1932

Abstract

The ribosome is the cell's factory for protein synthesis. With protein synthesis rates of up to 20 amino acids per second and at an accuracy of 99.99%, the extraordinary catalytic capacity of the bacterial translation machinery has attracted extensive efforts to engineer, reconstruct, and repurpose it for biochemical studies and novel functions. Despite these efforts, the potential for harnessing the translation apparatus to manufacture bio-based products beyond natural limits remains underexploited, and fundamental constraints on the chemistry that the ribosome's RNA-based active site can carry out are unknown. This review aims to cover the past and present advances in ribosome design and engineering to understand the fundamental biology of the ribosome to facilitate the construction of synthetic manufacturing machines. The prospects for the development of engineered, or designer, ribosomes for novel polymer synthesis are reviewed, future challenges are considered, and promising advances in a variety of applications are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060817-084129
2018-06-07
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/9/1/annurev-chembioeng-060817-084129.html?itemId=/content/journals/10.1146/annurev-chembioeng-060817-084129&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Kaczanowska M, Rydén-Aulin M 2007. Ribosome biogenesis and the translation process in Escherichia coli. . Microbiol. Mol. Biol. Rev. 71:477–94
    [Google Scholar]
  2. 2.  Shajani Z, Sykes MT, Williamson JR 2011. Assembly of bacterial ribosomes. Annu. Rev. Biochem. 80:501–26
    [Google Scholar]
  3. 3.  Bremer H, Dennis P 2008. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus 3:1 https://doi.org/10.1128/ecosal.5.2.3
    [Crossref] [Google Scholar]
  4. 4.  Parker J 1989. Errors and alternatives in reading the universal genetic code. Microbiol. Rev. 53:273–98
    [Google Scholar]
  5. 5.  Brosius J, Palmer ML, Kennedy PJ, Noller HF 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . PNAS 75:4801–5
    [Google Scholar]
  6. 6.  Brosius J, Dull TJ, Noller HF 1980. Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. PNAS 77:201–4
    [Google Scholar]
  7. 7.  Brownlee GG, Sanger F, Barrell BG 1967. Nucleotide sequence of 5S-ribosomal RNA from Escherichia coli. . Nature 215:735–36
    [Google Scholar]
  8. 8.  Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR 1982. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. . Cell 31:147–57
    [Google Scholar]
  9. 9.  Zaug AJ, Grabowski PJ, Cech TR 1983. Autocatalytic cyclization of an excised intervening sequence RNA is a cleavage-ligation reaction. Nature 301:578–83
    [Google Scholar]
  10. 10.  Green R, Noller HF 1997. Ribosomes and translation. Annu. Rev. Biochem. 66:679–716
    [Google Scholar]
  11. 11.  Nissen P, Hansen J, Ban N, Moore PB, Steitz TA 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–30
    [Google Scholar]
  12. 12.  Gray MW, Burger G, Lang BF 1999. Mitochondrial evolution. Science 283:1476–81
    [Google Scholar]
  13. 13.  Gongadze GM 2011. 5S rRNA and ribosome. Biochemistry 76:1450–64
    [Google Scholar]
  14. 14.  Shine J, Dalgarno L 1974. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. PNAS 71:1342–46
    [Google Scholar]
  15. 15.  Qin D, Abdi NM, Fredrick K 2007. Characterization of 16S rRNA mutations that decrease the fidelity of translation initiation. RNA 13:2348–55
    [Google Scholar]
  16. 16.  Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–48
    [Google Scholar]
  17. 17.  Kimura S, Suzuki T 2010. Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA. Nucleic Acids Res 38:1341–52
    [Google Scholar]
  18. 18.  Welch M, Chastang J, Yarus M 1995. An inhibitor of ribosomal peptidyl transferase using the transition-state analogy. Biochemistry 34:385–90
    [Google Scholar]
  19. 19.  Hardy SJ 1975. The stoichiometry of the ribosomal proteins of Escherichia coli. . Mol. Gen. Genet. 140:253–74
    [Google Scholar]
  20. 20.  Wilson DN, Nierhaus KH 2005. Ribosomal proteins in the spotlight. Crit. Rev. Biochem. Mol. Biol. 40:243–67
    [Google Scholar]
  21. 21.  Gregory ST, Dahlberg AE 1999. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. J. Mol. Biol. 289:827–34
    [Google Scholar]
  22. 22.  Ozaki M, Mizushima S, Nomura M 1969. Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. . coli. Nature 222:333–39
    [Google Scholar]
  23. 23.  Hampl H, Schulze H, Nierhaus KH 1981. Ribosomal components from Escherichia coli 50 S subunits involved in the reconstitution of peptidyltransferase activity. J. Biol. Chem. 256:2284–88
    [Google Scholar]
  24. 24.  Dabbs ER 1979. Selection for Escherichia coli mutants with proteins missing from the ribosome. J. Bacteriol. 140:734–37
    [Google Scholar]
  25. 25.  Shoji S, Dambacher CM, Shajani Z, Williamson JR, Schultz PG 2011. Systematic chromosomal deletion of bacterial ribosomal protein genes. J. Mol. Biol. 413:751–61
    [Google Scholar]
  26. 26.  Khaitovich P, Mankin AS, Green R, Lancaster L, Noller HF 1999. Characterization of functionally active subribosomal particles from Thermus aquaticus. . PNAS 96:85–90
    [Google Scholar]
  27. 27.  Wower J, Hixson SS, Zimmermann RA 1988. Photochemical cross-linking of yeast tRNAPhe containing 8-azidoadenosine at positions 73 and 76 to the Escherichia coli ribosome. Biochemistry 27:8114–21
    [Google Scholar]
  28. 28.  Eilat DAN, Pellegrini M, Oen H, De Groot N, Lapidot Y, Cantor CR 1974. Affinity labelling the acceptor site of the peptidyl transferase centre of the Escherichia coli ribosome. Nature 250:514–16
    [Google Scholar]
  29. 29.  Abdurashidova GG, Tsvetkova EA, Budowsky EI 1991. Direct tRNA-protein interactions in ribosomal complexes. Nucleic Acids Res 19:1909–15
    [Google Scholar]
  30. 30.  Schulze H, Nierhaus KH 1982. Minimal set of ribosomal components for reconstitution of the peptidyltransferase activity. EMBO J 1:609–13
    [Google Scholar]
  31. 31.  Khaitovich P, Mankin AS 2000. Reconstitution of the 50S subunit with in vitro-transcribed 23S rRNA: a new tool for studying peptidyltransferase. The Ribosome: Structure, Function, Antibiotics and Cellular Interactions RA Garrett, SR Douthwaite, A Liljas, AT Matheson, PB Moore, HF Noller 229–30 Washington, DC: ASM Press
    [Google Scholar]
  32. 32.  Hockenberry AJ, Pah AR, Jewett MC, Amaral LAN 2017. Leveraging genome-wide datasets to quantify the functional role of the anti-Shine–Dalgarno sequence in regulating translation efficiency. Open Biol 7:160239
    [Google Scholar]
  33. 33.  Steitz JA, Jakes K 1975. How ribosomes select initiator regions in mRNA: base pair formation between the 3′ terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. . PNAS 72:4734–38
    [Google Scholar]
  34. 34.  Kenner RA 1973. A protein-nucleic acid crosslink in 30S ribosomes. Biochem. Biophys. Res. Commun. 51:932–38
    [Google Scholar]
  35. 35.  Held WA, Gette WR, Nomura M 1974. Structure and function of bacterial ribosomes. 24. Role of 16S ribosomal ribonucleic acid and the 30S ribosomal protein S12 in the initiation of natural messenger ribonucleic acid translation. Biochemistry 13:2115–22
    [Google Scholar]
  36. 36.  de Boer HA, Hui A, Comstock LJ, Wong E, Vasser M 1983. Portable Shine-Dalgarno regions: a system for a systematic study of defined alterations of nucleotide sequences within E. coli ribosome binding sites. DNA 2:231–35
    [Google Scholar]
  37. 37.  Rodnina MV, Daviter T, Gromadski K, Wintermeyer W 2002. Structural dynamics of ribosomal RNA during decoding on the ribosome. Biochimie 84:745–54
    [Google Scholar]
  38. 38.  Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN et al. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–96
    [Google Scholar]
  39. 39.  Marquez V, Wilson DN, Tate WP, Triana-Alonso F, Nierhaus KH 2004. Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2. Cell 118:45–55
    [Google Scholar]
  40. 40.  Traub P, Nomura M 1968. Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. PNAS 59:777–84
    [Google Scholar]
  41. 41.  Culver GM, Noller HF 1999. Efficient reconstitution of functional Escherichia coli 30S ribosomal subunits from a complete set of recombinant small subunit ribosomal proteins. RNA 5:832–43
    [Google Scholar]
  42. 42.  Maki JA, Culver GM 2005. Recent developments in factor-facilitated ribosome assembly. Methods 36:313–20
    [Google Scholar]
  43. 43.  Nierhaus KH, Dohme F 1974. Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. . PNAS 71:4713–17
    [Google Scholar]
  44. 44.  Herold M, Nierhaus KH 1987. Incorporation of six additional proteins to complete the assembly map of the 50 S subunit from Escherichia coli ribosomes. J. Biol. Chem. 262:8826–33
    [Google Scholar]
  45. 45.  Green R, Noller HF 1996. In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function. RNA 2:1011–21
    [Google Scholar]
  46. 46.  Erlacher MD, Chirkova A, Voegele P, Polacek N 2011. Generation of chemically engineered ribosomes for atomic mutagenesis studies on protein biosynthesis. Nat. Protoc. 6:580–92
    [Google Scholar]
  47. 47.  Nierhaus KH 1990. Reconstitution of ribosomes. Ribosomes and Protein Synthesis: A Practical Approach G Spedding 89–161 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  48. 48.  Polacek N 2011. The ribosome meets synthetic biology. ChemBioChem 12:2122–24
    [Google Scholar]
  49. 49.  Semrad K, Green R 2002. Osmolytes stimulate the reconstitution of functional 50S ribosomes from in vitro transcripts of Escherichia coli 23S rRNA. RNA 8:401–11
    [Google Scholar]
  50. 50.  Jewett MC, Fritz BR, Timmerman LE, Church GM 2013. In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation. Mol. Syst. Biol. 9:678
    [Google Scholar]
  51. 51.  Fritz BR, Jewett MC 2014. The impact of transcriptional tuning on in vitro integrated rRNA transcription and ribosome construction. Nucleic Acids Res 42:6774–85
    [Google Scholar]
  52. 52.  Fritz BR, Jamil OK, Jewett MC 2015. Implications of macromolecular crowding and reducing conditions for in vitro ribosome construction. Nucleic Acids Res 43:4774–84
    [Google Scholar]
  53. 53.  Murase Y, Nakanishi H, Tsuji G, Sunami T, Ichihashi N 2018. In vitro evolution of unmodified 16S rRNA for simple ribosome reconstitution. ACS Synth. Biol. 7:576–83
    [Google Scholar]
  54. 54.  Forster AC, Church GM 2006. Towards synthesis of a minimal cell. Mol. Syst. Biol. 2:45
    [Google Scholar]
  55. 55.  Jewett MC, Forster AC 2010. Update on designing and building minimal cells. Curr. Opin. Biotechnol. 21:697–703
    [Google Scholar]
  56. 56.  Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T et al. 2001. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19:751–55
    [Google Scholar]
  57. 57.  Li J, Wassie B, Church GM 2017. Physiological assembly of functionally active 30S ribosomal subunits from in vitro synthesized parts. bioRxiv. https://doi.org/10.1101/137745
    [Crossref]
  58. 58.  Prince JB, Taylor BH, Thurlow DL, Ofengand J, Zimmermann RA 1982. Covalent crosslinking of tRNA1Val to 16S RNA at the ribosomal P site: identification of crosslinked residues. PNAS 79:5450–54
    [Google Scholar]
  59. 59.  Wower J, Hixson SS, Zimmermann RA 1989. Labeling the peptidyltransferase center of the Escherichia coli ribosome with photoreactive tRNA(Phe) derivatives containing azidoadenosine at the 3′ end of the acceptor arm: a model of the tRNA-ribosome complex. PNAS 86:5232–36
    [Google Scholar]
  60. 60.  Sato NS, Hirabayashi N, Agmon I, Yonath A, Suzuki T 2006. Comprehensive genetic selection revealed essential bases in the peptidyl-transferase center. PNAS 103:15386–91
    [Google Scholar]
  61. 61.  Yassin A, Mankin AS 2007. Potential new antibiotic sites in the ribosome revealed by deleterious mutations in RNA of the large ribosomal subunit. J. Biol. Chem. 282:24329–42
    [Google Scholar]
  62. 62.  Hui A, de Boer HA 1987. Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. . PNAS 84:4762–66
    [Google Scholar]
  63. 63.  Leonov AA, Sergiev PV, Bogdanov AA, Brimacombe R, Dontsova OA 2003. Affinity purification of ribosomes with a lethal G2655C mutation in 23S rRNA that affects the translocation. J. Biol. Chem. 278:25664–70
    [Google Scholar]
  64. 64.  Youngman EM, Brunelle JL, Kochaniak AB, Green R 2004. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117:589–99
    [Google Scholar]
  65. 65.  Hesslein AE, Katunin VI, Beringer M, Kosek AB, Rodnina MV, Strobel SA 2004. Exploration of the conserved A+C wobble pair within the ribosomal peptidyl transferase center using affinity purified mutant ribosomes. Nucleic Acids Res 32:3760–70
    [Google Scholar]
  66. 66.  Ederth J, Mandava CS, Dasgupta S, Sanyal S 2009. A single-step method for purification of active His-tagged ribosomes from a genetically engineered Escherichia coli. . Nucleic Acids Res 37:e15
    [Google Scholar]
  67. 67.  Asai T, Zaporojets D, Squires C, Squires CL 1999. An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. PNAS 96:1971–76
    [Google Scholar]
  68. 68.  Vázquez-Laslop N, Ramu H, Klepacki D, Kannan K, Mankin AS 2010. The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide. EMBO J 29:3108–17
    [Google Scholar]
  69. 69.  Sahu B, Khade PK, Joseph S 2012. Functional replacement of two highly conserved tetraloops in the bacterial ribosome. Biochemistry 51:7618–26
    [Google Scholar]
  70. 70.  Burakovsky DE, Sergiev PV, Steblyanko MA, Kubarenko AV, Konevega AL et al. 2010. Mutations at the accommodation gate of the ribosome impair RF2-dependent translation termination. RNA 16:1848–53
    [Google Scholar]
  71. 71.  Davis L, Chin JW 2012. Designer proteins: applications of genetic code expansion in cell biology. Nat. Rev. Mol. Cell Biol. 13:168–82
    [Google Scholar]
  72. 72.  Dumas A, Lercher L, Spicer CD, Davis BG 2015. Designing logical codon reassignment—expanding the chemistry in biology. Chem. Sci. 6:50–69
    [Google Scholar]
  73. 73.  Forster AC, Tan Z, Nalam MN, Lin H, Qu H et al. 2003. Programming peptidomimetic syntheses by translating genetic codes designed de novo. PNAS 100:6353–57
    [Google Scholar]
  74. 74.  O'Donoghue P, Ling J, Wang Y-S, Söll D 2013. Upgrading protein synthesis for synthetic biology. Nat. Chem. Biol. 9:594–98
    [Google Scholar]
  75. 75.  Wang L, Brock A, Herberich B, Schultz PG 2001. Expanding the genetic code of Escherichia coli. . Science 292:498–500
    [Google Scholar]
  76. 76.  Wang L, Xie J, Schultz PG 2006. Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 35:225–49
    [Google Scholar]
  77. 77.  Rackham O, Chin JW 2005. Cellular logic with orthogonal ribosomes. J. Am. Chem. Soc. 127:17584–85
    [Google Scholar]
  78. 78.  Rackham O, Chin JW 2005. A network of orthogonal ribosome · mRNA pairs. Nat. Chem. Biol. 1:159–66
    [Google Scholar]
  79. 79.  Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW 2010. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464:441–44
    [Google Scholar]
  80. 80.  Zhang Y, Ptacin JL, Fischer EC, Aerni HR, Caffaro CE et al. 2017. A semi-synthetic organism that stores and retrieves increased genetic information. Nature 551:644–47
    [Google Scholar]
  81. 81.  Davis L, Chin JW 2012. Designer proteins: applications of genetic code expansion in cell biology. Nat. Rev. Mol. Cell Biol. 13:168–82
    [Google Scholar]
  82. 82.  Forster AC, Tan Z, Nalam MN, Lin H, Qu H et al. 2003. Programming peptidomimetic syntheses by translating genetic codes designed de novo. PNAS 100:6353–57
    [Google Scholar]
  83. 83.  O'Donoghue P, Ling J, Wang YS, Soll D 2013. Upgrading protein synthesis for synthetic biology. Nat. Chem. Biol. 9:594–98
    [Google Scholar]
  84. 84.  Fahnestock S, Rich A 1971. Ribosome-catalyzed polyester formation. Science 173:340–43
    [Google Scholar]
  85. 85.  Ohta A, Murakami H, Higashimura E, Suga H 2007. Synthesis of polyester by means of genetic code reprogramming. Chem. Biol. 14:1315–22
    [Google Scholar]
  86. 86.  Ohta A, Murakami H, Suga H 2008. Polymerization of α-hydroxy acids by ribosomes. ChemBioChem 9:2773–78
    [Google Scholar]
  87. 87.  Ellman JA, Mendel D, Schultz PG 1992. Site-specific incorporation of novel backbone structures into proteins. Science 255:197–200
    [Google Scholar]
  88. 88.  Kawakami T, Murakami H, Suga H 2008. Ribosomal synthesis of polypeptoids and peptoid-peptide hybrids. J. Am. Chem. Soc. 130:16861–63
    [Google Scholar]
  89. 89.  Guo J, Wang J, Anderson JC, Schultz PG 2008. Addition of an α-hydroxy acid to the genetic code of bacteria. Angew. Chem. Int. Ed. 47:722–25
    [Google Scholar]
  90. 90.  Subtelny AO, Hartman MCT, Szostak JW 2008. Ribosomal synthesis of N-methyl peptides. J. Am. Chem. Soc. 130:6131–36
    [Google Scholar]
  91. 91.  Englander MT, Avins JL, Fleisher RC, Liu B, Effraim PR et al. 2015. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center. PNAS 112:6038–43
    [Google Scholar]
  92. 92.  Dedkova LM, Fahmi NE, Paul R, del Rosario M, Zhang L et al. 2012. β-Puromycin selection of modified ribosomes for in vitro incorporation of β-amino acids. Biochemistry 51:401–15
    [Google Scholar]
  93. 93.  Maini R, Nguyen DT, Chen S, Dedkova LM, Chowdhury SR et al. 2013. Incorporation of β-amino acids into dihydrofolate reductase by ribosomes having modifications in the peptidyltransferase center. Bioorg. Med. Chem. 21:1088–96
    [Google Scholar]
  94. 94.  Maini R, Chowdhury SR, Dedkova LM, Roy B, Daskalova SM et al. 2015. Protein synthesis with ribosomes selected for the incorporation of β-amino acids. Biochemistry 54:3694–706
    [Google Scholar]
  95. 95.  Ohta A, Yamagishi Y, Suga H 2008. Synthesis of biopolymers using genetic code reprogramming. Curr. Opin. Chem. Biol. 12:159–67
    [Google Scholar]
  96. 96.  Wu N, Deiters A, Cropp TA, King D, Schultz PG 2004. A genetically encoded photocaged amino acid. J. Am. Chem. Soc. 126:14306–7
    [Google Scholar]
  97. 97.  Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG 2006. A genetically encoded fluorescent amino acid. PNAS 103:9785–89
    [Google Scholar]
  98. 98.  Chin JW, Martin AB, King DS, Wang L, Schultz PG 2002. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. . PNAS 99:11020–24
    [Google Scholar]
  99. 99.  Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG 2002. Addition of p-azido-l-phenylalanine to the genetic code of Escherichia coli. . J. Am. Chem. Soc. 124:9026–27
    [Google Scholar]
  100. 100.  Liu CC, Schultz PG 2010. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79:413–44
    [Google Scholar]
  101. 101.  Neumann H, Hancock SM, Buning R, Routh A, Chapman L et al. 2009. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol. Cell 36:153–63
    [Google Scholar]
  102. 102.  Lee S, Oh S, Yang A, Kim J, Soll D et al. 2013. A facile strategy for selective incorporation of phosphoserine into histones. Angew. Chem. 52:5771–75
    [Google Scholar]
  103. 103.  Hubbell JA 2010. Drug development: longer-lived proteins. Nature 467:1051–52
    [Google Scholar]
  104. 104.  Wals K, Ovaa H 2014. Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Front. Chem. 2:15
    [Google Scholar]
  105. 105.  Zimmerman ES, Heibeck TH, Gill A, Li X, Murray CJ et al. 2014. Production of site-specific antibody–drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug. Chem. 25:351–61
    [Google Scholar]
  106. 106.  Cohen P 2002. Protein kinases—the major drug targets of the twenty-first century?. Nat. Rev. Drug Discov. 1:309–15
    [Google Scholar]
  107. 107.  Pray LA 2008. Gleevec: the breakthrough in cancer treatment. Nat. Educ. 1:37
    [Google Scholar]
  108. 108.  Ramos JW 2005. Cancer research center hotline: PEA-15 phosphoprotein: a potential cancer drug target. Hawaii Med. J. 64:77–80
    [Google Scholar]
  109. 109.  Voronkov M, Braithwaite SP, Stock JB 2011. Phosphoprotein phosphatase 2A: a novel druggable target for Alzheimer's disease. Future Med. Chem. 3:821–33
    [Google Scholar]
  110. 110.  Krishnamoorthy S, Liu Z, Hong A, Zhu R, Chen H et al. 2013. A novel phosphopeptide microarray based interactome map in breast cancer cells reveals phosphoprotein-GRB2 cell signaling networks. PLOS ONE 8:e67634
    [Google Scholar]
  111. 111.  Axup JY, Bajjuri KM, Ritland M, Hutchins BM, Kim CH et al. 2012. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. PNAS 109:16101–6
    [Google Scholar]
  112. 112.  Cho H, Daniel T, Buechler YJ, Litzinger DC, Maio Z et al. 2011. Optimized clinical performance of growth hormone with an expanded genetic code. PNAS 108:9060–65
    [Google Scholar]
  113. 113.  Romano NH, Sengupta D, Chung C, Heilshorn SC 2011. Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix. Biochim. Biophys. Acta 1810:339–49
    [Google Scholar]
  114. 114.  Zhong Z, Yang H, Zhang C, Lewis JC 2012. Synthesis and catalytic activity of amino acids and metallopeptides with catalytically active metallocyclic side chains. Organometallics 31:7328–31
    [Google Scholar]
  115. 115.  Albayrak C, Swartz JR 2014. Direct polymerization of proteins. ACS Synth. Biol. 3:353–62
    [Google Scholar]
  116. 116.  Hoesl MG, Budisa N 2012. Recent advances in genetic code engineering in Escherichia coli. . Curr. Opin. Biotechnol. 23:751–57
    [Google Scholar]
  117. 117.  Des Soye BJ, Patel JR, Isaacs FJ, Jewett MC 2015. Repurposing the translation apparatus for synthetic biology. Curr. Opin. Chem. Biol. 28:83–90
    [Google Scholar]
  118. 118.  Quast RB, Mrusek D, Hoffmeister C, Sonnabend A, Kubick S 2015. Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis. FEBS Lett 589:1703–12
    [Google Scholar]
  119. 119.  Czekster CM, Robertson WE, Walker AS, Söll D, Schepartz A 2016. In vivo biosynthesis of a β-amino acid-containing protein. J. Am. Chem. Soc. 138:5194–97
    [Google Scholar]
  120. 120.  Rogerson DT, Sachdeva A, Wang K, Haq T, Kazlauskaite A et al. 2015. Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat. Chem. Biol. 11:496–503
    [Google Scholar]
  121. 121.  Gallagher RR, Li Z, Lewis AO, Isaacs FJ 2014. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Nat. Protoc. 9:2301–16
    [Google Scholar]
  122. 122.  Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G et al. 2009. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–98
    [Google Scholar]
  123. 123.  Amiram M, Haimovich AD, Fan C, Wang Y-S, Aerni H-R et al. 2015. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat. Biotechnol. 33:1272–79
    [Google Scholar]
  124. 124.  Murakami H, Ohta A, Goto Y, Sako Y, Suga H 2006. Flexizyme as a versatile tRNA acylation catalyst and the application for translation. Proc. Nucleic Acids Symp. Ser. 50:35–36
    [Google Scholar]
  125. 125.  Goto Y, Katoh T, Suga H 2011. Flexizymes for genetic code reprogramming. Nat. Protoc. 6:779–90
    [Google Scholar]
  126. 126.  Niwa N, Yamagishi Y, Murakami H, Suga H 2009. A flexizyme that selectively charges amino acids activated by a water-friendly leaving group. Bioorg. Med. Chem. Lett. 19:3892–94
    [Google Scholar]
  127. 127.  Ohuchi M, Murakami H, Suga H 2007. The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus. Curr. Opin. Chem. Biol. 11:537–42
    [Google Scholar]
  128. 128.  Hipolito CJ, Suga H 2012. Ribosomal production and in vitro selection of natural product-like peptidomimetics: the FIT and RaPID systems. Curr. Opin. Chem. Biol. 16:196–203
    [Google Scholar]
  129. 129.  Ohshiro Y, Nakajima E, Goto Y, Fuse S, Takahashi T, Suga H 2011. Ribosomal synthesis of backbone‐macrocyclic peptides containing γ‐amino acids. ChemBioChem 12:1183–87
    [Google Scholar]
  130. 130.  Ohta A, Murakami H, Higashimura E, Suga H 2007. Synthesis of polyester by means of genetic code reprogramming. Chem. Biol. 14:1315–22
    [Google Scholar]
  131. 131.  Ohta A, Murakami H, Suga H 2008. Polymerization of α‐hydroxy acids by ribosomes. ChemBioChem 9:2773–78
    [Google Scholar]
  132. 132.  Sako Y, Goto Y, Murakami H, Suga H 2008. Ribosomal synthesis of peptidase-resistant peptides closed by a nonreducible inter-side-chain bond. ACS Chem. Biol. 3:241–49
    [Google Scholar]
  133. 133.  Sako Y, Morimoto J, Murakami H, Suga H 2008. Ribosomal synthesis of bicyclic peptides via two orthogonal inter-side-chain reactions. J. Am. Chem. Soc. 130:7232–34
    [Google Scholar]
  134. 134.  Fujino T, Goto Y, Suga H, Murakami H 2016. Ribosomal synthesis of peptides with multiple β-amino acids. J. Am. Chem. Soc. 138:1962–69
    [Google Scholar]
  135. 135.  Katoh T, Tajima K, Suga H 2017. Consecutive elongation of d-amino acids in translation. Cell Chem. Biol. 24:46–54
    [Google Scholar]
  136. 136.  Kawakami T, Murakami H, Suga H 2008. Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides. Chem. Biol. 15:32–42
    [Google Scholar]
  137. 137.  Katoh T, Iwane Y, Suga H 2017. Logical engineering of D-arm and T-stem of tRNA that enhances d-amino acid incorporation. Nucleic Acids Res 45:12601–10
    [Google Scholar]
  138. 138.  Katoh T, Wohlgemuth I, Nagano M, Rodnina MV, Suga H 2016. Essential structural elements in tRNA(Pro) for EF-P-mediated alleviation of translation stalling. Nat. Commun. 7:11657
    [Google Scholar]
  139. 139.  Englander MT, Avins JL, Fleisher RC, Liu B, Effraim PR et al. 2015. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center. PNAS 112:6038–43
    [Google Scholar]
  140. 140.  Park H-S, Hohn MJ, Umehara T, Guo L-T, Osborne EM et al. 2011. Expanding the genetic code of Escherichia coli with phosphoserine. Science 333:1151–54
    [Google Scholar]
  141. 141.  Melnikov S, Mailliot J, Rigger L, Neuner S, Shin BS et al. 2016. Molecular insights into protein synthesis with proline residues. EMBO Rep 17:1776–84
    [Google Scholar]
  142. 142.  Katoh T, Wohlgemuth I, Nagano M, Rodnina MV, Suga H 2016. Essential structural elements in tRNAPro for EF-P-mediated alleviation of translation stalling. Nat. Commun. 7:11657
    [Google Scholar]
  143. 143.  Doerfel LK, Wohlgemuth I, Kubyshkin V, Starosta AL, Wilson DN et al. 2015. Entropic contribution of elongation factor P to proline positioning at the catalytic center of the ribosome. J. Am. Chem. Soc. 137:12997–3006
    [Google Scholar]
  144. 144.  Polikanov YS, Steitz TA, Innis CA 2014. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 21:787–93
    [Google Scholar]
  145. 145.  Sievers A, Beringer M, Rodnina MV, Wolfenden R 2004. The ribosome as an entropy trap. PNAS 101:7897–901
    [Google Scholar]
  146. 146.  Maini R, Chowdhury SR, Dedkova LM, Roy B, Daskalova SM et al. 2015. Protein synthesis with ribosomes selected for the incorporation of β-amino acids. Biochemistry 54:3694
    [Google Scholar]
  147. 147.  Maini R, Dedkova LM, Paul R, Madathil MM, Chowdhury SR et al. 2015. Ribosome-mediated incorporation of dipeptides and dipeptide analogues into proteins in vitro. J. Am. Chem. Soc. 137:11206–9
    [Google Scholar]
  148. 148.  Maini R, Nguyen DT, Chen S, Dedkova LM, Chowdhury SR et al. 2013. Incorporation of β-amino acids into dihydrofolate reductase by ribosomes having modifications in the peptidyltransferase center. Bioorg. Med. Chem. 21:1088–96
    [Google Scholar]
  149. 149.  Wang K, Neumann H, Peak-Chew SY, Chin JW 2007. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat. Biotechnol. 25:770–77
    [Google Scholar]
  150. 150.  Chubiz LM, Rao CV 2008. Computational design of orthogonal ribosomes. Nucleic Acids Res 36:4038–46
    [Google Scholar]
  151. 151.  Orelle C, Carlson ED, Szal T, Florin T, Jewett MC, Mankin AS 2015. Protein synthesis by ribosomes with tethered subunits. Nature 524:119–24
    [Google Scholar]
  152. 152.  Fried SD, Schmied WH, Uttamapinant C, Chin JW 2015. Ribosome subunit stapling for orthogonal translation in E. . coli. Angew. Chem. Int. Ed. 54:12791–94
    [Google Scholar]
  153. 153.  Terasaka N, Hayashi G, Katoh T, Suga H 2014. An orthogonal ribosome-tRNA pair via engineering of the peptidyl transferase center. Nat. Chem. Biol. 10:555–57
    [Google Scholar]
  154. 154.  Thompson J, Kim DF, O'Connor M, Lieberman KR, Bayfield MA et al. 2001. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. PNAS 98:9002–7
    [Google Scholar]
  155. 155.  Schmeing TM, Huang KS, Strobel SA, Steitz TA 2005. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438:7067520–24
    [Google Scholar]
  156. 156.  Schmeing TM, Moore PB, Steitz TA 2003. Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA 9:1345–52
    [Google Scholar]
  157. 157.  Moazed D, Noller HF 1989. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57:585–97
    [Google Scholar]
  158. 158.  Chirkova A, Erlacher MD, Clementi N, Zywicki M, Aigner M, Polacek N 2010. The role of universally conserved A2450–C2063 base pair in the ribosomal peptidyl transferase center. Nucleic Acids Res 38:144844–55
    [Google Scholar]
  159. 159.  Petry S, Brodersan DE, Murphy FV IV, Dunham CM, Selmer M et al. 2005. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123:1255–66
    [Google Scholar]
  160. 160.  Polacek N, Gomez MJ, Ito K, Xiong L, Nakamura Y, Mankin A 2003. The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol. Cell 11:1103–12
    [Google Scholar]
  161. 161.  Sigmund CD, Morgan EA 1982. Erythromycin resistance due to a mutation in a ribosomal RNA operon of Escherichia coli. . PNAS 79:185602–6
    [Google Scholar]
  162. 162.  Ettayebi M, Prasad SM, Morgan EA 1985. Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. . J. Bacteriol. 162:2551–57
    [Google Scholar]
  163. 163.  Cochella L, Green R 2004. Isolation of antibiotic resistance mutations in the rRNA by using an in vitro selection system. PNAS 101:113786–91
    [Google Scholar]
  164. 164.  Garza-Ramos G, Xiong L, Zhong P, Mankin A 2001. Binding site of macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA. J. Bacteriol. 183:236898–907
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060817-084129
Loading
/content/journals/10.1146/annurev-chembioeng-060817-084129
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error