1932

Abstract

Climate extremes threaten human health, economic stability, and the well-being of natural and built environments (e.g., 2003 European heat wave). As the world continues to warm, climate hazards are expected to increase in frequency and intensity. The impacts of extreme events will also be more severe due to the increased exposure (growing population and development) and vulnerability (aging infrastructure) of human settlements. Climate models attribute part of the projected increases in the intensity and frequency of natural disasters to anthropogenic emissions and changes in land use and land cover. Here, we review the impacts, historical and projected changes,and theoretical research gaps of key extreme events (heat waves, droughts, wildfires, precipitation, and flooding). We also highlight the need to improve our understanding of the dependence between individual and interrelated climate extremes because anthropogenic-induced warming increases the risk of not only individual climate extremes but also compound (co-occurring) and cascading hazards.

  • ▪   Climate hazards are expected to increase in frequency and intensity in a warming world.
  • ▪   Anthropogenic-induced warming increases the risk of compound and cascading hazards.
  • ▪   We need to improve our understanding of causes and drivers of compound and cascading hazards.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071719-055228
2020-05-30
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-071719-055228.html?itemId=/content/journals/10.1146/annurev-earth-071719-055228&mimeType=html&fmt=ahah

Literature Cited

  1. Abatzoglou JT, Kolden CA. 2013. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 22:71003–20
    [Google Scholar]
  2. Abatzoglou JT, Williams AP. 2016. Impact of anthropogenic climate change on wildfire across western US forests. PNAS 113:4211770–75
    [Google Scholar]
  3. AghaKouchak A, Cheng L, Mazdiyasni O, Farahmand A 2014. Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys. Res. Lett. 41:248847–52
    [Google Scholar]
  4. AghaKouchak A, Feldman D, Hoerling M, Huxman T, Lund J 2015. Water and climate: recognize anthropogenic drought. Nat. News. 524:7566409–11
    [Google Scholar]
  5. AghaKouchak A, Huning LS, Chiang F, Sadegh M, Vahedifard F et al. 2018. How do natural hazards cascade to cause disasters. ? Nature 561:7724458–60
    [Google Scholar]
  6. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111:D5D05109
    [Google Scholar]
  7. Alfieri L, Bisselink B, Dottori F, Naumann G, de Roo A et al. 2017. Global projections of river flood risk in a warmer world. Earth's Future 5:2171–82
    [Google Scholar]
  8. Allan RP, Soden BJ. 2008. Atmospheric warming and the amplification of precipitation extremes. Science 321:58951481–84
    [Google Scholar]
  9. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manag. 259:4660–84
    [Google Scholar]
  10. Arns A, Dangendorf S, Jensen J, Talke S, Bender J, Pattiaratchi C 2017. Sea-level rise induced amplification of coastal protection design heights. Sci. Rep. 7:140171
    [Google Scholar]
  11. Auffhammer M, Baylis P, Hausman CH 2017. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. PNAS 114:81886–91
    [Google Scholar]
  12. Balch JK, Bradley BA, Abatzoglou JT, Nagy RC, Fusco EJ, Mahood AL 2017. Human-started wildfires expand the fire niche across the United States. PNAS 114:112946–51
    [Google Scholar]
  13. Barbero R, Abatzoglou JT, Larkin NK, Kolden CA, Stocks B 2015. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildland Fire 24:7892–99
    [Google Scholar]
  14. Barnard PL, Erikson LH, Foxgrover AC, Hart JAF, Limber P et al. 2019. Dynamic flood modeling essential to assess the coastal impacts of climate change. Sci. Rep. 9:14309
    [Google Scholar]
  15. Barnard PL, Erikson LH, Foxgrover AC, Limber PW, O'Neill AC, Vitousek S 2015. Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2 Washington, DC: US GPO https://doi.org/10.5066/F7T151Q4
    [Crossref]
  16. Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA et al. 2010. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327:5964454–58
    [Google Scholar]
  17. Beniston M. 2003. Climatic change in mountain regions: a review of possible impacts. Climate Variability and Change in High Elevation Regions: Past, Present & Future, Vol. 15 HF Diaz 5–31 Dordrecht, Neth.: Springer
    [Google Scholar]
  18. Berg A, Findell K, Lintner B, Giannini A, Seneviratne SI et al. 2016. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6:9869–74
    [Google Scholar]
  19. Berghuijs WR, Aalbers EE, Larsen JR, Trancoso R, Woods RA 2017. Recent changes in extreme floods across multiple continents. Environ. Res. Lett. 12:11114035
    [Google Scholar]
  20. Bhatia K, Vecchi G, Murakami H, Underwood S, Kossin J 2018. Projected response of tropical cyclone intensity and intensification in a global climate model. J. Clim. 31:208281–303
    [Google Scholar]
  21. Blöschl G, Hall J, Parajka J, Perdigão RAP, Merz B et al. 2017. Changing climate shifts timing of European floods. Science 357:6351588–90
    [Google Scholar]
  22. Blöschl G, Hall J, Viglione A, Perdigão RAP, Parajka J et al. 2019. Changing climate both increases and decreases European river floods. Nature 573:7772108–11
    [Google Scholar]
  23. Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM et al. 2009. Fire in the Earth system. Science 324:5926481–84
    [Google Scholar]
  24. Buchanan MK, Kopp RE, Oppenheimer M, Tebaldi C 2016. Allowances for evolving coastal flood risk under uncertain local sea-level rise. Clim. Change 137:3–4347–62
    [Google Scholar]
  25. Buchanan MK, Oppenheimer M, Kopp RE 2017. Amplification of flood frequencies with local sea level rise and emerging flood regimes. Environ. Res. Lett. 12:6064009
    [Google Scholar]
  26. Calafat FM, Wahl T, Lindsten F, Williams J, Frajka-Williams E 2018. Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves. Nat. Commun. 9:12571
    [Google Scholar]
  27. Changnon SA. 2009. Increasing major hail losses in the U.S. Clim. Change 96:1–2161–66
    [Google Scholar]
  28. Chelton DB, Schlax MG. 1996. Global observations of oceanic Rossby waves. Science 272:234–38
    [Google Scholar]
  29. Cheng L, AghaKouchak A. 2014. Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Sci. Rep. 4:17093
    [Google Scholar]
  30. Chiang F, Mazdiyasni O, AghaKouchak A 2018. Amplified warming of droughts in southern United States in observations and model simulations. Sci. Adv. 4:8eaat2380
    [Google Scholar]
  31. Christidis N, Stott PA, Brown SJ 2011. The role of human activity in the recent warming of extremely warm daytime temperatures. J. Clim. 24:71922–30
    [Google Scholar]
  32. Coumou D, Di Capua G, Vavrus S, Wang L, Wang S 2018. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9:12959
    [Google Scholar]
  33. Curtis KJ, Schneider A. 2011. Understanding the demographic implications of climate change: estimates of localized population predictions under future scenarios of sea-level rise. Popul. Environ. 33:128–54
    [Google Scholar]
  34. Dai A. 2013. Increasing drought under global warming in observations and models. Nat. Clim. Change 3:252–58 Erratum Nat. Clim. Change 3:2171
    [Google Scholar]
  35. Dai A, Trenberth KE, Karl TR 1999. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Clim. 12:82451–73
    [Google Scholar]
  36. Das T, Dettinger MD, Cayan DR, Hidalgo HG 2011. Potential increase in floods in California's Sierra Nevada under future climate projections. Clim. Change 109:171–94
    [Google Scholar]
  37. De Bono A, Peduzzi P, Kluser S, Giuliani G 2004. Impacts of summer 2003 heat wave in Europe Environ. Alert Bull., United Nations Environ. Programme Nairobi, Kenya:
  38. DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE 2006. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci. Soc. Am. J. 70:2448–53
    [Google Scholar]
  39. Dennison PE, Brewer SC, Arnold JD, Moritz MA 2014. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41:82928–33
    [Google Scholar]
  40. Devlin AT, Jay DA, Zaron ED, Talke SA, Pan J, Lin H 2017. Tidal variability related to sea level variability in the Pacific Ocean. J. Geophys. Res. Oceans 122:118445–63
    [Google Scholar]
  41. Devlin AT, Pan J, Lin H 2019. Extended spectral analysis of tidal variability in the North Atlantic Ocean. J. Geophys. Res. Oceans 124:1506–26
    [Google Scholar]
  42. Di Baldassarre G, Nohrstedt D, Mård J, Burchardt S, Albin C et al. 2018. An integrative research framework to unravel the interplay of natural hazards and vulnerabilities. Earth's Future 6:3305–10
    [Google Scholar]
  43. Diffenbaugh NS, Scherer M, Ashfaq M 2013. Response of snow-dependent hydrologic extremes to continued global warming. Nat. Clim. Change 3:4379–84
    [Google Scholar]
  44. Diffenbaugh NS, Swain DL, Touma D 2015. Anthropogenic warming has increased drought risk in California. PNAS 112:133931–36
    [Google Scholar]
  45. Do HX, Westra S, Leonard M 2017. A global-scale investigation of trends in annual maximum streamflow. J. Hydrol. 552:28–43
    [Google Scholar]
  46. Donat MG, Alexander LV. 2012. The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett. 39:14L14707
    [Google Scholar]
  47. Donat MG, Alexander LV, Herold N, Dittus AJ 2016. Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations. J. Geophys. Res. Atmos. 121:1911174–89
    [Google Scholar]
  48. Donat MG, Alexander LV, Yang H, Durre I, Vose R et al. 2013. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res. Atmos. 118:52098–118
    [Google Scholar]
  49. Dottori F, Szewczyk W, Ciscar J-C, Zhao F, Alfieri L et al. 2018. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Change 8:9781–86
    [Google Scholar]
  50. Downton MW, Miller JZB, Pielke RA 2005. Reanalysis of U.S. National Weather Service flood loss database. Nat. Hazards Rev. 6:113–22
    [Google Scholar]
  51. Dracup JA, Lee KS, Paulson EG 1980. On the definition of droughts. Water Resour. Res. 16:2297–302
    [Google Scholar]
  52. Easterling DR. 2000. Climate extremes: observations, modeling, and impacts. Science 289:54872068–74
    [Google Scholar]
  53. Easterling DR, Kunkel KE, Wehner MF, Sun L 2016. Detection and attribution of climate extremes in the observed record. Weather Clim. Extremes 11:17–27
    [Google Scholar]
  54. Emanuel KA. 2013. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. PNAS 110:3012219–24
    [Google Scholar]
  55. Emanuel KA. 2017. Assessing the present and future probability of Hurricane Harvey's rainfall. PNAS 114:4812681–84
    [Google Scholar]
  56. Familkhalili R, Talke SA. 2016. The effect of channel deepening on tides and storm surge: a case study of Wilmington, NC. Geophys. Res. Lett. 43:179138–47
    [Google Scholar]
  57. Fann N, Alman B, Broome RA, Morgan GG, Johnston FH et al. 2018. The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012. Sci. Total Environ. 610–11:802–9
    [Google Scholar]
  58. Fischer EM, Knutti R. 2015. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5:6560–64
    [Google Scholar]
  59. Fischer EM, Knutti R. 2016. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Change 6:11986–91
    [Google Scholar]
  60. Flanagan LB, Johnson BG. 2005. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agric. Forest Meteorol. 130:3–4237–53
    [Google Scholar]
  61. Flanner MG, Zender CS, Randerson JT, Rasch PJ 2007. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 112:D11D11202
    [Google Scholar]
  62. Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM 2009. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 18:5483–507
    [Google Scholar]
  63. Fowler AM, Hennessy KJ. 1995. Potential impacts of global warming on the frequency and magnitude of heavy precipitation. Nat. Hazards 11:3283–303
    [Google Scholar]
  64. Franchina L, Carbonelli M, Gratta L, Crisci M, Perucchini D 2011. An impact-based approach for the analysis of cascading effects in critical infrastructures. Int. J. Crit. Infrastruct. 7:173–90
    [Google Scholar]
  65. Francis JA, Vavrus SJ. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39:6L06801
    [Google Scholar]
  66. Frey H. 2017. Glacier lake outburst floods. International Encyclopedia of Geography: People, the Earth, Environment and Technology D Richardson, N Castree, MF Goodchild, A Kobayashi, W Liu, RA Marston 1–5 Oxford, UK: John Wiley & Sons
    [Google Scholar]
  67. Fu Q, Feng S. 2014. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119:137863–75
    [Google Scholar]
  68. Gao Y, Lu J, Leung LR 2016. Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe. J. Clim. 29:186711–26
    [Google Scholar]
  69. Gao Y, Lu J, Leung LR, Yang Q, Hagos S, Qian Y 2015. Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett. 42:177179–86
    [Google Scholar]
  70. Gariano SL, Guzzetti F. 2016. Landslides in a changing climate. Earth-Sci. Rev. 162:227–52
    [Google Scholar]
  71. Garner G, Van Loon AF, Prudhomme C, Hannah DM 2015. Hydroclimatology of extreme river flows. Freshw. Biol. 60:122461–76
    [Google Scholar]
  72. Gumbel EJ. 1963. Statistical forecast of droughts. Int. Assoc. Sci. Hydrol. Bull. 8:15–23
    [Google Scholar]
  73. Haigh ID, Wadey MP, Wahl T, Ozsoy O, Nicholls RJ et al. 2016. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK. Sci. Data 3:1160107
    [Google Scholar]
  74. Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J 2013. Future flood losses in major coastal cities. Nat. Clim. Change 3:9802–6
    [Google Scholar]
  75. Hamlet AF, Lettenmaier DP. 2007. Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resour. Res. 43:W06427
    [Google Scholar]
  76. Hao Z, AghaKouchak A, Phillips TJ 2013. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett. 8:3034014
    [Google Scholar]
  77. Harpold AA, Rajagopal S, Crews JB, Winchell T, Schumer R 2017. Relative humidity has uneven effects on shifts from snow to rain over the western U.S. Geophys. Res. Lett. 44:199742–50
    [Google Scholar]
  78. Harrigan S, Murphy C, Hall J, Wilby RL, Sweeney J 2014. Attribution of detected changes in streamflow using multiple working hypotheses. Hydrol. Earth Syst. Sci. 18:51935–52
    [Google Scholar]
  79. Harrison S, Kargel JS, Huggel C, Reynolds J, Shugar DH et al. 2018. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 12:41195–209
    [Google Scholar]
  80. Hauer ME, Evans JM, Mishra DR 2016. Millions projected to be at risk from sea-level rise in the continental United States. Nat. Clim. Change 6:7691–95
    [Google Scholar]
  81. Hawcroft M, Walsh E, Hodges K, Zappa G 2018. Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environ. Res. Lett. 13:12124006
    [Google Scholar]
  82. Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ et al. 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. PNAS 111:93292–97
    [Google Scholar]
  83. Hirsch RM, Archfield SA. 2015. Not higher but more often: flood trends. Nat. Clim. Change 5:3198–99
    [Google Scholar]
  84. Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S et al. 2018. Impacts of 1.5°C global warming on natural and human systems. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty V Masson-Delmotte, P Zhai, H-O Pörtner, D Roberts, J Skea et al.175–312 Geneva: IPCC
    [Google Scholar]
  85. Hohner AK, Cawley K, Oropeza J, Summers RS, Rosario-Ortiz FL 2016. Drinking water treatment response following a Colorado wildfire. Water Res 105:187–98
    [Google Scholar]
  86. Hoitink AJF, Jay DA. 2016. Tidal river dynamics: implications for deltas. Rev. Geophys. 54:1240–72
    [Google Scholar]
  87. Holden ZA, Swanson A, Luce CH, Jolly WM, Maneta M et al. 2018. Decreasing fire season precipitation increased recent western US forest wildfire activity. PNAS 115:36E8349–57
    [Google Scholar]
  88. Huang J, Yu H, Guan X, Wang G, Guo R 2016. Accelerated dryland expansion under climate change. Nat. Clim. Change 6:2166–71
    [Google Scholar]
  89. Huning LS, AghaKouchak A. 2018. Mountain snowpack response to different levels of warming. PNAS 115:4310932–37
    [Google Scholar]
  90. Huning LS, AghaKouchak A. 2019. Characterizing snow drought conditions across the United States. Bull. Am. Meteorol. Soc. 100:4554–55
    [Google Scholar]
  91. Hurteau MD, Liang S, Westerling AL, Wiedinmyer C 2019. Vegetation-fire feedback reduces projected area burned under climate change. Sci. Rep. 9:12838
    [Google Scholar]
  92. Idier D, Paris F, Cozannet GL, Boulahya F, Dumas F 2017. Sea-level rise impacts on the tides of the European Shelf. Cont. Shelf Res. 137:56–71
    [Google Scholar]
  93. IPCC 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation Cambridge, UK: Cambridge Univ. Press
  94. IPCC 2013. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change New York: Cambridge Univ. Press
  95. Ivancic TJ, Shaw SB. 2015. Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Clim. Change 133:4681–93
    [Google Scholar]
  96. Jay DA. 1991. Green's law revisited: tidal long-wave propagation in channels with strong topography. J. Geophys. Res. 96:C1120585
    [Google Scholar]
  97. Jay DA, Flinchem EP. 1997. Interaction of fluctuating river flow with a barotropic tide: a demonstration of wavelet tidal analysis methods. J. Geophys. Res. 102:C35705–20
    [Google Scholar]
  98. Jeong D, Sushama L. 2018. Rain-on-snow events over North America based on two Canadian regional climate models. Clim. Dyn. 50:1–2303–16
    [Google Scholar]
  99. Johnston F, Hanigan I, Henderson S, Morgan G, Bowman D 2011. Extreme air pollution events from bushfires and dust storms and their association with mortality in Sydney, Australia 1994–2007. Environ. Res. 111:6811–16
    [Google Scholar]
  100. Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ et al. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6:17537
    [Google Scholar]
  101. Jongman B, Ward PJ, Aerts JCJH 2012. Global exposure to river and coastal flooding: long term trends and changes. Glob. Environ. Change 22:4823–35
    [Google Scholar]
  102. Karl TR, Gleason BE, Menne MJ, McMahon JR, Heim RR et al. 2012. U.S. temperature and drought: recent anomalies and trends. Eos Trans. AGU 93:47473–74
    [Google Scholar]
  103. Katz RW, Parlange MB, Naveau P 2002. Statistics of extremes in hydrology. Adv. Water Resour. 25:8–121287–304
    [Google Scholar]
  104. Kendon EJ, Ban N, Roberts NM, Fowler HJ, Roberts MJ et al. 2016. Do convection-permitting regional climate models improve projections of future precipitation change. ? Bull. Am. Meteorol. Soc. 98:179–93
    [Google Scholar]
  105. Khouakhi A, Villarini G, Vecchi GA 2017. Contribution of tropical cyclones to rainfall at the global scale. J. Clim. 30:1359–72
    [Google Scholar]
  106. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G et al. 2010. Tropical cyclones and climate change. Nat. Geosci. 3:3157–63
    [Google Scholar]
  107. Kopp RE, Horton RM, Little CM, Mitrovica JX, Oppenheimer M et al. 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth's Future 2:8383–406
    [Google Scholar]
  108. Krasting JP, Broccoli AJ, Dixon KW, Lanzante JR 2013. Future changes in Northern Hemisphere snowfall. J. Clim. 26:207813–28
    [Google Scholar]
  109. Kulp S, Strauss BH. 2017. Rapid escalation of coastal flood exposure in US municipalities from sea level rise. Clim. Change 142:3–4477–89
    [Google Scholar]
  110. Kundzewicz ZW, Kanae S, Seneviratne SI, Handmer J, Nicholls N et al. 2014. Flood risk and climate change: global and regional perspectives. Hydrol. Sci. J. 59:11–28
    [Google Scholar]
  111. Kundzewicz ZW, Pińskwar I, Brakenridge GR 2018. Changes in river flood hazard in Europe: a review. Hydrol. Res. 49:2294–302
    [Google Scholar]
  112. Kunkel KE, Karl TR, Brooks H, Kossin J, Lawrimore JH et al. 2013. Monitoring and understanding trends in extreme storms: state of knowledge. Bull. Am. Meteorol. Soc. 94:4499–514
    [Google Scholar]
  113. Kunz M, Sander J, Kottmeier CH 2009. Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany. Int. J. Climatol. 29:152283–97
    [Google Scholar]
  114. Lavers DA, Allan RP, Villarini G, Lloyd-Hughes B, Brayshaw DJ, Wade AJ 2013. Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett. 8:3034010
    [Google Scholar]
  115. Leonard M, Westra S, Phatak A, Lambert M, van den Hurk B et al. 2014. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Change 5:1113–28
    [Google Scholar]
  116. Littell JS, McKenzie D, Peterson DL, Westerling AL 2009. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 19:41003–21
    [Google Scholar]
  117. Mahoney K, Alexander MA, Thompson G, Barsugli JJ, Scott JD 2012. Changes in hail and flood risk in high-resolution simulations over Colorado's mountains. Nat. Clim. Change 2:2125–31
    [Google Scholar]
  118. Mailhot A, Duchesne S, Caya D, Talbot G 2007. Assessment of future change in intensity–duration–frequency (IDF) curves for Southern Quebec using the Canadian Regional Climate Model (CRCM). J. Hydrol. 347:1–2197–210
    [Google Scholar]
  119. Mallakpour I, Villarini G. 2015. The changing nature of flooding across the central United States. Nat. Clim. Change 5:3250–54
    [Google Scholar]
  120. Mallakpour I, Villarini G, Jones MP, Smith JA 2017. On the use of Cox regression to examine the temporal clustering of flooding and heavy precipitation across the central United States. Glob. Planet. Change 155:98–108
    [Google Scholar]
  121. Martius O, Hering A, Kunz M, Manzato A, Mohr S et al. 2018. Challenges and recent advances in hail research. Bull. Am. Meteorol. Soc. 99:3ES51–54
    [Google Scholar]
  122. Marvel K, Bonfils C. 2013. Identifying external influences on global precipitation. PNAS 110:4819301–6
    [Google Scholar]
  123. Mazdiyasni O, AghaKouchak A. 2015. Substantial increase in concurrent droughts and heatwaves in the United States. PNAS 112:3711484–89
    [Google Scholar]
  124. Mazdiyasni O, AghaKouchak A, Davis SJ, Madadgar S, Mehran A et al. 2017. Increasing probability of mortality during Indian heat waves. Sci. Adv. 3:6e1700066
    [Google Scholar]
  125. Meehl GA, Tebaldi C. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:5686994–97
    [Google Scholar]
  126. Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L 2009. Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys. Res. Lett. 36:23L23701
    [Google Scholar]
  127. Mehran A, Mazdiyasni O, AghaKouchak A 2015. A hybrid framework for assessing socioeconomic drought: linking climate variability, local resilience, and demand. J. Geophys. Res. Atmos. 120:157520–33
    [Google Scholar]
  128. Milly PCD, Dunne KA, Vecchia AV 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:7066347–50
    [Google Scholar]
  129. Moftakhari H, AghaKouchak A, Sanders BF, Matthew RA, Mazdiyasni O 2017a. Translating uncertain sea level projections into infrastructure impacts using a Bayesian framework. Geophys. Res. Lett. 44:2311914–21
    [Google Scholar]
  130. Moftakhari H, Salvadori G, AghaKouchak A, Sanders B, Matthew R 2017b. Compounding effects of sea level rise and fluvial flooding. PNAS 114:379785–90
    [Google Scholar]
  131. Moftakhari H, Schubert JE, AghaKouchak A, Matthew RA, Sanders BF 2019. Linking statistical and hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries. Adv. Water Resour. 128:28–38
    [Google Scholar]
  132. Moftakhari HR, AghaKouchak A, Sanders BF, Feldman DL, Sweet W et al. 2015. Increased nuisance flooding along the coasts of the United States due to sea level rise: past and future. Geophys. Res. Lett. 42:229846–52
    [Google Scholar]
  133. Moritz MA, Morais ME, Summerell LA, Carlson JM, Doyle J 2005. Wildfires, complexity, and highly optimized tolerance. PNAS 102:5017912–17
    [Google Scholar]
  134. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK et al. 2010. The next generation of scenarios for climate change research and assessment. Nature 463:7282747–56
    [Google Scholar]
  135. Mote PW, Li S, Lettenmaier DP, Xiao M, Engel R 2018. Dramatic declines in snowpack in the western US. npj Clim. Atmos. Sci. 1:12
    [Google Scholar]
  136. Musselman KN, Lehner F, Ikeda K, Clark MP, Prein AF et al. 2018. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change 8:9808–12
    [Google Scholar]
  137. NCDC 2018. Billion-dollar weather and climate disasters: overview. NCDC https://www.ncdc.noaa.gov/billions/
    [Google Scholar]
  138. Nelson EJ, Kareiva P, Ruckelshaus M, Arkema K, Geller G et al. 2013. Climate change's impact on key ecosystem services and the human well-being they support in the US. Front. Ecol. Environ. 11:9483–893
    [Google Scholar]
  139. Neumann JE, Price J, Chinowsky P, Wright L, Ludwig L et al. 2015. Climate change risks to US infrastructure: impacts on roads, bridges, coastal development, and urban drainage. Clim. Change 131:197–109
    [Google Scholar]
  140. O'Gorman PA. 2014. Contrasting responses of mean and extreme snowfall to climate change. Nature 512:7515416–18
    [Google Scholar]
  141. O'Gorman PA, Schneider T. 2009. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. PNAS 106:3514773–77
    [Google Scholar]
  142. Pall P, Allen MR, Stone DA 2007. Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim. Dyn. 28:4351–63
    [Google Scholar]
  143. Palmer W. 1965. Meteorological drought US Weather Bureau Res. Pap45
  144. Papalexiou SM, AghaKouchak A, Foufoula-Georgiou E 2018a. A diagnostic framework for understanding climatology of tails of hourly precipitation extremes in the United States. Water Resour. Res. 54:96725–38
    [Google Scholar]
  145. Papalexiou SM, AghaKouchak A, Trenberth KE, Foufoula‐Georgiou E 2018b. Global, regional, and megacity trends in the highest temperature of the year: diagnostics and evidence for accelerating trends. Earth's Future 6:171–79
    [Google Scholar]
  146. Papalexiou SM, Montanari A. 2019. Global and regional increase of precipitation extremes under global warming. Water Resour. Res. 55:4901–14
    [Google Scholar]
  147. Patricola CM, Wehner MF. 2018. Anthropogenic influences on major tropical cyclone events. Nature 563:7731339–46
    [Google Scholar]
  148. Pechony O, Shindell DT. 2010. Driving forces of global wildfires over the past millennium and the forthcoming century. PNAS 107:4519167–70
    [Google Scholar]
  149. Perkins GD, Handley AJ, Koster RW, Castrén M, Smyth MA et al. 2015. European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation 95:81–99
    [Google Scholar]
  150. Perkins SE, Alexander LV, Nairn JR 2012. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39:20L20714
    [Google Scholar]
  151. Perkins SE, Gibson PB. 2017. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci Rep 7:112256
    [Google Scholar]
  152. Pescaroli G, Alexander D. 2015. A definition of cascading disasters and cascading effects: going beyond the “toppling dominos” metaphor. Planet@Risk 3:158–67
    [Google Scholar]
  153. Pfahl S, O'Gorman PA, Fischer EM 2017. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7:6423–27
    [Google Scholar]
  154. Pickering MD, Horsburgh KJ, Blundell JR, Hirschi JJ-M, Nicholls RJ et al. 2017. The impact of future sea-level rise on the global tides. Cont. Shelf Res. 142:50–68
    [Google Scholar]
  155. Piecuch CG, Bittermann K, Kemp AC, Ponte RM, Little CM et al. 2018. River-discharge effects on United States Atlantic and Gulf coast sea-level changes. PNAS 115:307729–34
    [Google Scholar]
  156. Prein AF, Holland GJ. 2018. Global estimates of damaging hail hazard. Weather Clim. Extremes 22:10–23
    [Google Scholar]
  157. Prein AF, Langhans W, Fosser G, Ferrone A, Ban N et al. 2015. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev. Geophys. 53:2323–61
    [Google Scholar]
  158. Prein AF, Rasmussen RM, Ikeda K, Liu C, Clark MP, Holland GJ 2017. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7:148–52
    [Google Scholar]
  159. Prospero JM, Lamb PJ. 2003. African droughts and dust transport to the Caribbean: climate change implications. Science 302:56471024–27
    [Google Scholar]
  160. Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM et al. 2018. Rapid growth of the US wildland-urban interface raises wildfire risk. PNAS 115:133314–19
    [Google Scholar]
  161. Ragno E, AghaKouchak A, Cheng L, Sadegh M 2019. A generalized framework for process-informed nonstationary extreme value analysis. Adv. Water Resour. 130:270–82
    [Google Scholar]
  162. Ragno E, AghaKouchak A, Love CA, Cheng L, Vahedifard F, Lima CHR 2018. Quantifying changes in future intensity‐duration‐frequency curves using multimodel ensemble simulations. Water Resour. Res. 54:31751–64
    [Google Scholar]
  163. Rahmstorf S, Coumou D. 2011. Increase of extreme events in a warming world. PNAS 108:4417905–9
    [Google Scholar]
  164. Ralston DK, Talke S, Geyer WR, Al‐Zubaidi HAM, Sommerfield CK 2019. Bigger tides, less flooding: effects of dredging on barotropic dynamics in a highly modified estuary. J. Geophys. Res. Oceans 124:1196–211
    [Google Scholar]
  165. Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT 2016. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124:91334–43
    [Google Scholar]
  166. Reidmiller DR, Avery CW, Easterling DR, Kunkel KE, Lewis KLM et al. 2018. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Vol. II Washington, DC: US Glob. Change Res. Program
    [Google Scholar]
  167. Rizwan AM, Dennis LYC, Liu C 2008. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20:1120–28
    [Google Scholar]
  168. Robinson JD, Vahedifard F, AghaKouchak A 2017. Rainfall-triggered slope instabilities under a changing climate: comparative study using historical and projected precipitation extremes. Can. Geotech. J. 54:1117–27
    [Google Scholar]
  169. Rokaya P, Budhathoki S, Lindenschmidt K-E 2018. Trends in the timing and magnitude of ice-jam floods in Canada. Sci. Rep. 8:15834
    [Google Scholar]
  170. Rosner A, Vogel RM, Kirshen PH 2014. A risk-based approach to flood management decisions in a nonstationary world. Water Resour. Res. 50:31928–42
    [Google Scholar]
  171. Sadegh M, Moftakhari H, Gupta HV, Ragno E, Mazdiyasni O et al. 2018. Multihazard scenarios for analysis of compound extreme events. Geophys. Res. Lett. 45:115470–80
    [Google Scholar]
  172. Salman AM, Li Y. 2018. Flood risk assessment, future trend modeling, and risk communication: a review of ongoing research. Nat. Hazards Rev. 19:304018011
    [Google Scholar]
  173. Santer BD, Solomon S, Pallotta G, Mears C, Po-Chedley S et al. 2017. Comparing tropospheric warming in climate models and satellite data. J. Clim. 30:1373–92
    [Google Scholar]
  174. Santiago-Collazo FL, Bilskie MV, Hagen SC 2019. A comprehensive review of compound inundation models in low-gradient coastal watersheds. Environ. Model. Softw. 119:166–81
    [Google Scholar]
  175. Sarhadi A, Ausín MC, Wiper MP, Touma D, Diffenbaugh NS 2018. Multidimensional risk in a nonstationary climate: joint probability of increasingly severe warm and dry conditions. Sci. Adv. 4:11eaau3487
    [Google Scholar]
  176. Schoennagel T, Balch JK, Brenkert-Smith H, Dennison PE, Harvey BJ et al. 2017. Adapt to more wildfire in western North American forests as climate changes. PNAS 114:184582–90
    [Google Scholar]
  177. Scholze M, Knorr W, Arnell NW, Prentice IC 2006. A climate-change risk analysis for world ecosystems. PNAS 103:3513116–20
    [Google Scholar]
  178. Scoccimarro E, Gualdi S, Bellucci A, Zampieri M, Navarra A 2013. Heavy precipitation events in a warmer climate: results from CMIP5 models. J. Clim. 26:207902–11
    [Google Scholar]
  179. Seneviratne SI, Donat MG, Pitman AJ, Knutti R, Wilby RL 2016. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529:7587477–83
    [Google Scholar]
  180. Seneviratne SI, Lüthi D, Litschi M, Schär C 2006. Land-atmosphere coupling and climate change in Europe. Nature 443:7108205–9
    [Google Scholar]
  181. Serafin KA, Ruggiero P. 2014. Simulating extreme total water levels using a time-dependent, extreme value approach. J. Geophys. Res. Oceans 119:96305–29
    [Google Scholar]
  182. Shakesby R, Doerr S. 2006. Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 74:3–4269–307
    [Google Scholar]
  183. Shakesby RA. 2011. Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Sci. Rev. 105:3–471–100
    [Google Scholar]
  184. Sharma A, Wasko C, Lettenmaier DP 2018. If precipitation extremes are increasing, why aren't floods. ? Water Resour. Res. 54:118545–51
    [Google Scholar]
  185. Shaw TA, Baldwin M, Barnes EA, Caballero R, Garfinkel CI et al. 2016. Storm track processes and the opposing influences of climate change. Nat. Geosci. 9:9656–64
    [Google Scholar]
  186. Sheffield J, Wood EF. 2008. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 31:179–105
    [Google Scholar]
  187. Sheffield J, Wood EF, Roderick ML 2012. Little change in global drought over the past 60 years. Nature 491:7424435–38
    [Google Scholar]
  188. Shepherd TG. 2014. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7:10703–8
    [Google Scholar]
  189. Skiles SM, Flanner M, Cook JM, Dumont M, Painter TH 2018. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Change 8:11964–71
    [Google Scholar]
  190. Slater L, Villarini G. 2017. Evaluating the drivers of seasonal streamflow in the U.S. Midwest. Water 9:9695
    [Google Scholar]
  191. Slater LJ, Villarini G. 2016. Recent trends in U.S. flood risk. Geophys. Res. Lett. 43:2412428–36
    [Google Scholar]
  192. Spracklen DV, Arnold SR, Taylor CM 2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:7415282–85
    [Google Scholar]
  193. Steinschneider S, Lall U. 2015. A hierarchical Bayesian regional model for nonstationary precipitation extremes in Northern California conditioned on tropical moisture exports. Water Resour. Res. 51:31472–92
    [Google Scholar]
  194. Stott PA, Stone DA, Allen MR 2004. Human contribution to the European heatwave of 2003. Nature 432:7017610–14
    [Google Scholar]
  195. Sun Q, Miao C, AghaKouchak A, Duan Q 2017. Unraveling anthropogenic influence on the changing risk of heat waves in China. Geophys. Res. Lett. 44:105078–85
    [Google Scholar]
  196. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT et al. 2009. Sinking deltas due to human activities. Nat. Geosci. 2:10681–86
    [Google Scholar]
  197. Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:5720376–80
    [Google Scholar]
  198. Talke SA, Kemp AC, Woodruff J 2018. Relative sea level, tides, and extreme water levels in Boston Harbor from 1825 to 2018. J. Geophys. Res. Oceans 123:63895–914
    [Google Scholar]
  199. Talke SA, Orton P, Jay DA 2014. Increasing storm tides in New York Harbor, 1844–2013. Geophys. Res. Lett. 41:93149–55
    [Google Scholar]
  200. Tarroja B, Chiang F, AghaKouchak A, Samuelsen S 2018. Assessing future water resource constraints on thermally based renewable energy resources in California. Appl. Energy 226:49–60
    [Google Scholar]
  201. Tebaldi C, Lobell D. 2018. Estimated impacts of emission reductions on wheat and maize crops. Clim. Change 146:3–4533–45
    [Google Scholar]
  202. Trenberth KE. 2008. The impact of climate change and variability on heavy precipitation, floods, and droughts. Encyclopedia of Hydrological Sciences MG Anderson, JJ McDonnell pp. 1–11 Chichester, UK: John Wiley & Sons
    [Google Scholar]
  203. Trenberth KE. 2011. Changes in precipitation with climate change. Clim. Res. 47:1123–38
    [Google Scholar]
  204. Trenberth KE, Cheng L, Jacobs P, Zhang Y, Fasullo J 2018. Hurricane Harvey links to ocean heat content and climate change adaptation. Earth's Future 6:5730–44
    [Google Scholar]
  205. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J et al. 2014. Global warming and changes in drought. Nat. Clim. Change 4:117–22
    [Google Scholar]
  206. Trenberth KE, Fasullo JT, Shepherd TG 2015. Attribution of climate extreme events. Nat. Clim. Change 5:8725–30
    [Google Scholar]
  207. van den Hurk B, van Meijgaard E, de Valk P, van Heeringen K-J, Gooijer J 2015. Analysis of a compounding surge and precipitation event in the Netherlands. Environ. Res. Lett. 10:3035001
    [Google Scholar]
  208. Van Loon AF, Gleeson T, Clark J, Van Dijk AIJM, Stahl K et al. 2016. Drought in the Anthropocene. Nat. Geosci. 9:89–91
    [Google Scholar]
  209. van Oldenborgh GJ, van der Wiel K, Sebastian A, Singh R, Arrighi J et al. 2017. Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett. 12:12124009
    [Google Scholar]
  210. Villarini G, Slater L. 2017. Climatology of Flooding in the United States, Vol. 1: Oxford, UK: Oxford Univ. Press
  211. Vitousek S, Barnard PL, Fletcher CH, Frazer N, Erikson L, Storlazzi CD 2017. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7:11399
    [Google Scholar]
  212. Vogel MM, Orth R, Cheruy F, Hagemann S, Lorenz R et al. 2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture‐temperature feedbacks. Geophys. Res. Lett. 44:31511–19
    [Google Scholar]
  213. Wahl T. 2017. Sea-level rise and storm surges, relationship status: complicated. ! Environ. Res. Lett. 12:11111001
    [Google Scholar]
  214. Wahl T, Chambers DP. 2016. Climate controls multidecadal variability in U.S. extreme sea level records. J. Geophys. Res. Oceans 121:21274–90
    [Google Scholar]
  215. Wahl T, Haigh ID, Nicholls RJ, Arns A, Dangendorf S et al. 2017. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat. Commun. 8:116075
    [Google Scholar]
  216. Wahl T, Jain S, Bender J, Meyers SD, Luther ME 2015. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Change 5:121093–97
    [Google Scholar]
  217. Wallemacq P, House R. 2018. Economic Losses, Poverty & Disasters: 1998–2017 Geneva: CRED
  218. Walsh KJE, McBride JL, Klotzbach PJ, Balachandran S, Camargo SJ et al. 2016. Tropical cyclones and climate change. Wiley Interdiscip. Rev. Clim. Change 7:165–89
    [Google Scholar]
  219. Wang G, Wang D, Trenberth KE, Erfanian A, Yu M et al. 2017. The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Clim. Change 7:4268–74
    [Google Scholar]
  220. Wang S-YS, Zhao L, Gillies RR 2016. Synoptic and quantitative attributions of the extreme precipitation leading to the August 2016 Louisiana flood. Geophys. Res. Lett. 43:2211805–14
    [Google Scholar]
  221. Wang S-YS, Zhao L, Yoon J-H, Klotzbach P, Gillies RR 2018. Quantitative attribution of climate effects on Hurricane Harvey's extreme rainfall in Texas. Environ. Res. Lett. 13:5054014
    [Google Scholar]
  222. Wasko C, Sharma A, Westra S 2016. Reduced spatial extent of extreme storms at higher temperatures. Geophys. Res. Lett. 43:84026–32
    [Google Scholar]
  223. Wentz FJ, Ricciardulli L, Hilburn K, Mears C 2007. How much more rain will global warming bring. ? Science 317:5835233–35
    [Google Scholar]
  224. Westerling AL. 2016. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B 371:169620150178
    [Google Scholar]
  225. Westra S, Alexander LV, Zwiers FW 2012. Global increasing trends in annual maximum daily precipitation. J. Clim. 26:113904–18
    [Google Scholar]
  226. Westra S, Sisson SA. 2011. Detection of non-stationarity in precipitation extremes using a max-stable process model. J. Hydrol. 406:1–2119–28
    [Google Scholar]
  227. Willis HH, Narayanan A, Fischbach JR, Molina-Perez E, Stelzner C et al. 2016. Current and Future Exposure of Infrastructure in the United States to Natural Hazards Santa Monica, CA: RAND
  228. Winsemius HC, Aerts JCJH, van Beek LPH, Bierkens MFP, Bouwman A et al. 2016. Global drivers of future river flood risk. Nat. Clim. Change 6:4381–85
    [Google Scholar]
  229. Woodruff JD, Irish JL, Camargo SJ 2013. Coastal flooding by tropical cyclones and sea-level rise. Nature 504:747844–52
    [Google Scholar]
  230. Zarzycki CM. 2018. Projecting changes in societally impactful northeastern U.S. snowstorms. Geophys. Res. Lett. 45:2112067–75
    [Google Scholar]
  231. Zhu Y, Newell RE. 1998. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Weather Rev. 126:3725–35
    [Google Scholar]
  232. Zscheischler J, Westra S, van den Hurk BJJM, Seneviratne SI, Ward PJ et al. 2018. Future climate risk from compound events. Nat. Clim. Change 8:6469–77
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071719-055228
Loading
/content/journals/10.1146/annurev-earth-071719-055228
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error