1932

Abstract

While reducing anthropogenic greenhouse gas emissions remains the most essential element of any strategy to manage climate change risk, it is also in principle possible to directly cool the climate by reflecting some sunlight back to space. Such climate engineering approaches include adding aerosols to the stratosphere and marine cloud brightening. Assessing whether these ideas could reduce risk requires a broad, multidisciplinary research effort spanning climate science, social sciences, and governance. However, if such strategies were ever used, the effort would also constitute one of the most critical engineering design and control challenges ever considered: making real-time decisions for a highly uncertain and nonlinear dynamic system with many input variables, many measurements, and a vast number of internal degrees of freedom, the dynamics of which span a wide range of timescales. Here, we review the engineering design aspects of climate engineering, discussing both progress to date and remaining challenges that will need to be addressed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-053018-023725
2019-05-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/control/2/1/annurev-control-053018-023725.html?itemId=/content/journals/10.1146/annurev-control-053018-023725&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Arrhenius S 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. J. Sci. 41:237–76
    [Google Scholar]
  2. 2.  IPCC (Intergov. Panel Clim. Change) 2018. Global warming of 1.5°C Spec. Rep., IPCC, Geneva. In development. http://www.ipcc.ch/report/sr15
  3. 3. UN 2015. Adoption of the Paris Agreement Doc. FCCC/CP/2015/L.9, UN, New York. https://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf
  4. 4.  Fawcett AA, Iyer GC, Clarke LE, Edmonds JA, Hulman NE et al. 2015. Can Paris pledges avert severe climate change?. Science 350:1168–69
    [Google Scholar]
  5. 5.  Rogelj J, den Elzen M, Höhne N, Fransen T, Fekete H et al. 2016. Paris Agreement climate proposals need a boost to keep warming well below 2°C. Nature 534:631–39
    [Google Scholar]
  6. 6. Natl. Res. Counc. 2015. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration Washington, DC: Natl. Acad. Press
  7. 7.  Ricke KL, Millar RJ, MacMartin DG 2017. Constraints on global temperature target overshoot. Sci. Rep. 7:14743
    [Google Scholar]
  8. 8.  Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet R et al. 2013. Long-term climate change: projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.1029–136 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  9. 9. Natl. Res. Counc. 2015. Climate Intervention: Reflecting Sunlight to Cool Earth Washington, DC: Natl. Acad. Press
  10. 10.  IPCC (Intergov. Panel Clim. Change) 2013. Summary for policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.3–29 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  11. 11.  Kellogg WW, Schneider SH 1974. Climate stabilization: for better or for worse?. Science 186:1163–72
    [Google Scholar]
  12. 12.  Budyko MI 1977. Climatic changes Tech. Rep., Am. Geophys. Soc., Washington, DC
  13. 13.  Crutzen PJ 2006. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?. Clim. Change 77:211–19
    [Google Scholar]
  14. 14.  Latham J 1990. Control of global warming?. Nature 347:339–40
    [Google Scholar]
  15. 15.  Latham J, Bower K, Choularton T, Coe H, Connolly P et al. 2012. Marine cloud brightening. Philos. Trans. R. Soc. A 370:4217–62
    [Google Scholar]
  16. 16.  Parson EA, Ernst LN 2013. International governance of climate engineering. Theor. Inq. Law 14:307–37
    [Google Scholar]
  17. 17.  Bodansky D 2013. The who, what, and wherefore of geoengineering governance. Clim. Change 121:539–51
    [Google Scholar]
  18. 18.  Barrett S 2014. Solar geoengineering's brave new world: thoughts on the governance of an unprecedented technology. Rev. Environ. Econ. Policy 8:249–69
    [Google Scholar]
  19. 19.  Horton JB, Reynolds JL 2016. The international politics of climate engineering: a review and prospectus for international relations. Int. Stud. Rev. 18:438–61
    [Google Scholar]
  20. 20.  Robock A 2000. Volcanic eruptions and climate. Rev. Geophys. 38:191–219
    [Google Scholar]
  21. 21.  Kravitz B, Robock A 2011. Climate effects of high-latitude volcanic eruptions: role of the time of year. J. Geophys. Res. 116:D01105
    [Google Scholar]
  22. 22.  Soden BJ, Wetherald RT, Stenchikov GL, Robock A 2002. Global cooling following the eruption of Mt. Pinatubo: a test of climate feedback by water vapor. Science 296:727–30
    [Google Scholar]
  23. 23.  McClellan J, Keith DW, Apt J 2012. Cost analysis of stratospheric albedo modification delivery systems. Environ. Res. Lett. 7:034019
    [Google Scholar]
  24. 24.  Moriyama R, Sugiyama M, Kurosawa A, Masuda K, Tsuzuki K, Ishimoto Y 2017. The cost of stratospheric climate engineering revisited. Mitig. Adapt. Strateg. Glob. Change 22:1207–28
    [Google Scholar]
  25. 25.  Smith W, Wagner G 2018. Stratospheric aerosol injection tactics and costs in the first 15 years of deployment. Environ. Res. Lett. 13:124001
    [Google Scholar]
  26. 26.  Twomey S 1974. Pollution and the planetary albedo. Atmos. Environ. 8:1251–56
    [Google Scholar]
  27. 27.  Christensen MW, Stephens GL 2011. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: evidence of cloud deepening. J. Geophys. Res. 116:D03201
    [Google Scholar]
  28. 28.  Wang H, Rasch PJ, Feingold G 2011. Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei. Atmos. Chem. Phys. 11:4237–49
    [Google Scholar]
  29. 29.  Haywood JM, Jones A, Bellouin N, Stephenson D 2013. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Change 3:660–65
    [Google Scholar]
  30. 30.  Ban-Weiss GA, Caldeira K 2010. Geoengineering as an optimization problem. Environ. Res. Lett. 5:034009
    [Google Scholar]
  31. 31.  Kravitz B, MacMartin DG, Mills MJ, Richter JH, Tilmes S et al. 2017. First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous climate objectives. J. Geophys. Res. A 122:12616–344
    [Google Scholar]
  32. 32.  Tilmes S, Richter JH, Kravitz B, MacMartin DG, Mills MJ et al. 2018. CESM1(WACCM) stratospheric aerosol Geoengineering Large Ensemble project. Bull. Am. Meteorol. Soc. 99:2361–71
    [Google Scholar]
  33. 33.  MacMartin DG, Wang W, Kravitz B, Tilmes S, Richter J, Mills MJ 2019. Timescale for detecting the climate response to stratospheric aerosol geoengineering. J. Geophys. Res. A 124:1233–47
    [Google Scholar]
  34. 34.  Caldeira K, Bala G, Cao L 2013. The science of geoengineering. Annu. Rev. Earth Planet. Sci. 41:231–56
    [Google Scholar]
  35. 35.  Robock A 2014. Stratospheric aerosol geoengineering. Geoengineering of the Climate System RM Harrison, RE Hester162–85 London: R. Soc. Chem.
    [Google Scholar]
  36. 36.  Schäfer S, Lawrence M, Stelzer H, Born W, Low S et al. 2015. The European Transdisciplinary Assessment of Climate Engineering (EuTRACE): removing greenhouse gases from the atmosphere and reflecting sunlight away from Earth Rep., Inst. Adv. Sustain. Sci., Potsdam, Ger.
  37. 37.  Irvine PJ, Kravitz B, Lawrence MG, Muri H 2016. An overview of the Earth system science of solar geoengineering. WIREs Clim. Change 7:815–33
    [Google Scholar]
  38. 38.  MacMartin DG, Ricke KL, Keith DW 2018. Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target. Philos. Trans. R. Soc. A 376:20160454
    [Google Scholar]
  39. 39.  Robock A, MacMartin DG, Duren R, Christensen MW 2013. Studying geoengineering with natural and anthropogenic analogs. Clim. Change 121:445–58
    [Google Scholar]
  40. 40.  Wood R, Ackerman TP 2013. Defining success and limits of field experiments to test geoengineering by marine cloud brightening. Clim. Change 121:459–72
    [Google Scholar]
  41. 41.  Keith DW, Duren R, MacMartin DG 2014. Field experiments on solar geoengineering: report of a workshop exploring a representative research portfolio. Philos. Trans. R. Soc. A 372:20140175
    [Google Scholar]
  42. 42.  Dykema JA, Keith DW, Anderson JG, Weisenstein D 2014. Stratospheric-controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering. Philos. Trans. R. Soc. A 372:20140059
    [Google Scholar]
  43. 43.  Lenferna GA, Russotto RD, Tan A, Gardiner SM, Ackerman TP 2017. Relevant climate response tests for stratospheric aerosol injection: a combined ethical and scientific analysis. Earth's Future 5:577–91
    [Google Scholar]
  44. 44.  Wood R, Ackerman T, Rasch P, Wanser K 2017. Could geoengineering research help answer one of the biggest questions in climate science?. Earth's Future 4:659–63
    [Google Scholar]
  45. 45.  Govindasamy B, Caldeira K 2000. Geoengineering Earth's radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett. 27:2141–44
    [Google Scholar]
  46. 46.  Kravitz B, Caldeira K, Boucher O, Robock A, Rasch PJ et al. 2013. Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. 118:8320–32
    [Google Scholar]
  47. 47.  Angel R 2006. Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1). PNAS 103:17184–89
    [Google Scholar]
  48. 48.  Liu X, Easter RC, Ghan SJ, Zaveri R, Rasch PJ et al. 2012. Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev. 5:709–39
    [Google Scholar]
  49. 49.  Tilmes S, Müller R, Salawitch R 2008. The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320:1201–4
    [Google Scholar]
  50. 50.  Marshall L, Schmidt A, Toohey M, Carslaw KS, Mann GW et al. 2018. Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora. Atmos. Chem. Phys. 18:2307–28
    [Google Scholar]
  51. 51.  Driscoll S, Bozzo A, Gray LJ, Robock A, Stenchikov G 2012. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. Atmos. 117:D17105
    [Google Scholar]
  52. 52.  Aquila V, Garfinkel CI, Newman PA, Oman LD, Waugh DW 2014. Modifications of the quasi-biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer. Geophys. Res. Lett. 41:1738–44
    [Google Scholar]
  53. 53.  Richter JH, Tilmes S, Mills MJ, Tribbia JJ, Kravitz B et al. 2017. Stratospheric dynamical response and ozone feedbacks in the presence of SO2 injection. J. Geophys. Res. A 122:12557–73
    [Google Scholar]
  54. 54.  Kuebbeler M, Lohmann U, Feichter J 2012. Effects of stratospheric sulfate aerosol geo-engineering on cirrus clouds. Geophys. Res. Lett. 39:L23803
    [Google Scholar]
  55. 55.  Cirisan A, Spichtinger P, Luo BP, Weisenstein DK, Wernli H et al. 2013. Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere. J. Geophys. Res. 118:4533–48
    [Google Scholar]
  56. 56.  Visioni D, Pitari G, di Genova G, Tilmes S, Cionni I 2018. Upper tropospheric ice sensitivity to sulfate geoengineering. Atmos. Chem. Phys. 18:14867–87
    [Google Scholar]
  57. 57.  Mills MJ, Schmidt A, Easter R, Solomon S, Kinnison DE et al. 2016. Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). J. Geophys. Res. A 121:2332–48
    [Google Scholar]
  58. 58.  Mills M, Richter JH, Tilmes S, Kravitz B, MacMartin DG et al. 2017. Radiative and chemical response to interactive stratospheric aerosols in fully coupled CESM1(WACCM). J. Geophys. Res. A 122:13061–78
    [Google Scholar]
  59. 59.  MacMartin DG, Kravitz B, Long JCS, Rasch PJ 2016. Geoengineering with stratospheric aerosols: What don't we know after a decade of research?. Earth's Future 4:543–48
    [Google Scholar]
  60. 60.  Pierce JR, Weisenstein DK, Heckendorn P, Peter T, Keith DW 2010. Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft. Geophys. Res. Lett. 37:L18805
    [Google Scholar]
  61. 61.  Niemeier U, Timmreck C 2015. What is the limit of climate engineering by stratospheric injection of SO2?. Atmos. Chem. Phys. 15:9129–41
    [Google Scholar]
  62. 62.  Kleinschmitt C, Boucher O, Platt U 2018. Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2 injection studied with the LMDZ-S3A model. Atmos. Chem. Phys. 18:2769–86
    [Google Scholar]
  63. 63.  Tilmes S, Richter JH, Mills MJ, Kravitz B, MacMartin DG et al. 2017. Sensitivity of aerosol distribution and climate response to stratospheric SO2 injection locations. J. Geophys. Res. A 122:12591–615
    [Google Scholar]
  64. 64.  Jones AC, Hawcroft MK, Haywood JM, Jones A, Guo X, Moore JC 2018. Regional climate impacts of stabilizing global warming at 1.5 K using solar geoengineering. Earth's Future 6:230–51
    [Google Scholar]
  65. 65.  Keith DW, Irvine PJ 2016. Solar geoengineering could substantially reduce climate risks—a research hypothesis for the next decade. Earth's Future 4:549–59
    [Google Scholar]
  66. 66.  Curry CL, Sillmann J, Bronaugh D, Alterskjaer K, Cole JNS et al. 2013. A multimodel examination of climate extremes in an idealized geoengineering experiment. J. Geophys. Res. A 119:3900–23
    [Google Scholar]
  67. 67.  Moore JC, Jevrejeva S, Grinsted A 2010. Efficacy of geoengineering to limit 21st century sea-level rise. PNAS 107:15699–703
    [Google Scholar]
  68. 68.  Moore JC, Grinsted A, Guo X, Yu X, Jevrejeva S et al. 2015. Atlantic hurricane surge response to geoengineering. PNAS 112:13794–99
    [Google Scholar]
  69. 69.  Bala G, Duffy PB, Taylor KE 2008. Impact of geoengineering schemes on the global hydrological cycle. PNAS 105:7664–69
    [Google Scholar]
  70. 70.  Tilmes S, Fasullo J, Lamarque J-F, Marsh DR, Mills M et al. 2013. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. 118:11036–58
    [Google Scholar]
  71. 71.  Kravitz B, Rasch PJ, Forster PM, Andrews T, Cole JNS et al. 2013. An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. 118:13087–102
    [Google Scholar]
  72. 72.  Caldeira K, Wood L 2008. Global and Arctic climate engineering: numerical model studies. Philos. Trans. R. Soc. A 366:4039–56
    [Google Scholar]
  73. 73.  Robock A, Oman L, Stenchikov G 2008. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res. 113:D16101
    [Google Scholar]
  74. 74.  MacCracken MC, Shin HJ, Caldeira K, Ban-Weiss GA 2013. Climate response to imposed solar radiation reductions in high latitudes. Earth Syst. Dyn. 4:301–15
    [Google Scholar]
  75. 75.  MacMartin DG, Keith DW, Kravitz B, Caldeira K 2013. Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing. Nat. Clim. Change 3:365–68
    [Google Scholar]
  76. 76.  Kravitz B, MacMartin DG, Wang H, Rasch PJ 2016. Geoengineering as a design problem. Earth Syst. Dyn. 7:469–97
    [Google Scholar]
  77. 77.  Dai Z, Weisenstein D, Keith DW 2018. Tailoring meridional and seasonal radiative forcing by sulfate aerosol solar geoengineering. Geophys. Res. Lett. 45:1030–39
    [Google Scholar]
  78. 78.  Tilmes S, Richter JH, Mills MM, Kravitz B, MacMartin DG et al. 2018. Effects of different stratospheric SO2 injection altitude on stratospheric chemistry and dynamics. J. Geophys. Res. A 123:4654–73
    [Google Scholar]
  79. 79.  MacMartin DG, Kravitz B, Tilmes S, Richter JH, Mills MJ et al. 2017. The climate response to stratospheric aerosol geoengineering can be tailored using multiple injection locations. J. Geophys. Res. A 122:12574–90
    [Google Scholar]
  80. 80.  Keith DW 2010. Photophoretic levitation of engineered aerosols for geoengineering. PNAS 107:16428–31
    [Google Scholar]
  81. 81.  Pope FD, Braesicke P, Grainger RG, Kalberer M, Watson IM et al. 2012. Stratospheric aerosol particles and solar-radiation management. Nat. Clim. Change 2:713–19
    [Google Scholar]
  82. 82.  Ferraro AJ, Charlton-Perez AJ, Highwood EJ 2015. Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols. J. Geophys. Res. A 120:414–29
    [Google Scholar]
  83. 83.  Weisenstein DK, Keith DW, Dykema JA 2015. Solar geoengineering using solid aerosol in the stratosphere. Atmos. Chem. Phys. 15:11835–59
    [Google Scholar]
  84. 84.  Keith DW, Weisenstein KK, Dykema JA, Keutsch FN 2016. Stratospheric solar geoengineering without ozone loss?. PNAS 113:14910–14
    [Google Scholar]
  85. 85.  Benduhn F, Schallock J, Lawrence MG 2016. Early growth dynamical implications for the steerability of stratospheric solar radiation management via sulfur aerosol particles. Geophys. Res. Lett. 43:9956–63
    [Google Scholar]
  86. 86.  Boucher O, Kleinschmitt C, Myhre G 2017. Quasi-additivity of the radiative effects of marine cloud brightening and stratospheric sulfate aerosol injection. Geophys. Res. Lett. 44:11158–65
    [Google Scholar]
  87. 87.  Åström KJ, Murray RM 2008. Analysis and Design of Feedback Systems Princeton, NJ: Princeton Univ. Press
  88. 88.  MacMynowski DG, Tziperman E 2010. Testing and improving ENSO models by process rather than by output, using transfer functions. Geophys. Res. Lett. 37:L19701
    [Google Scholar]
  89. 89.  Kravitz B, MacMartin DG, Rasch PJ, Wang H 2017. Technical note: simultaneous fully dynamic characterization of multiple input-output relationships in climate models. Atmos. Chem. Phys. 17:2525–41
    [Google Scholar]
  90. 90.  MacMynowski DG, Shin HJ, Caldeira K 2011. The frequency response of temperature and precipitation in a climate model. Geophys. Res. Lett. 38:L16711
    [Google Scholar]
  91. 91.  Jones C 2003. A fast ocean GCM without flux adjustments. J. Atmos. Ocean. Technol. 20:1857–68
    [Google Scholar]
  92. 92.  Oeschger H, Siegenthaler U, Schotterer U, Gugelmann A 1975. Box diffusion-model to study carbon-dioxide exchange in nature. Tellus 27:168–92
    [Google Scholar]
  93. 93.  Caldeira K, Myhrvold N 2013. Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration. Environ. Res. Lett. 8:034039
    [Google Scholar]
  94. 94.  MacMartin DG, Kravitz B 2016. Dynamic climate emulator for solar geoengineering. Atmos. Chem. Phys. 16:15789–99
    [Google Scholar]
  95. 95.  Kravitz B, MacMartin DG, Leedal DT, Rasch PJ, Jarvis AJ 2014. Explicit feedback and the management of uncertainty in meeting climate objectives with solar geoengineering. Environ. Res. Lett. 9:044006
    [Google Scholar]
  96. 96.  Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL et al. 2014. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst. 6:141–84
    [Google Scholar]
  97. 97.  Jarvis A, Leedal D 2012. The Geoengineering Model Intercomparison Project (GeoMIP): a control perspective. Atmos. Sci. Lett. 13:157–63
    [Google Scholar]
  98. 98.  MacMartin DG, Kravitz B, Keith DW, Jarvis AJ 2014. Dynamics of the coupled human-climate system resulting from closed-loop control of solar geoengineering. Clim. Dyn. 43:243–58
    [Google Scholar]
  99. 99.  MacMartin DG, Caldeira K, Keith DW 2014. Solar geoengineering to limit rates of change. Philos. Trans. R. Soc. A 372:20140134
    [Google Scholar]
  100. 100.  Cao L, Jiang J 2017. Simulated effect of carbon cycle feedback on climate response to solar geoengineering. Geophys. Res. Lett. 44:12484–91
    [Google Scholar]
  101. 101.  Jackson LS, Crook JA, Jarvis A, Leedal D, Ridgwell A et al. 2015. Assessing the controllability of Arctic sea ice extent by sulfate aerosol geoengineering. Geophys. Res. Lett. 42:1223–31
    [Google Scholar]
  102. 102.  Penland C, Sardeshmukh PD 1995. The optimal growth of tropical sea surface temperature anomalies. J. Clim. 8:1999–2024
    [Google Scholar]
  103. 103.  Haller G 2015. Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47:137–62
    [Google Scholar]
  104. 104.  Garcia CE, Prett DM, Morari M 1989. Model predictive control: theory and practice—a survey. Automatica 25:335–48
    [Google Scholar]
/content/journals/10.1146/annurev-control-053018-023725
Loading
/content/journals/10.1146/annurev-control-053018-023725
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error