Melinte S, Gohy J-F, Ajayan PM 2016. Carbon redox-polymer-gel hybrid supercapacitors. Sci. Rep. 6:22194
    [Google Scholar]
  34. 34.  Hung M-K, Wang Y-H, Lin C-H, Lin H-C, Lee J-T 2012. Synthesis and electrochemical behaviour of nitroxide polymer brush thin-film electrodes for organic radical batteries. J. Mater. Chem. 22:41570
    [Google Scholar]
  35. 35.  Wang Y-H, Hung M-K, Lin C-H, Lin H-C, Lee J-T 2011. Patterned nitroxide polymer brushes for thin-film cathodes in organic radical batteries. Chem. Commun. 47:41249–51
    [Google Scholar]
  36. 36.  Oyaizu K, Ando Y, Konishi H, Nishide H 2008. Nernstian adsorbate-like bulk layer of organic radical polymers for high-density charge storage purposes. J. Am. Chem. Soc. 130:14459–61
    [Google Scholar]
  37. 37.  Vlad A, Singh N, Rolland J, Melinte S, Ajayan PM, Gohy J-F 2014. Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. Rep. 4:4315
    [Google Scholar]
  38. 38.  Singh VK, Rao OS, Singh RA 1996. Rechargeable organic batteries based on charge-transfer materials-II: compositional dependence and charge-discharge characteristics of aromatic diamine-iodine systems. Indian J. Eng. Mater. Sci. 3:5201–6
    [Google Scholar]
  39. 39.  Nakahara K, Oyaizu K, Nishide H 2011. Organic radical battery approaching practical use. Chem. Lett. 40:222–27
    [Google Scholar]
  40. 40.  Suga T, Nishide H 2012. Redox-active radical polymers for a totally organic rechargeable battery. ACS Symp. Ser. 1096:45–53
    [Google Scholar]
  41. 41.  Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US 2016. Polymer-based organic batteries. Chem. Rev. 116:169438–84
    [Google Scholar]
  42. 42.  Schon TB, McAllister BT, Li P-F, Seferos DS 2016. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45:6345–404
    [Google Scholar]
  43. 43.  Nishide H, Iwasa S, Pu YJ, Suga T, Nakahara K, Satoh M 2004. Organic radical battery: nitroxide polymers as a cathode-active material. Electrochim. Acta 50:827–31
    [Google Scholar]
  44. 44.  Nishide H, Suga T 2005. Organic radical battery. Electrochem. Soc. Interface 14:432–36
    [Google Scholar]
  45. 45.  Suga T, Konishi H, Nishide H 2007. Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery. Chem. Commun. 2007:1730–32
    [Google Scholar]
  46. 46.  Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns EJ 2007. Al-laminated film packaged organic radical battery for high-power applications. J. Power Sources 163:21110–13
    [Google Scholar]
  47. 47.  Kim J-K, Cheruvally G, Choi J-W, Ahn J-H, Choi DS, Song CE 2007. Rechargeable organic radical battery with electrospun, fibrous membrane-based polymer electrolyte. J. Electrochem. Soc. 154:9A839–43
    [Google Scholar]
  48. 48.  Bugnon L, Morton CJH, Novak P, Vetter J, Nesvadba P 2007. Synthesis of poly(4-methyacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery. Chem. Mater. 19:152910–14
    [Google Scholar]
  49. 49.  Qu J, Katsumata T, Satoh M, Wada J, Igarashi J et al. 2007. Synthesis and charge/discharge properties of polyacetylenes carrying 2,2,6,6-tetramethyl-1-piperidinoxy radicals. Chem. Eur. J. 13:287965–73
    [Google Scholar]
  50. 50.  Suguro M, Mori A, Iwasa S, Nakahara K, Nakano K 2009. Syntheses and electrochemical properties of TEMPO radical substituted silicones: active material for organic radical batteries. Macromol. Chem. Phys. 210:171402–7
    [Google Scholar]
  51. 51.  Koshika K, Sano N, Oyaizu K, Nishide H 2009. An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte. Chem. Commun. 2009:836–38
    [Google Scholar]
  52. 52.  Oyaizu K, Nishide H 2009. Radical polymers for organic electronic devices: A radical departure from conjugated polymers?. Adv. Mater. 21:222339–44
    [Google Scholar]
  53. 53.  Oyaizu K, Kawamoto T, Suga T, Nishide H 2010. Synthesis and charge transport properties of redox-active nitroxide polyethers with large site density. Macromolecules 43:2410382–89
    [Google Scholar]
  54. 54.  Koshika K, Chikushi N, Sano N, Oyaizu K, Nishide H 2010. A TEMPO-substituted polyacrylamide as a new cathode material: an organic rechargeable device composed of polymer electrodes and aqueous electrolyte. Green Chem 12:91573–75
    [Google Scholar]
  55. 55.  Nesvadba P, Bugnon L, Maire P, Novák P 2010. Synthesis of a novel spirobisnitroxide polymer and its evaluation in an organic radical battery. Chem. Mater. 22:3783–88
    [Google Scholar]
  56. 56.  Komaba S, Tanaka T, Ozeki T, Taki T, Watanabe H, Tachikawa H 2010. Fast redox of composite electrode of nitroxide radical polymer and carbon with polyacrylate binder. J. Power Sources 195:186212–17
    [Google Scholar]
  57. 57.  Dai Y, Zhang Y, Gao L, Xu G, Xie J 2011. Electrochemical performance of organic radical cathode with ionic liquid based electrolyte. J. Electrochem. Soc. 158:3A291–95
    [Google Scholar]
  58. 58.  Janoschka T, Hager MD, Schubert US 2012. Powering up the future: radical polymers for battery applications. Adv. Mater. 24:486397–409
    [Google Scholar]
  59. 59.  Cao L, Sadaf S, Beladi-Mousavi SM, Walder L 2013. PolyTEMPO and polyviologen on carbon nanotubes: syntheses, structures and organic battery applications. Eur. Polym. J. 49:81923–34
    [Google Scholar]
  60. 60.  Nakahara K, Iwasa S, Satoh M, Morioka Y, Iriyama J et al. 2002. Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 359:351–54
    [Google Scholar]
  61. 61.  Koshika K, Sano N, Oyaizu K, Nishide H 2009. An aqueous, electrolyte-type, rechargeable device utilizing a hydrophilic radical polymer-cathode. Macromol. Chem. Phys. 210:221989–95
    [Google Scholar]
  62. 62.  Chae IS, Koyano M, Oyaizu K, Nishide H 2013. Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material. J. Mater. Chem. A 1:41326–33
    [Google Scholar]
  63. 63.  Chae IS, Koyano M, Sukegawa T, Oyaizu K, Nishide H 2013. Redox equilibrium of a zwitterionic radical polymer in a non-aqueous electrolyte as a novel Li+ host material in a Li-ion battery. J. Mater. Chem. A 1:349608–11
    [Google Scholar]
  64. 64.  Jähnert T, Hager MD, Schubert US 2016. Assorted phenoxyl-radical polymers and their application in lithium-organic batteries. Macromol. Rapid Commun. 37:8725–30
    [Google Scholar]
  65. 65.  Jähnert T, Häupler B, Janoschka T, Hager MD, Schubert US 2014. Polymers based on stable phenoxyl radicals for the use in organic radical batteries. Macromol. Rapid Commun. 35:9882–87
    [Google Scholar]
  66. 66.  Jähnert T, Häupler B, Janoschka T, Hager MD, Schubert US 2013. Synthesis and charge-discharge studies of poly(ethynylphenyl)galvinoxyles and their use in organic radical batteries with aqueous electrolytes. Macromol. Chem. Phys. 214:222616–23
    [Google Scholar]
  67. 67.  Suga T, Sugita S, Ohshiro H, Oyaizu K, Nishide H 2011. p- and n-Type bipolar redox-active radical polymer: toward totally organic polymer-based rechargeable devices with variable configuration. Adv. Mater. 23:6751–54
    [Google Scholar]
  68. 68.  Suga T, Ohshiro H, Ugita S, Oyaizu K, Nishide H 2009. Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery. Adv. Mater. 21:161627–30
    [Google Scholar]
  69. 69.  Suga T, Pu YJ, Kasatori S, Nishide H 2007. Cathode- and anode-active poly (nitroxylstyrene)s for rechargeable batteries: p- and n-type redox switching via substituent effects. Macromolecules 40:93167–73
    [Google Scholar]
  70. 70.  Sano N, Tomita W, Hara S, Min CM, Lee JS et al. 2013. Polyviologen hydrogel with high-rate capability for anodes toward an aqueous electrolyte-type and organic-based rechargeable device. ACS Appl. Mater. Interfaces 5:41355–61
    [Google Scholar]
  71. 71.  Takahashi Y, Hayashi N, Oyaizu K, Honda K, Nishide H 2008. Totally organic polymer-based electrochromic cell using TEMPO-substituted polynorbornene as a counter electrode-active material. Polym. J. 40:8763–67
    [Google Scholar]
  72. 72.  Oyaizu K, Suga T, Yoshimura K, Nishide H 2008. Synthesis and characterization of radical-bearing polyethers as an electrode-active material for organic secondary batteries. Macromolecules 41:6646–52
    [Google Scholar]
  73. 73.  Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q 2011. Redox flow batteries: a review. J. Appl. Electrochem. 41:101137–64
    [Google Scholar]
  74. 74.  Janoschka T, Martin N, Martin U, Friebe C, Morgenstern S et al. 2015. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527:757678–81
    [Google Scholar]
  75. 75.  Janoschka T, Friebe C, Hager MD, Martin N, Schubert US 2017. An approach toward replacing vanadium: a single organic molecule for the anode and cathode of an aqueous redox-flow battery. ChemistryOpen 6:2216–20
    [Google Scholar]
  76. 76.  Wei X, Xu W, Vijayakumar M, Cosimbescu L, Liu T et al. 2014. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Adv. Mater. 26:457649–53
    [Google Scholar]
  77. 77.  Winsberg J, Janoschka T, Morgenstern S, Hagemann T, Muench S et al. 2016. Poly(TEMPO)/zinc hybrid-flow battery: a novel, “green,” high voltage, and safe energy storage system. Adv. Mater. 28:112238–43
    [Google Scholar]
  78. 78.  Winsberg J, Muench S, Hagemann T, Morgenstern S, Janoschka T et al. 2016. Polymer/zinc hybrid-flow battery using block copolymer micelles featuring a TEMPO corona as catholyte. Polym. Chem. 7:91711–18
    [Google Scholar]
  79. 79.  Li Z, Li S, Liu S, Huang K, Fang D et al. 2011. Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-nethylphthalimide. Electrochem. Solid-State Lett. 14:12A171–73
    [Google Scholar]
  80. 80.  Xing X, Huo Y, Wang X, Zhao Y, Li Y 2017. A benzophenone-based anolyte for high energy density all-organic redox flow battery. Int. J. Hydrogen Energy 42:17488–94
    [Google Scholar]
  81. 81.  Janoschka T, Morgenstern S, Hiller H, Friebe C, Wolkersdörfer K et al. 2015. Synthesis and characterization of TEMPO- and viologen-polymers for water-based redox-flow batteries. Polym. Chem. 6:457801–11
    [Google Scholar]
  82. 82.  Liu T, Wei X, Nie Z, Sprenkle V, Wang W 2016. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 6:1501449
    [Google Scholar]
  83. 83.  Duan W, Vemuri RS, Milshtein JD, Laramie S, Dmello RD et al. 2016. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR. J. Mater. Chem. A 4:155448–56
    [Google Scholar]
  84. 84.  Hagemann T, Winsberg J, Häupler B, Janoschka T, Gruber JJ et al. 2017. A bipolar nitronyl nitroxide small molecule for an all-organic symmetric redox-flow battery. NPG Asia Mater 9:e340
    [Google Scholar]
  85. 85.  Winsberg J, Stolze C, Muench S, Liedl F, Hager MD, Schubert US 2016. TEMPO/phenazine combi-molecule: a redox-active material for symmetric aqueous redox-flow batteries. ACS Energy Lett 1:5976–80
    [Google Scholar]
  86. 86.  Oregan B, Grätzel M 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:6346737–40
    [Google Scholar]
  87. 87.  Grätzel M 2001. Photoelectrochemical cells. Nature 414:338–44
    [Google Scholar]
  88. 88.  Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H 2010. Dye-sensitized solar cells. Chem. Rev. 110:6595–663
    [Google Scholar]
  89. 89.  Li CT, Lin RYY, Lin JT 2017. Sensitizers for aqueous-based solar cells. Chem. Asian J. 12:486–96
    [Google Scholar]
  90. 90.  Ye M, Wen X, Wang M, Iocozzia J, Zhang N et al. 2015. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18:3155–62
    [Google Scholar]
  91. 91.  Boschloo G, Hagfeldt A 2009. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42:111819–26
    [Google Scholar]
  92. 92.  Teng C, Yang X, Yuan C, Li C, Chen R et al. 2009. Two novel carbazole dyes for dye-sensitized solar cells with open-circuit voltages up to 1 V based on Br/Br3 electrolytes. Org. Lett. 11:235542–45
    [Google Scholar]
  93. 93.  Oskam G, Bergeron BV, Meyer GJ, Searson PC 2001. Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J. Phys. Chem. B 105:6867–73
    [Google Scholar]
  94. 94.  Liu Y, Jennings JR, Wang Q 2013. Efficient dye-sensitized solar cells using a tetramethylthiourea redox mediator. ChemSusChem 6:112124–31
    [Google Scholar]
  95. 95.  Li D, Li H, Luo Y, Li K, Meng Q et al. 2010. Non-corrosive, non-absorbing organic redox couple for dye-sensitized solar cells. Adv. Funct. Mater. 20:193358–65
    [Google Scholar]
  96. 96.  Wang M, Chamberland N, Breau L, Moser J-E, Humphry-Baker R et al. 2010. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2:5385–89
    [Google Scholar]
  97. 97.  Liu Y, Jennings JR, Parameswaran M, Wang Q 2011. An organic redox mediator for dye-sensitized solar cells with near unity quantum efficiency. Energy Environ. Sci. 4:2564–71
    [Google Scholar]
  98. 98.  Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M 2015. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51:8815894–97
    [Google Scholar]
  99. 99.  Daeneke T, Duffy NW, Holmes AB 2012. Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators. Energy Environ. Sci. 5:7090–99
    [Google Scholar]
  100. 100.  Bai Y, Yu Q, Cai N, Wang Y, Zhang M, Wang P 2011. High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chem. Commun. 47:4376–78
    [Google Scholar]
  101. 101.  Li TC, Spokoyny AM, She C, Farha OK, Mirkin CA et al. 2010. Ni(III)/(IV) bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells. J. Am. Chem. Soc. 132:4580–82
    [Google Scholar]
  102. 102.  Lee JY, Lee C, Lee YM, Cho KY, Choi JW, Park JK 2012. Thiophene-nitroxide radical as a novel combination of sensitizer-redox mediator for dye-sensitized solar cells. J. Solid State Electrochem. 16:2657–63
    [Google Scholar]
  103. 103.  Zhang Z, Chen P, Murakami TN, Zakeeruddin SM, Grätzel M 2008. The 2,2,6,6-tetramethyl-1-piperidinyloxy radical: an efficient, iodine-free redox mediator for dye-sensitized solar cells. Adv. Funct. Mater. 18:2341–46
    [Google Scholar]
  104. 104.  Kato F, Hayashi N, Murakami T, Okumura C, Oyaizu K, Nishide H 2010. Nitroxide radicals for highly efficient redox mediation in dye-sensitized solar cells. Chem. Lett. 39:5464–65
    [Google Scholar]
  105. 105.  Gryn'ova G, Barakat JM, Blinco JP, Bottle SE, Coote ML 2012. Computational design of cyclic nitroxides as efficient redox mediators for dye-sensitized solar cells. Chem. Eur. J. 18:247582–93
    [Google Scholar]
  106. 106.  Kato F, Kikuchi A, Okuyama T, Oyaizu K, Nishide H 2012. Nitroxide radicals as highly reactive redox mediators in dye-sensitized solar cells. Angew. Chem. 51:4010177–80
    [Google Scholar]
  107. 107.  Chu TC, Lin RYY, Lee CP, Hsu CY, Shih PC et al. 2014. Ionic liquid with a dual-redox couple for efficient dye-sensitized solar cells. ChemSusChem 7:1146–53
    [Google Scholar]
  108. 108.  Li CT, Lee CP, Lee CT, Li SR, Sun SS, Ho KC 2015. Iodide-free ionic liquid with dual redox couples for dye-sensitized solar cells with high open-circuit voltage. ChemSusChem 8:71244–53
    [Google Scholar]
  109. 109.  Suzuka M, Hayashi N, Sekiguchi T, Sumioka K, Takata M et al. 2016. A quasi-solid state DSSC with 10.1% efficiency through molecular design of the charge-separation and -transport. Sci. Rep. 6:28022
    [Google Scholar]
  110. 110.  Zhang Y, Basel TP, Gautam BR, Yang X, Mascaro DJ et al. 2012. Spin-enhanced organic bulk heterojunction photovoltaic solar cells. Nat. Commun. 3:1043
    [Google Scholar]
  111. 111.  Basel TP, Huynh U, Zheng T, Xu T, Yu L, Vardeny ZV 2015. Optical, electrical, and magnetic studies of organic solar cells based on low bandgap copolymer with Spin 1/2 radical additives. Adv. Funct. Mater. 25:1895–902
    [Google Scholar]
  112. 112.  Tomlinson EP, Willmore MJ, Zhu X, Hilsmier SWA, Boudouris BW 2015. Tuning the thermoelectric properties of a conducting polymer through blending with open-shell molecular dopants. ACS Appl. Mater. Interfaces 7:3318195–200
    [Google Scholar]
  113. 113.  Rostro L, Galicia L, Boudouris BW 2015. Suppressing the environmental dependence of the open-circuit voltage in inverted polymer solar cells through a radical polymer anodic modifier. J. Polym. Sci. B 53:5311–16
    [Google Scholar]
  114. 114.  Sung SH, Bajaj N, Rhoads JF, Chiu GT, Boudouris BW 2016. Radical polymers improve the metal-semiconductor interface in organic field-effect transistors. Org. Electron. 37:148–54
    [Google Scholar]
  115. 115.  Gaspar DJ, Polikarpov E 2015. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes Boca Raton, FL: CRC Press
  116. 116.  Xu R-P, Li Y-Q, Tang J-X 2016. Recent advances in flexible organic light-emitting diodes. J. Mater. Chem. C 4:9116–42
    [Google Scholar]
  117. 117.  Jou J-H, Kumar S, Agrawal A, Li T-H, Sahoo S 2015. Approaches for fabricating high efficiency organic light emitting diodes. J. Mater. Chem. C 3:2974–3002
    [Google Scholar]
  118. 118.  Adachi C 2014. Third-generation organic electroluminescence materials. Jpn. J. Appl. Phys. 53:60101
    [Google Scholar]
  119. 119.  Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S 2001. Formation cross-sections of singlet and triplet excitons in π-conjugated polymers. Nature 409:494–97
    [Google Scholar]
  120. 120.  Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S et al. 1998. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–54
    [Google Scholar]
  121. 121.  Minaev B, Baryshnikov G, Agren H 2014. Principles of phosphorescent organic light emitting devices. Phys. Chem. Chem. Phys. 16:1719–58
    [Google Scholar]
  122. 122.  Yang Z, Mao Z, Xie Z, Zhang Y, Liu S et al. 2017. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46:915–1016
    [Google Scholar]
  123. 123.  Peng Q, Obolda A, Zhang M, Li F 2015. Organic light-emitting diodes using a neutral π radical as emitter: the emission from a doublet. Angew. Chem. 54:7091–95
    [Google Scholar]
  124. 124.  Neier E, Arias R, Rady N, Venkatesan S, Hudnall TW, Zakhidov A 2017. Solution-processed organic light-emitting diodes with emission from a doublet exciton; using (2,4,6-trichlorophenyl)methyl as emitter. Org. Electron. 44:126–31
    [Google Scholar]
  125. 125.  Li F, Zhang Y, Kwon SR, Lutkenhaus JL 2016. Electropolymerized polythiophenes bearing pendant nitroxide radicals. ACS Macro Lett 5:337–41
    [Google Scholar]
  126. 126.  Casado N, Hernández G, Veloso A, Devaraj S, Mecerreyes D, Armand M 2016. PEDOT radical polymer with synergetic redox and electrical properties. ACS Macro Lett 5:59–64
    [Google Scholar]
  127. 127.  Li F, Gore DN, Wang S, Lutkenhaus JL 2017. Unusual internal electron transfer in conjugated radical polymers. Angew. Chem. 56:9856–59
    [Google Scholar]
  128. 128.  Koivisto BD, Hicks RG 2005. The magnetochemistry of verdazyl radical-based materials. Coord. Chem. Rev. 249:2612–30
    [Google Scholar]
  129. 129.  Hicks RG 2007. What's new in stable radical chemistry?. Org. Biomol. Chem. 5:1321–38
    [Google Scholar]
  130. 130.  Kemper TW, Larsen RE, Gennett T 2014. Relationship between molecular structure and electron transfer in a polymeric nitroxyl-radical energy storage material. J. Phys. Chem. C 118:17213–20
    [Google Scholar]
  131. 131.  Kemper TW, Larsen RE, Gennett T 2015. Density of states and the role of energetic disorder in charge transport in an organic radical polymer in the solid state. J. Phys. Chem. C 119:3721369–75
    [Google Scholar]
  132. 132.  Bobela DC, Hughes BK, Braunecker WA, Kemper TW, Larsen RE, Gennett T 2015. Close packing of nitroxide radicals in stable organic radical polymeric materials. J. Phys. Chem. Lett. 6:1414–19
    [Google Scholar]
  133. 133.  Kemper TW, Gennett T, Larsen RE 2016. Molecular dynamics simulation study of solvent and state of charge effects on solid-phase structure and counterion binding in a nitroxide radical containing polymer energy storage material. J. Phys. Chem. C 120:25639–46
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060817-083945
Loading
/content/journals/10.1146/annurev-chembioeng-060817-083945
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error