1932

Abstract

Macromolecule–drug conjugates (MDCs) occupy a critical niche in modern pharmaceuticals that deals with the assembly and combination of a macromolecular carrier, a drug cargo, and a linker toward the creation of effective therapeutics. Macromolecular carriers such as synthetic biocompatible polymers and proteins are often exploited for their inherent ability to improve drug circulation, prevent off-target drug cytotoxicity, and widen the therapeutic index of drugs. One of the most significant challenges in MDC design involves tuning their drug release kinetics to achieve high spatiotemporal precision. This level of control requires a thorough qualitative and quantitative understanding of the bond cleavage event. In this review, we highlight specific research findings that emphasize the importance of establishing a precise structure–function relationship for MDCs that can be used to predict their bond cleavage and drug release kinetic parameters.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-091720-030636
2021-06-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-091720-030636.html?itemId=/content/journals/10.1146/annurev-chembioeng-091720-030636&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ali Y, Alqudah A, Ahmad S, Abd Hamid S, Farooq U 2019. Macromolecules as targeted drugs delivery vehicles: an overview. Des. Monomers Polym. 22:191–97
    [Google Scholar]
  2. 2. 
    Sezaki H, Hashida M 1985. Macromolecules as drug delivery systems. Directed Drug Delivery: A Multidisciplinary Problem RT Borchardt, AJ Repta, VJ Stella 189–208 Clifton, NJ: Humana
    [Google Scholar]
  3. 3. 
    Kato Y, Hara T. 1983. Macromolecule-anticancer drug conjugates. J. Synth. Org. Chem. Jpn. 41:121135–42
    [Google Scholar]
  4. 4. 
    Sezaki H, Hashida M. 1984. Macromolecule–drug conjugates in targeted cancer chemotherapy. Crit. Rev. Ther. Drug Carrier Syst. 1:11–38
    [Google Scholar]
  5. 5. 
    Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH et al. 2014. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J. Control. Release 187:133–44
    [Google Scholar]
  6. 6. 
    Takakura Y, Hashida M. 1996. Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm. Res. 13:6820–31
    [Google Scholar]
  7. 7. 
    Takakura Y. 1996. Development of drug delivery systems for macromolecular drugs. Yakugaku Zasshi 116:7519–32
    [Google Scholar]
  8. 8. 
    Hurwitz E. 1983. Specific and nonspecific macromolecule–drug conjugates for the improvement of cancer chemotherapy. Biopolymers 22:1557–67
    [Google Scholar]
  9. 9. 
    Yang J, Kopeček J. 2014. Macromolecular therapeutics. J. Control. Release 190:288–303
    [Google Scholar]
  10. 10. 
    Pérez-Herrero E, Fernández-Medarde A. 2015. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 93:53–79
    [Google Scholar]
  11. 11. 
    Gaudana R, Ananthula HK, Parenky A, Mitra AK. 2010. Ocular drug delivery. AAPS J 12:3348–60
    [Google Scholar]
  12. 12. 
    Anselmo AC, Mitragotri S. 2014. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release 190:15–28
    [Google Scholar]
  13. 13. 
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R 2007. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2:751–60
    [Google Scholar]
  14. 14. 
    Patton JS, Byron PR. 2007. Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6:67–74
    [Google Scholar]
  15. 15. 
    Illum L. 2002. Nasal drug delivery: new developments and strategies. Drug Discov. Today 7:231184–89
    [Google Scholar]
  16. 16. 
    Prausnitz MR, Langer R. 2008. Transdermal drug delivery. Nat. Biotechnol. 26:1261–68
    [Google Scholar]
  17. 17. 
    Xu M, Qian J, Liu X, Liu T, Wang H. 2015. Stimuli-responsive PEGylated prodrugs for targeted doxorubicin delivery. Mater. Sci. Eng. C 50:341–47
    [Google Scholar]
  18. 18. 
    Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. 2016. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116:95338–431
    [Google Scholar]
  19. 19. 
    Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, Serpooshan V, Jacob KI et al. 2017. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J. Control. Release 253:46–63
    [Google Scholar]
  20. 20. 
    Pang X, Jiang Y, Xiao Q, Leung AW, Hua H, Xu C. 2016. pH-responsive polymer-drug conjugates: design and progress. J. Control. Release 222:116–29
    [Google Scholar]
  21. 21. 
    Wei H, Zhuo RX, Zhang XZ. 2013. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog. Polym. Sci. 38:3–4503–35
    [Google Scholar]
  22. 22. 
    Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. 2013. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev. 42:31147–235
    [Google Scholar]
  23. 23. 
    Kuo YJ, Chang YT, Chung CH, Chuang WJ, Huang TF. 2020. Improved antithrombotic activity and diminished bleeding side effect of a PEGylated αIIbβ3 antagonist, disintegrin. Toxins 12:7426
    [Google Scholar]
  24. 24. 
    Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF. 1977. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252:113582–86
    [Google Scholar]
  25. 25. 
    Savoca KV, Abuchowski A, van Es T, Davis FF, Palczuk NC. 1979. Preparation of a non-immunogenic arginase by the covalent attachment of polyethylene glycol. Biochim. Biophys. Acta 578:147–53
    [Google Scholar]
  26. 26. 
    Milton Harris J, Chess RB 2003. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2:214–21
    [Google Scholar]
  27. 27. 
    Maeda H. 2012. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J. Control. Release 164:2138–44
    [Google Scholar]
  28. 28. 
    Bildstein L, Dubernet C, Couvreur P. 2011. Prodrug-based intracellular delivery of anticancer agents. Adv. Drug Deliv. Rev. 63:1–23–23
    [Google Scholar]
  29. 29. 
    Kopeček J. 2013. Polymer-drug conjugates: origins, progress to date and future directions. Adv. Drug Deliv. Rev. 65:149–59
    [Google Scholar]
  30. 30. 
    Maeda H, Tsukigawa K, Fang J 2016. A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy—problems, solutions, and prospects. Microcirculation 23:3173–82
    [Google Scholar]
  31. 31. 
    Maeda H. 2015. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 91:3–6
    [Google Scholar]
  32. 32. 
    Duncan R, Vicent MJ. 2013. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv. Drug Deliv. Rev. 65:160–70
    [Google Scholar]
  33. 33. 
    Ekladious I, Colson YL, Grinstaff MW. 2019. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov. 18:4273–94
    [Google Scholar]
  34. 34. 
    Seidi F, Jenjob R, Crespy D. 2018. Designing smart polymer conjugates for controlled release of payloads. Chem. Rev. 118:73965–4036
    [Google Scholar]
  35. 35. 
    Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. 2010. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 1:149–73
    [Google Scholar]
  36. 36. 
    Duncan R. 1992. Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs 3:175–210
    [Google Scholar]
  37. 37. 
    Duncan R, Spreafico F. 1994. Polymer conjugates: pharmacokinetic considerations for design and development. Clin. Pharmacokinet. 27:290–306
    [Google Scholar]
  38. 38. 
    Chapman A. 1999. Therapeutic antibody fragments with prolonged in vivo half-lives. Nat. Biotechnol. 17:780–83
    [Google Scholar]
  39. 39. 
    Duncan R. 2003. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2:347–60
    [Google Scholar]
  40. 40. 
    Ringsdorf H. 1975. Structure and properties of pharmacologically active polymers. J. Polym. Sci. 51:135–53
    [Google Scholar]
  41. 41. 
    Davis F. 2002. The origin of pegnology. Adv. Drug Deliv. Rev. 54:457–58
    [Google Scholar]
  42. 42. 
    Alconcel SNS, Baas AS, Maynard HD. 2011. FDA-approved poly(ethylene glycol)-protein conjugate drugs. Polym. Chem. 2:1442–48
    [Google Scholar]
  43. 43. 
    Biochempeg 2019. FDA approved PEGylated drugs 2020. Biochempeg Aug. 20. https://www.biochempeg.com/article/58.html
    [Google Scholar]
  44. 44. 
    Qin X, Li Y. 2020. Strategies to design and synthesize polymer-based stimuli-responsive drug-delivery nanosystems. ChemBioChem 21:91236–53
    [Google Scholar]
  45. 45. 
    Lee S. 2001. Drug delivery systems employing 1,6-elimination: releasable poly(ethylene glycol) conjugates of proteins. Bioconj. Chem. 12:163–69
    [Google Scholar]
  46. 46. 
    Gong Y, Leroux JC, Gauthier MA. 2015. Releasable conjugation of polymers to proteins. Bioconjug. Chem. 26:71179–81
    [Google Scholar]
  47. 47. 
    Chen J, Zhao M, Feng F, Sizovs A, Wang J. 2013. Tunable thioesters as “reduction” responsive functionality for traceless reversible protein PEGylation. J. Am. Chem. Soc. 135:3010938–41
    [Google Scholar]
  48. 48. 
    Zalipsky S, Mullah N, Engbers C, Hutchins MU, Kiwan R. 2007. Thiolytically cleavable dithiobenzyl urethane-linked polymer-protein conjugates as macromolecular prodrugs: reversible PEGylation of proteins. Bioconjug. Chem. 18:61869–78
    [Google Scholar]
  49. 49. 
    Jeong EM, Yoon JH, Lim J, Shin JW, Cho AY et al. 2018. Real-time monitoring of glutathione in living cells reveals that high glutathione levels are required to maintain stem cell function. Stem Cell Rep 10:2600–14
    [Google Scholar]
  50. 50. 
    Fitri LE, Iskandar A, Sardjono TW, Erliana UD, Rahmawati W et al. 2016. Plasma glutathione and oxidized glutathione level, glutathione/oxidized glutathione ratio, and albumin concentration in complicated and uncomplicated falciparum malaria. Asian Pac. J. Trop. Biomed. 6:8646–50
    [Google Scholar]
  51. 51. 
    Montero D, Tachibana C, Rahr Winther J, Appenzeller-Herzog C 2013. Intracellular glutathione pools are heterogeneously concentrated. Redox Biol 1:1508–13
    [Google Scholar]
  52. 52. 
    Forman HJ, Zhang H, Rinna A. 2009. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 30:1–21–12
    [Google Scholar]
  53. 53. 
    Turk BE, Huang LL, Piro ET, Cantley LC. 2001. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat. Biotechnol. 19:7661–67
    [Google Scholar]
  54. 54. 
    Rawlings ND. 2016. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation. Biochimie 122:5–30
    [Google Scholar]
  55. 55. 
    Böttger R, Hoffmann R, Knappe D. 2017. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLOS ONE 12:6e0178943
    [Google Scholar]
  56. 56. 
    Xu G, Shin SBY, Jaffrey SR 2009. Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini. PNAS 106:4619310–15
    [Google Scholar]
  57. 57. 
    Boulware KT, Daugherty PS 2006. Protease specificity determination by using cellular libraries of peptide substrates (CLiPS). PNAS 103:207583–88
    [Google Scholar]
  58. 58. 
    Qian C, Yu J, Chen Y, Hu Q, Xiao X et al. 2016. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater. 28:173313–20
    [Google Scholar]
  59. 59. 
    Sletten EM, Bertozzi CR. 2009. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Agnew. Chem. Int. Ed. 48:386974–98
    [Google Scholar]
  60. 60. 
    Devaraj NK. 2018. The future of bioorthogonal chemistry. ACS Cent. Sci. 4:8952–59
    [Google Scholar]
  61. 61. 
    Nwe K, Brechbiel MW. 2009. Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother. Radiopharm. 24:3289–302
    [Google Scholar]
  62. 62. 
    Santi DV, Schneider EL, Reid R, Robinson L, Ashley GW 2012. Predictable and tunable half-life extension of therapeutic agents by controlled chemical release from macromolecular conjugates. PNAS 109:166211–16
    [Google Scholar]
  63. 63. 
    Schneider EL, Robinson L, Reid R, Ashley GW, Santi D V. 2013. β-Eliminative releasable linkers adapted for bioconjugation of macromolecules to phenols. Bioconjug. Chem. 24:121990–97
    [Google Scholar]
  64. 64. 
    Schneider EL, Ashley GW, Dillen L, Stoops B, Austin NE et al. 2015. Half-life extension of the HIV-fusion inhibitor peptide TRI-1144 using a novel linker technology. Eur. J. Pharm. Biopharm. 93:254–59
    [Google Scholar]
  65. 65. 
    Fontaine SD, Hann B, Reid R, Ashley GW, Santi DV. 2019. Species-specific optimization of PEG∼SN-38 prodrug pharmacokinetics and antitumor effects in a triple-negative BRCA1-deficient xenograft. Cancer Chemother. Pharmacol. 84:4729–38
    [Google Scholar]
  66. 66. 
    Leriche G, Budin G, Brino L, Wagner A. 2010. Optimization of the azobenzene scaffold for reductive cleavage by dithionite: development of an azobenzene cleavable linker for proteomic applications. Eur. J. Org. Chem. 2010.234360–64
    [Google Scholar]
  67. 67. 
    Lee SH, Moroz E, Castagner B, Leroux JC. 2014. Activatable cell penetrating peptide-peptide nucleic acid conjugate via reduction of azobenzene PEG chains. J. Am. Chem. Soc. 136:3712868–71
    [Google Scholar]
  68. 68. 
    Böttger R, Knappe D, Hoffmann R. 2016. Readily adaptable release kinetics of prodrugs using protease-dependent reversible PEGylation. J. Control. Release 230:88–94
    [Google Scholar]
  69. 69. 
    Nollmann FI, Goldbach T, Berthold N, Hoffmann R. 2013. Controlled systemic release of therapeutic peptides from PEGylated prodrugs by serum proteases. Angew. Chem. Int. Ed. 52:297597–99
    [Google Scholar]
  70. 70. 
    Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM et al. 2014. Antibody-drug conjugates: current status and future directions. Drug Discov. Today 19:7869–81
    [Google Scholar]
  71. 71. 
    Sau S, Alsaab HO, Kashaw SK, Tatiparti K, Iyer AK. 2017. Advances in antibody-drug conjugates: a new era of targeted cancer therapy. Drug Discov. Today 22:101547–56
    [Google Scholar]
  72. 72. 
    Sievers EL, Senter PD. 2013. Antibody-drug conjugates in cancer therapy. Annu. Rev. Med. 64:15–29
    [Google Scholar]
  73. 73. 
    Beck A, Goetsch L, Dumontet C, Corvaïa N. 2017. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov. 16:5315–37
    [Google Scholar]
  74. 74. 
    Coats S, Williams M, Kebble B, Dixit R, Tseng L et al. 2020. Antibody-drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin. Cancer Res. 25:185441–48
    [Google Scholar]
  75. 75. 
    US Food Drug Adm 2020. FDA granted accelerated approval to belantamab mafodotin-blmf for multiple myeloma Rel., Aug. 6. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-granted-accelerated-approval-belantamab-mafodotin-blmf-multiple-myeloma
  76. 76. 
    US Food Drug Adm 2019. FDA approves first chemoimmunotherapy regimen for patients with relapsed or refractory diffuse large B-cell lymphoma. News Release, June 10. https://www.fda.gov/news-events/press-announcements/fda-approves-first-chemoimmunotherapy-regimen-patients-relapsed-or-refractory-diffuse-large-b-cell
    [Google Scholar]
  77. 77. 
    US Food Drug Adm 2019. FDA approves new treatment option for patients with HER2-positive breast cancer who have progressed on available therapies News Release, Dec. 23. https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-option-patients-her2-positive-breast-cancer-who-have-progressed-available
  78. 78. 
    US Food Drug Adm 2020. FDA approves new therapy for triple negative breast cancer that has spread, not responded to other treatments News Release, April 2 2. https://www.fda.gov/news-events/press-announcements/fda-approves-new-therapy-triple-negative-breast-cancer-has-spread-not-responded-other-treatments
  79. 79. 
    US Food Drug Adm 2019. FDA grants accelerated approval to enfortumab vedotin-ejfv for metastatic urothelial cancer Resources, Dec. 19. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-enfortumab-vedotin-ejfv-metastatic-urothelial-cancer
  80. 80. 
    Ducry L 2013. Antibody-Drug Conjugates Clifton, NJ: Humana
  81. 81. 
    Goldmacher VS, Kovtun YV. 2011. Antibody–drug conjugates: using monoclonal antibodies for delivery of cytotoxic payloads to cancer cells. Ther. Deliv. 2:3397–416
    [Google Scholar]
  82. 82. 
    Hwang WYK, Foote J. 2005. Immunogenicity of engineered antibodies. Methods 36:13–10
    [Google Scholar]
  83. 83. 
    Lonberg N. 2008. Fully human antibodies from transgenic mouse and phage display platforms. Curr. Opin. Immunol. 20:4450–59
    [Google Scholar]
  84. 84. 
    Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. 2005. Monoclonal antibody successes in the clinic. Nat. Biotechnol. 23:91073–78
    [Google Scholar]
  85. 85. 
    Lin K, Tibbitts J. 2012. Pharmacokinetic considerations for antibody drug conjugates. Pharm. Res. 29:92354–66
    [Google Scholar]
  86. 86. 
    Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M. 2009. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Ther 69:249330–36
    [Google Scholar]
  87. 87. 
    Phillips GDL, Li G, Dugger DL, Crocker LM, Parsons KL et al. 2008. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody–cytotoxic drug conjugate. Cancer Res 56:229280–90
    [Google Scholar]
  88. 88. 
    Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX. 2011. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat. 128:2347–56
    [Google Scholar]
  89. 89. 
    Wahl AF, Klussman K, Thompson JD, Chen JH, Francisco LV et al. 2002. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin's disease. Cancer Res 10:203736–42
    [Google Scholar]
  90. 90. 
    Saber H, Leighton JK. 2015. An FDA oncology analysis of antibody-drug conjugates. Regul. Toxicol. Pharmacol. 71:3444–52
    [Google Scholar]
  91. 91. 
    Girish S, Gupta M, Wang B, Lu D, Krop IE et al. 2012. Clinical pharmacology of trastuzumab emtansine (T-DM1): an antibody–drug conjugate in development for the treatment of HER2-positive cancer. Cancer Chemother. Pharmacol. 2:1229–40
    [Google Scholar]
  92. 92. 
    Deshmukh M, Chao P, Kutscher HL, Gao D, Sinko PJ. 2010. A series of α-amino acid ester prodrugs of camptothecin: in vitro hydrolysis and A549 human lung carcinoma cell cytotoxicity. J. Med. Chem. 53:31038–47
    [Google Scholar]
  93. 93. 
    Gillies ER, Goodwin AP, Fréchet JMJ. 2004. Acetals as pH-sensitive linkages for drug delivery. Bioconjugate Chem 3:1254–63
    [Google Scholar]
  94. 94. 
    Xu X, Lu K, Zhu M, Du Y, Zhu Y et al. 2018. Sialic acid-functionalized pH-triggered micelles for enhanced tumor tissue accumulation and active cellular internalization of orthotopic hepatocarcinoma. ACS Appl. Mater. Interfaces 10:3831903–14
    [Google Scholar]
  95. 95. 
    Yang J, Chen H, Vlahov IR, Cheng J, Low PS. 2007. Characterization of the pH of folate receptor-containing endosomes and the rate of hydrolysis of internalized acid-labile folate-drug conjugates. J. Pharmacol. Exp. Ther. 321:2462–68
    [Google Scholar]
  96. 96. 
    Dillman RO, Johnson DE, Shawler DL, Koziol JA. 2020. Superiority of an acid-labile daunorubicin-monoclonal compared to free drug1 antibody immunoconjugate. Cancer Res 48:6097–102
    [Google Scholar]
  97. 97. 
    Govindan SV, Cardillo TM, Sharkey RM, Tat F, Gold DV, Goldenberg DM. 2013. Milatuzumab–SN-38 conjugates for the treatment of CD74+ cancers. Mol. Cancer Ther. 12:6968–79
    [Google Scholar]
  98. 98. 
    Austin CD, Wen X, Gazzard L, Nelson C, Scheller RH, Scales SJ 2005. Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody-drug conjugates. PNAS 102:5017987–92
    [Google Scholar]
  99. 99. 
    Yang J, Chen H, Vlahov IR, Cheng J, Low PS 2006. Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. PNAS 103:3713872–77
    [Google Scholar]
  100. 100. 
    Scales SJ, Tsai SP, Zacharias N, dela Cruz-Chuh J, Bullen G et al. 2019. Development of a cysteine-conjugatable disulfide FRET probe: influence of charge on linker cleavage and payload trafficking for an anti-HER2 antibody conjugate. Bioconjugate Chem 30:123046–56
    [Google Scholar]
  101. 101. 
    Sorkin MR, Walker JA, Kabaria SR, Torosian NP, Alabi CA et al. 2019. Quantitative determination of intracellular bond responsive antibody conjugates enable quantitative determination of intracellular bond degradation rate. Cell Chem. Biol. 26:121643–51.e4
    [Google Scholar]
  102. 102. 
    Carney S 2017. Drug Discov. Today 22:101447–1592
  103. 103. 
    Lee B-C, Chalouni C, Doll S, Nalle SC, Darwish M et al. 2018. FRET reagent reveals the intracellular processing of peptide-linked antibody−drug conjugates. Bioconjugate Chem 29:72468–77
    [Google Scholar]
  104. 104. 
    Dubowchik GM, Firestone RA, Padilla L, Willner D, Hofstead SJ et al. 2002. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjugate Chem 13:4855–69
    [Google Scholar]
  105. 105. 
    Rago B, Tumey LN, Wei C, Barletta F, Clark T et al. 2017. Quantitative conjugated payload measurement using enzymatic release of antibody−drug conjugate with cleavable linker. Bioconjugate Chem 28:2620–26
    [Google Scholar]
  106. 106. 
    Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG et al. 2003. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 21:7778–85
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-091720-030636
Loading
/content/journals/10.1146/annurev-chembioeng-091720-030636
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error