1932

Abstract

Many important questions about the history and dynamics of organisms have a geographical component: How many are there, and where do they live? How do they move and interbreed across the landscape? How were they moving a thousand years ago, and where were the ancestors of a particular individual alive today? Answers to these questions can have profound consequences for our understanding of history, ecology, and the evolutionary process. In this review, we discuss how geographic aspects of the distribution, movement, and reproduction of organisms are reflected in their pedigree across space and time. Because the structure of the pedigree is what determines patterns of relatedness in modern genetic variation, our aim is to thus provide intuition for how these processes leave an imprint in genetic data. We also highlight some current methods and gaps in the statistical toolbox of spatial population genetics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110316-022659
2019-11-02
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/50/1/annurev-ecolsys-110316-022659.html?itemId=/content/journals/10.1146/annurev-ecolsys-110316-022659&mimeType=html&fmt=ahah

Literature Cited

  1. Aguillon SM, Fitzpatrick JW, Bowman R, Schoech SJ, Clark AG 2017. Deconstructing isolation-by-distance: the genomic consequences of limited dispersal. PLOS Genet. 13:e1006911
    [Google Scholar]
  2. Al-Asadi H, Petkova D, Stephens M, Novembre J 2019. Estimating recent migration and population-size surfaces. PLOS Genet. 15:e1007908
    [Google Scholar]
  3. Alexander DH, Novembre J, Lange K 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19:1655–64
    [Google Scholar]
  4. Barton NH 1979. The dynamics of hybrid zones. Heredity 43:341–59
    [Google Scholar]
  5. Barton NH, Depaulis F, Etheridge AM 2002. Neutral evolution in spatially continuous populations. Theor. Popul. Biol. 61:31–48
    [Google Scholar]
  6. Barton NH, Etheridge AM 2011. The relation between reproductive value and genetic contribution. Genetics 188:953–73
    [Google Scholar]
  7. Barton NH, Etheridge A, Kelleher J, Véber A 2013a. Inference in two dimensions: Allele frequencies versus lengths of shared sequence blocks. Theor. Popul. Biol. 87:105–19
    [Google Scholar]
  8. Barton NH, Etheridge AM, Véber A 2013b. Modelling evolution in a spatial continuum. J. Stat. Mech. Theory Exp. 2013:P01002
    [Google Scholar]
  9. Barton NH, Hewitt GM 1985. Analysis of hybrid zones. Annu. Rev. Ecol. Syst. 16:113–48
    [Google Scholar]
  10. Barton NH, Kelleher J, Etheridge AM 2010. A new model for extinction and recolonization in two dimensions: quantifying phylogeography. Evolution 64:2701–15
    [Google Scholar]
  11. Barton NH, Wilson I 1995. Genealogies and geography. Philos. Trans. R. Soc. B 349:49–59
    [Google Scholar]
  12. Bhaskar A, Song YS 2014. Descartes’ rule of signs and the identifiability of population demographic models from genomic variation data. Ann. Stat. 42:2469–93
    [Google Scholar]
  13. Bi K, Linderoth T, Singhal S, Vanderpool D, Patton JL 2019. Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change. PLOS Genet. 15:e1008119
    [Google Scholar]
  14. Bi K, Linderoth T, Vanderpool D, Good JM, Nielsen R, Moritz C 2013. Unlocking the vault: next-generation museum population genomics. Mol. Ecol. 22:6018–32
    [Google Scholar]
  15. Biek R, Real LA 2010. The landscape genetics of infectious disease emergence and spread. Mol. Ecol. 19:3515–31
    [Google Scholar]
  16. Bradburd GS, Coop GM, Ralph PL 2018. Inferring continuous and discrete population genetic structure across space. Genetics 210:33–52
    [Google Scholar]
  17. Bradburd GS, Ralph PL, Coop GM 2013. Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution 67:3258–73
    [Google Scholar]
  18. Bradburd GS, Ralph PL, Coop GM 2016. A spatial framework for understanding population structure and admixture. PLOS Genet. 12:e1005703
    [Google Scholar]
  19. Cayuela H, Rougemont Q, Prunier JG, Moore JS, Clobert J 2018. Demographic and genetic approaches to study dispersal in wild animal populations: A methodological review. Mol. Ecol. 27:3976–4010
    [Google Scholar]
  20. Chang JT 1999. Recent common ancestors of all present-day individuals. Adv. Appl. Probab. 31:1002–26
    [Google Scholar]
  21. Charlesworth B 2009. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10:195–205
    [Google Scholar]
  22. Charlesworth B, Charlesworth D, Barton NH 2003. The effects of genetic and geographic structure on neutral variation. Annu. Rev. Ecol. Evol. Syst. 34:99–125
    [Google Scholar]
  23. Crow JF, Aoki K 1984. Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. PNAS 81:6073–77
    [Google Scholar]
  24. Dobzhansky T 1947. Adaptive changes induced by natural selection in wild populations of Drosophila. Evolution 1:1–16
    [Google Scholar]
  25. Dobzhansky T, Wright S 1943. Genetics of natural populations. X. Dispersion rates in Drosophila pseudoobscura. Genetics 28:304–40
    [Google Scholar]
  26. Duforet-Frebourg N, Blum MG 2014. Nonstationary patterns of isolation-by-distance: inferring measures of local genetic differentiation with Bayesian kriging. Evolution 68:1110–23
    [Google Scholar]
  27. Epperson B 2003. Geographical Genetics Princeton, NJ: Princeton Univ. Press
  28. Ewens W 2004. Mathematical Population Genetics New York: Springer
  29. Felsenstein J 1975. A pain in the torus: some difficulties with models of isolation by distance. Am. Nat. 109:359–68
    [Google Scholar]
  30. Fisher R 1937. The wave of advance of advantageous genes. Ann. Eugen. 7:353–69
    [Google Scholar]
  31. Guindon S, Guo H, Welch D 2016. Demographic inference under the coalescent in a spatial continuum. Theor. Popul. Biol. 111:43–50
    [Google Scholar]
  32. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD 2009. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLOS Genet. 5:e1000695
    [Google Scholar]
  33. Haldane JB 1948. The theory of a cline. J. Genet. 48:277–84
    [Google Scholar]
  34. Hallatschek O 2011. The noisy edge of traveling waves. PNAS 108:1783–87
    [Google Scholar]
  35. Hallatschek O, Fisher DS 2014. Acceleration of evolutionary spread by long-range dispersal. PNAS 111:E4911–19
    [Google Scholar]
  36. Haller BC, Galloway J, Kelleher J, Messer PW, Ralph PL 2019. Tree-sequence recording in SLiM opens new horizons for forward-time simulation of whole genomes. Mol. Ecol. Resour. 19:552–66
    [Google Scholar]
  37. Haller BC, Messer PW 2018. SLiM 3: forward genetic simulations beyond the Wright-Fisher model. Mol. Biol. Evol. 36:632–37
    [Google Scholar]
  38. Hardy GH 1908. Mendelian proportions in a mixed population. Science 28:49–50
    [Google Scholar]
  39. Harris K, Nielsen R 2013. Inferring demographic history from a spectrum of shared haplotype lengths. PLOS Genet. 9:e1003521
    [Google Scholar]
  40. Hunter JD 2007. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9:90–95
    [Google Scholar]
  41. Joseph TA, Pe'er I 2018. Inference of population structure from ancient DNA. Research in Computational Molecular Biology 10812 Lecture Notes in Computer Science, ed. BJ Raphael 90–104 Cham, Switz.: Springer
    [Google Scholar]
  42. Kamm JA, Terhorst J, Song YS 2017. Efficient computation of the joint sample frequency spectra for multiple populations. J. Comput. Graph. Stat. 26:182–94
    [Google Scholar]
  43. Kelleher J, Etheridge AM, McVean G 2016a. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLOS Comput. Biol. 12:e1004842
    [Google Scholar]
  44. Kelleher J, Etheridge AM, Véber A, Barton N 2016b. Spread of pedigree versus genetic ancestry in spatially distributed populations. Theor. Popul. Biol. 108:1–12
    [Google Scholar]
  45. Kelleher J, Thornton KR, Ashander J, Ralph PL 2018. Efficient pedigree recording for fast population genetics simulation. PLOS Comput. Biol. 14:e1006581
    [Google Scholar]
  46. Kruuk LE, Baird SJ, Gale KS, Barton NH 1999. A comparison of multilocus clines maintained by environmental adaptation or by selection against hybrids. Genetics 153:1959–71
    [Google Scholar]
  47. Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S 2014. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513:409–13
    [Google Scholar]
  48. Leslie S, Winney B, Hellenthal G, Davison D, Boumertit A 2015. The fine-scale genetic structure of the British population. Nature 519:309–14
    [Google Scholar]
  49. Lewontin RC 1974. The Genetic Basis of Evolutionary Change New York: Columbia Univ. Press
  50. Li H, Durbin R 2011. Inference of human population history from individual whole-genome sequences. Nature 475:493–96
    [Google Scholar]
  51. Li H, Glusman G, Hu H, Shankaracharya JC, Hubley R 2014. Relationship estimation from whole-genome sequence data. PLOS Genet 10:e1004144
    [Google Scholar]
  52. Lundgren E, Ralph PL 2019. Are populations like a circuit? Comparing isolation by resistance to a new coalescent-based method. Mol. Ecol. Resourc In press. https://doi.org/10.1111/1755-0998.13035
    [Crossref] [Google Scholar]
  53. Malécot G 1948. Les mathématiques de l'hérédité Paris: Masson
  54. Marjoram P, Tavaré S 2006. Modern computational approaches for analysing molecular genetic variation data. Nat. Rev. Genet. 7:759–70
    [Google Scholar]
  55. McRae BH 2006. Isolation by resistance. Evolution 60:1551–61
    [Google Scholar]
  56. McRae BH, Beier P 2007. Circuit theory predicts gene flow in plant and animal populations. PNAS 104:19885–90
    [Google Scholar]
  57. McRae BH, Dickson BG, Keitt TH, Shah VB 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–24
    [Google Scholar]
  58. Möhle M, Sagitov S 2003. Coalescent patterns in diploid exchangeable population models. J. Math. Biol. 47:337–52
    [Google Scholar]
  59. Mourant AE 1954. The Distribution of the Human Blood Groups Oxford, UK: Blackwell
  60. Myers SR, Fefferman C, Patterson N 2008. Can one learn history from the allelic spectrum. Theor. Popul. Biol. 733342–48
    [Google Scholar]
  61. Nagylaki T 1975. Conditions for the existence of clines. Genetics 80:595–615
    [Google Scholar]
  62. Nagylaki T 1998. The expected number of heterozygous sites in a subdivided population. Genetics 149:1599–604
    [Google Scholar]
  63. Nei M, Li WH 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. PNAS 76:5269–73
    [Google Scholar]
  64. Neigel JE, Avise JC 1993. Application of a random walk model to geographic distributions of animal mitochondrial DNA variation. Genetics 135:1209–20
    [Google Scholar]
  65. Nomura T 2008. Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol. Appl. 1:462–74
    [Google Scholar]
  66. Novembre J, Slatkin M 2009. Likelihood-based inference in isolation-by-distance models using the spatial distribution of low-frequency alleles. Evolution 63:2914–25
    [Google Scholar]
  67. Palamara PF, Lencz T, Darvasi A, Pe'er I 2012. Length distributions of identity by descent reveal fine-scale demographic history. Am. J. Hum. Genet. 915809–22
    [Google Scholar]
  68. Parmesan C 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637–69
    [Google Scholar]
  69. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–83
    [Google Scholar]
  70. Petkova D, Novembre J, Stephens M 2016. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48:94–100
    [Google Scholar]
  71. Petrov Y, Sizikov V 2005. Well-Posed, Ill-Posed, and Intermediate Problems with Applications Berlin: de Gruyter
  72. Pickrell JK, Reich D 2014. Toward a new history and geography of human genes informed by ancient DNA. Trends Genet. 30:377–89
    [Google Scholar]
  73. Pritchard JK, Stephens M, Donnelly P 2000. Inference of population structure using multilocus genotype data. Genetics 155:945–59
    [Google Scholar]
  74. Pulliam HR 1988. Sources, sinks, and population regulation. Am. Nat. 132:652–61
    [Google Scholar]
  75. Ralph P, Coop G 2010. Parallel adaptation: one or many waves of advance of an advantageous allele. Genetics 186647–68
    [Google Scholar]
  76. Ralph P, Coop G 2013. The geography of recent genetic ancestry across Europe. PLOS Biol. 11:e1001555
    [Google Scholar]
  77. Ralph PL, Coop G 2015. Convergent evolution during local adaptation to patchy landscapes. PLOS Genet. 11:e1005630
    [Google Scholar]
  78. Ramaley JF 1969. Buffon's needle problem. Am. Math. Mon. 76:916–18
    [Google Scholar]
  79. Ringbauer H, Coop G, Barton NH 2017. Inferring recent demography from isolation by distance of long shared sequence blocks. Genetics 205:1335–51
    [Google Scholar]
  80. Ringbauer H, Kolesnikov A, Field DL, Barton NH 2018. Estimating barriers to gene flow from distorted isolation-by-distance patterns. Genetics 208:1231–45
    [Google Scholar]
  81. Robledo-Arnuncio JJ, Rousset F 2010. Isolation by distance in a continuous population under stochastic demographic fluctuations. J. Evol. Biol. 23:53–71
    [Google Scholar]
  82. Roughgarden J 1974. Population dynamics in a spatially varying environment: how population size “tracks” spatial variation in carrying capacity. Am. Nat. 108:649–64
    [Google Scholar]
  83. Rousset F 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–28
    [Google Scholar]
  84. Sawyer S 1976. Branching diffusion processes in population genetics. Adv. Appl. Probab. 8:659–89
    [Google Scholar]
  85. Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S 2012. Adaptive genetic variation on the landscape: methods and cases. Annu. Rev. Ecol. Evol. Syst. 43:23–43
    [Google Scholar]
  86. Schreiber SJ 2010. Interactive effects of temporal correlations, spatial heterogeneity and dispersal on population persistence. Proc. R. Soc. B 277:1907–14
    [Google Scholar]
  87. Schrider DR, Kern AD 2018. Supervised machine learning for population genetics: a new paradigm. Trends Genet. 34:301–12
    [Google Scholar]
  88. Sedghifar A, Brandvain Y, Ralph P, Coop G 2015. The spatial mixing of genomes in secondary contact zones. Genetics 201:243–61
    [Google Scholar]
  89. Sexton JP, Hangartner SB, Hoffmann AA 2013. Genetic isolation by environment or distance: Which pattern of gene flow is most common. Evolution 681–15
    [Google Scholar]
  90. Shaffer HB, McCartney-Melstad E, Ralph PL, Bradburd G, Lundgren E 2017. Desert tortoises in the genomic age: population genetics and the landscape. bioRxiv 195743. https://doi.org/10.1101/195743
    [Crossref] [Google Scholar]
  91. Skoglund P, Sjödin P, Skoglund T, Lascoux M, Jakobsson M 2014. Investigating population history using temporal genetic differentiation. Mol. Biol. Evol. 31:2516–27
    [Google Scholar]
  92. Slatkin M 1973. Gene flow and selection in a cline. Genetics 75:733–56
    [Google Scholar]
  93. Slatkin M 1991. Inbreeding coefficients and coalescence times. Genet. Res. 58:167–75
    [Google Scholar]
  94. Slatkin M 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–79
    [Google Scholar]
  95. Sousa VC, Grelaud A, Hey J 2011. On the nonidentifiability of migration time estimates in isolation with migration models. Mol. Ecol. 20:3956–62
    [Google Scholar]
  96. Stuart AM 2010. Inverse problems: a Bayesian perspective. Acta Numer. 19:451–559
    [Google Scholar]
  97. Tajima F 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–95
    [Google Scholar]
  98. van den Haak WP, Lazaridis I, Patterson N, Rohland N, Mallick S 2015. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522:207–11
    [Google Scholar]
  99. Wakeley J 1999. Nonequilibrium migration in human history. Genetics 153:1863–71
    [Google Scholar]
  100. Wang IJ, Bradburd GS 2014. Isolation by environment. Mol. Ecol. 23:5649–62
    [Google Scholar]
  101. Wang J 2014. Marker-based estimates of relatedness and inbreeding coefficients: an assessment of current methods. J. Evol. Biol. 27:518–30
    [Google Scholar]
  102. Wang J, Santiago E, Caballero A 2016. Prediction and estimation of effective population size. Heredity 117:193–206
    [Google Scholar]
  103. Waples RS, Waples RK 2011. Inbreeding effective population size and parentage analysis without parents. Mol. Ecol. Resour. 11:162–71
    [Google Scholar]
  104. Weinberg W 1908. Über den nachweis der vererbung beim menschen. Jahresh. Ver. Vaterl. Nat. 64:369–82
    [Google Scholar]
  105. Whitlock MC 1992. Temporal fluctuations in demographic parameters and the genetic variance among populations. Evolution 46:608–15
    [Google Scholar]
  106. Whitlock MC, McCauley DE 1999. Indirect measures of gene flow and migration: FST≠1/(4Nm+1). Heredity 82:117–25
    [Google Scholar]
  107. Wilkins JF 2004. A separation-of-timescales approach to the coalescent in a continuous population. Genetics 168:2227–44
    [Google Scholar]
  108. Williamson EG, Slatkin M 1999. Using maximum likelihood to estimate population size from temporal changes in allele frequencies. Genetics 152:755–61
    [Google Scholar]
  109. Wright S 1931. Evolution in Mendelian populations. Bull. Math. Biol. 52:241–95
    [Google Scholar]
  110. Wright S 1940. Breeding structure of populations in relation to speciation. Am. Nat. 74:232–48
    [Google Scholar]
  111. Wright S 1943. Isolation by distance. Genetics 28:114–38
    [Google Scholar]
  112. Wright S 1946. Isolation by distance under diverse systems of mating. Genetics 31:39–59
    [Google Scholar]
  113. Wright S 1951. The genetical structure of populations. Ann. Eugen. 15:323–54
    [Google Scholar]
  114. Zipkin EF, Saunders SP 2018. Synthesizing multiple data types for biological conservation using integrated population models. Biol. Conserv. 217:240–50
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110316-022659
Loading
/content/journals/10.1146/annurev-ecolsys-110316-022659
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error