1932

Abstract

Focused ion beam (FIB) machining promises exciting new possibilities for the study of quantum materials through precise control over the shape and geometry of single crystals on the submicrometer scale. It offers viable routes to fabricate high-quality mesoscale structures from materials that cannot yet be grown in thin-film form and to enhance the experimentally accessible signatures of new physical phenomena. Prototype devices can also be produced in a silicon-chip environment to investigate directly the materials application potential for future electronics. This review introduces the concepts of ion beam shaping of matter, discusses the role and extent of surface damage and material disorder inherent to these techniques, and gives an overview of recent experiments on FIB-structured crystals. Given the early stage of the field of FIB-fabricated quantum materials, much is yet to come, and emergent trends and future directions are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054021
2018-03-10
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-033117-054021.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054021&mimeType=html&fmt=ahah

Literature Cited

  1. Krohn VE, Ringo GR. 1.  1975. Appl. Phys. Lett. 27:479–81
  2. Seliger RL, Ward JW, Wang V, Kubena RL. 2.  1979. Appl. Phys. Lett. 34:310–12
  3. Orloff J, Utlaut M, Swanson L. 3.  2003. High Resolution Focused Ion Beams: FIB and Its Applications. New York: Springer Sci. Bus.
  4. Gierak J. 4.  2009. Semicond. Sci. Technol. 24:43001
  5. Ishitani T, Yaguchi T. 5.  1996. Microsc. Res. Tech. 35:320–33
  6. Uchic MD, Dimiduk DM, Florando JN, Nix WD. 6.  2004. Science 305:986–89
  7. Chen F. 7.  2012. Laser Photonics Rev 6:622–40
  8. Narayan K, Subramaniam S. 8.  2015. Nat. Methods 12:1021–31
  9. Latyshev YI, Yamashita T. 9.  1999. Phys. Rev. Lett. 82:5345–48
  10. Kadowaki K, Kakeya I, Yamamoto T, Yamazaki T, Kohri M, Kubo Y. 10.  2006. Phys. C 437–38:111–17
  11. Kim SJ, Latyshev YI, Yamashita T. 11.  1999. Appl. Phys. Lett. 74:1156–58
  12. Simon RW, Bulman JB, Burch JF, Coons SB, Daly KP. 12.  et al. 1991. IEEE Trans. Magn. 27:3209
  13. Nagel J, Konovalenko KB, Kemmler M, Turad M, Werner R. 13.  et al. 2011. Supercond. Sci. Technol. 24:15015
  14. Sandhu A, Masuda H, Kurosawa K, Oral A, Bending SJ. 14.  2001. Electron. Lett. 37:524–27
  15. Stanishevsky A, Aggarwal S, Prakash AS, Melngailis J, Ramesh R. 15.  1998. J. Vac. Sci. Technol. B 16:3899–902
  16. Lobo DE, Banerjee PC, Easton CD, Majumder M. 16.  2015. Adv. Energy Mater. 5:1500665
  17. Nagase M, Takahashi H, Shirakawabe Y, Namatsu H. 17.  2003. Jpn. J. Appl. Phy. 42:4856–60
  18. Du H, Degrave JP, Xue F, Liang D, Ning W. 18.  et al. 2014. Nano Lett 14:2026–32
  19. Zhang Y, Hui C, Sun R, Li K, He K. 19.  et al. 2014. Nanotechnology 25:135301
  20. Jang J, Ferguson DG, Vakaryuk V, Budakian R, Chung SB. 20.  et al. 2011. Science 331:186–88
  21. Nago Y, Shinozaki T, Tsuchiya S, Ishiguro R, Kashiwaya H. 21.  et al. 2016. J. Low Temp. Phys. 183:292–99
  22. Kambara H, Kashiwaya S, Kashiwaya H, Tanaka Y, Maeno Y. 22.  2011. Phys. C 471:708–10
  23. Kashiwaya S, Kambara H, Kashiwaya H, Furuta T, Yaguchi H. 23.  et al. 2010. Phys. C 470:S736–37
  24. Kambara H, Kashiwaya S, Yaguchi H, Asano Y, Tanaka Y, Maeno Y. 24.  2009. Phys. C 469:1030–33
  25. Kashiwaya S, Kashiwaya H, Kambara H, Furuta T, Yaguchi H. 25.  et al. 2011. Phys. Rev. Lett. 107:77003
  26. Jaroszynski J, Hunte F, Balicas L, Jo Y, Raicevic I. 26.  et al. 2008. Phys. Rev. B 78:174523
  27. Moll PJW, Zeng B, Balicas L, Galeski S, Balakirev FF. 27.  et al. 2015. Nat. Commun. 6:6663
  28. Moll PJW, Puzniak R, Balakirev F, Rogacki K, Karpinski J. 28.  et al. 2010. Nat. Mater. 9:628–33
  29. Lucot D, Gierak J, Ouerghi A, Bourhis E, Faini G, Mailly D. 29.  2009. Microelectron. Eng. 86:882–84
  30. Stewart GR. 30.  2011. Rev. Mod. Phys. 83:1589–652
  31. Luo HQ, Cheng P, Wang ZS, Yang H, Jia Y. 31.  et al. 2009. Phys. C 469:477–84
  32. Pisoni A, Katrych S, Arakcheeva A, Verebélyi T, Bokor M. 32.  et al. 2016. Phys. Rev. B 94:24525
  33. Katrych S, Rogacki K, Pisoni A, Bosma S, Weyeneth S. 33.  et al. 2013. Phys. Rev. B 87:180508R)
  34. Pisoni A, Katrych S, Szirmai P, Náfrádi B, Gaál R. 34.  et al. 2016. J. Phys. Condens. Matter 28:115701
  35. Shirai K, Kashiwaya H, Miura S, Ishikado M, Eisaki H. 35.  et al. 2010. Phys. C 470:1473–76
  36. Kashiwaya H, Shirai K, Matsumoto T, Shibata H, Kambara H. 36.  et al. 2010. Appl. Phys. Lett. 96:202504
  37. Müller P, Koval Y, Lazareva I, Steiner C, Wurmehl S. 37.  et al. 2016. Phys. Status Solidi B 254:1600157
  38. Hong S-H, Lee S-G, Jung S-G, Kang WN. 38.  2012. J. Korean Phys. Soc. 61:1430–34
  39. Hong S-H, Lee NH, Kang WN, Lee S-G. 39.  2014. Supercond. Sci. Tech. 27:55007
  40. Li J, Ji M, Schwarz T, Ke X, Van Tendeloo G. 40.  et al. 2015. Nat. Commun. 6:7614
  41. Caglieris F, Sala A, Fujioka M, Hummel F, Pallecchi I. 41.  et al. 2016. APL Mater 4:20702
  42. Moll PJW, Balicas L, Geshkenbein V, Blatter G, Karpinski J. 42.  et al. 2013. Nat. Mater. 12:134–38
  43. Moll PJW, Balicas L, Zhu X, Wen H-H, Zhigadlo ND. 43.  et al. 2014. Phys. Rev. Lett. 113:186402
  44. Koshelev A. 44.  2007. Phys. Rev. B 75:214513
  45. Ooi S, Mochiku T, Hirata K. 45.  2002. Phys. Rev. Lett. 89:247002
  46. Moll PJW, Kushwaha P, Nandi N, Schmidt B, Mackenzie AP. 46.  2016. Science 351:1061–64
  47. Moll PJW, Zhu X, Cheng P, Wen H-H, Batlogg B. 47.  2014. Nat. Phys. 10:644–47
  48. Rubanov S, Munroe PR. 48.  2004. J. Microsc. 214:213–21
  49. Bachmann MD, Nair N, Flicker F, Ilan R, Meng T. 49.  et al. 2017. Sci. Adv. 3:e1602983
  50. Harrison N, Moll PJW, Sebastian SE, Balicas L, Altarawneh MM. 50.  et al. 2013. Phys. Rev. B 88:241108
  51. Moll PJW, Nair NL, Helm T, Potter AC, Kimchi I. 51.  et al. 2016. Nature 535:266–70
  52. Moll PJW, Potter AC, Nair NL, Ramshaw B, Modic K. 52.  et al. 2016. Nat. Commun. 7:12492
  53. Kato NI. 53.  2004. J. Electron Microsc. 53:451–58
  54. Kato NI, Kohno Y, Saka H. 54.  1999. J. Vac. Sci. Technol. A 17:1201
  55. Giannuzzi LA, Stevie FA. 55.  1999. Micron 30:197–204
  56. Ziegler JF. 56.  2004. Nucl. Instrum. Methods Phys. Res. B 220:1027–36
  57. Ziegler JF, Ziegler MD, Biersack JP. 57.  2010. Nucl. Inst. Methods Phys. Res. B 268:1818–23
  58. Warburton PA, Fenton JC, Korsah M, Grovenor CRM. 58.  2006. Supercond. Sci. Technol. 19:S187–90
  59. Cooper D, Ailliot C, Barnes J, Hartmann J, Salles P. 59.  et al. 2010. Ultramicroscopy 110:383–89
  60. Llobet J, Sansa M, Borrisé X, Pérez-Murano F, Gerbolés M. 60.  2015. J. Micro/Nanolithogr. MEMS MOEMS 14:31207
  61. Schilling A, Adams T, Bowman RM, Gregg JM. 61.  2007. Nanotechnology 18:35301
  62. Mikkelsen A, Hilner E, Andersen J, Ghatnekar-Nilsson S, Montelius L, Zakharov A. 62.  2009. Nanotechnology 20:325304
  63. Gamo K, Takakura N, Samoto N, Shimizu R, Namba S. 63.  1984. Jpn. J. Appl. Phys. 23:293–95
  64. Lu MP, Song J, Lu MY, Chen MT, Gao Y. 64.  et al. 2009. Nano Lett 9:1223–27
  65. Motayed A, Davydov AV, Vaudin MD, Levin I, Melngailis J, Mohammad SN. 65.  2006. J. Appl. Phys. 100:24306
  66. De Teresa JM, Cárdoba R, Fernández-Pacheco A, Montero O, Strichovanec P, Ibarra MR. 66.  2009. J. Nanomater. 2009:936863
  67. Fang J-Y, Qin S-Q, Zhang X-A, Liu D-Q, Chang S-L. 67.  2014. Chin. Phys. B 23:88111
  68. Mulders JJL. 68.  2014. Appl. Phys. A 117:1697–1704
  69. Reguer A, Bedu F, Tonneau D, Dallaporta H, Prestigiacomo M. 69.  et al. 2008. J. Vac. Sci. Technol. B 26:175–80
  70. Van Dorp WF, Hagen CW. 70.  2008. J. Appl. Phys. 104:81301
  71. Li W, Fenton JC, Wang Y, McComb DW, Warburton PA. 71.  2008. J. Appl. Phys. 104:93913
  72. Dhakal P, McMahon G, Shepard S, Kirkpatrick T, Oh JI, Naughton MJ. 72.  2010. Appl. Phys. Lett. 96:262511
  73. Guillamón I, Suderow H, Vieira S, Fernández-Pacheco A, Sesé J. 73.  et al. 2008. New J. Phys. 10:93005
  74. Utke I, Hoffmann P, Melngailis J. 74.  2008. J. Vac. Sci. Technol. B 26:1197
  75. Smith NS, Skoczylas WP, Kellogg SM, Kinion DE, Tesch PP. 75.  et al. 2006. J. Vac. Sci. Technol. B 24:2902
  76. Hlawacek G, Gölzhäuser A. 76.  2016. Helium Ion Microscopy New York: Springer
  77. Kollmann H, Piao X, Esmann M, Becker SF, Hou D. 77.  et al. 2014. Nano Lett 14:4778–84
  78. Kelley RD, Song K, Van Leer B, Wall D, Kwakman L. 78.  2013. Microsc. Microanal. 19:Suppl. 2862–63
  79. Ward BW, Notte JA, Economou NP. 79.  2006. J. Vac. Sci. Technol. B 24:2871
  80. Melli M, Polyakov A, Gargas D, Huynh C, Scipioni L. 80.  et al. 2013. Nano Lett 13:2687–91
  81. Wang Y, Abb M, Boden SA, Aizpurua J, De Groot CH, Muskens OL. 81.  2013. Nano Lett 13:5647–53
  82. Röder F, Hlawacek G, Wintz S, Hübner R, Bischoff L. 82.  et al. 2015. Sci. Rep. 5:16786
  83. Cybart SA, Cho EY, Wong TJ, Wehlin BH, Ma MK. 83.  et al. 2015. Nat. Nanotechnol. 10:598–602
  84. Smith DA, Joy DC, Rack PD. 84.  2010. Nanotechnology 21:175302
/content/journals/10.1146/annurev-conmatphys-033117-054021
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054021
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error