1932

Abstract

Genome sequence data are now being routinely obtained from many nonmodel organisms. These data contain a wealth of information about the demographic history of the populations from which they originate. Many sophisticated statistical inference procedures have been developed to infer the demographic history of populations from this type of genomic data. In this review, we discuss the different statistical methods available for inference of demography, providing an overview of the underlying theory and logic behind each approach. We also discuss the types of data required and the pros and cons of each method. We then discuss how these methods have been applied to a variety of nonmodel organisms. We conclude by presenting some recommendations for researchers looking to use genomic data to infer demographic history.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062431
2018-11-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/es/49/1/annurev-ecolsys-110617-062431.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062431&mimeType=html&fmt=ahah

Literature Cited

  1. Adams AM, Hudson RR 2004. Maximum-likelihood estimation of demographic parameters using the frequency spectrum of unlinked single-nucleotide polymorphisms. Genetics 168:31699–712
    [Google Scholar]
  2. Albert VA, Barbazuk WB, Der JP, Leebens-Mack J, Ma H et al. 2013. The Amborella genome and the evolution of flowering plants. Science 342:61651241089
    [Google Scholar]
  3. Alexander DH, Novembre J, Lange K 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:91655–64
    [Google Scholar]
  4. Andersen LW, Born EW, Doidge DW, Gjertz I, Wiig Ø, Waples RS 2009. Genetic signals of historic and recent migration between sub-populations of Atlantic walrus Odobenus rosmarus rosmarus west and east of Greenland. Endangered Species Res 9:3197–211
    [Google Scholar]
  5. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA 2016. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17:281
    [Google Scholar]
  6. Beaumont MA. 2010. Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41:1379–406
    [Google Scholar]
  7. Beaumont MA, Zhang W, Balding DJ 2002. Approximate Bayesian computation in population genetics. Genetics 162:42025–35
    [Google Scholar]
  8. Beichman AC, Phung TN, Lohmueller KE 2017. Comparison of single genome and allele frequency data reveals discordant demographic histories. G3 7:113605–20
    [Google Scholar]
  9. Bertorelle G, Benazzo A, Mona S 2010. ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Mol. Ecol. 19:132609–25
    [Google Scholar]
  10. Bhaskar A, Wang YXR, Song YS 2015. Efficient inference of population size histories and locus-specific mutation rates from large-sample genomic variation data. Genome Res 25:2268–79
    [Google Scholar]
  11. Blum MGB, François O 2010. Non-linear regression models for approximate Bayesian computation. Stat. Comput 20:163–73
    [Google Scholar]
  12. Boitard S, Rodríguez W, Jay F, Mona S, Austerlitz F 2016. Inferring population size history from large samples of genome-wide molecular data—an approximate Bayesian computation approach. PLOS Genet 12:3e1005877
    [Google Scholar]
  13. Bosse M, Megens H-J, Madsen O, Frantz LA, Paudel Y et al. 2014. Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations. Mol. Ecol. 23:164089–102
    [Google Scholar]
  14. Browning BL, Browning SR 2013a. Detecting identity by descent and estimating genotype error rates in sequence data. Am. J. Hum. Genet. 93:5840–51
    [Google Scholar]
  15. Browning BL, Browning SR 2013b. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194:2459–71
    [Google Scholar]
  16. Browning SR, Browning BL 2015. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. Am. J. Hum. Genet. 97:3404–18
    [Google Scholar]
  17. Bunnefeld L, Frantz LA, Lohse K 2015. Inferring bottlenecks from genome-wide samples of short sequence blocks. Genetics 201:31157–69
    [Google Scholar]
  18. Burgess R, Yang Z 2008. Estimation of hominoid ancestral population sizes under Bayesian coalescent models incorporating mutation rate variation and sequencing errors. Mol. Biol. Evol. 25:91979–94
    [Google Scholar]
  19. Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B et al. 2014. Gibbon genome and the fast karyotype evolution of small apes. Nature 513:7517195
    [Google Scholar]
  20. Chiang CWK, Ralph P, Novembre J 2016. Conflation of short identity-by-descent segments bias their inferred length distribution. G3 6:51287–96
    [Google Scholar]
  21. Chikhi L, Rodríguez W, Grusea S, Santos P, Boitard S, Mazet O 2018. The IICR (inverse instantaneous coalescence rate) as a summary of genomic diversity: insights into demographic inference and model choice. Heredity 120:113
    [Google Scholar]
  22. Chikhi L, Sousa VC, Luisi P, Goossens B, Beaumont MA 2010. The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186:3983–95
    [Google Scholar]
  23. Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R 2005. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res 15:111496–1502
    [Google Scholar]
  24. Coffman AJ, Hsieh PH, Gravel S, Gutenkunst RN 2016. Computationally efficient composite likelihood statistics for demographic inference. Mol. Biol. Evol. 33:2591–93
    [Google Scholar]
  25. Combosch DJ, Lemer S, Ward PD, Landman NH, Giribet G 2017. Genomic signatures of evolution in Nautilus—an endangered living fossil. Mol. Ecol. 26:215923–38
    [Google Scholar]
  26. Cornille A, Salcedo A, Kryvokhyzha D, Glémin S, Holm K et al. 2016. Genomic signature of successful colonization of Eurasia by the allopolyploid shepherd's purse (Capsella bursa-pastoris). Mol. Ecol. 25:2616–29
    [Google Scholar]
  27. Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M et al. 2014. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:81187–89
    [Google Scholar]
  28. Cornuet J-M, Santos F, Beaumont MA, Robert CP, Marin J-M et al. 2008. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:232713–19
    [Google Scholar]
  29. Crawford JE, Alves JM, Palmer WJ, Day JP, Sylla M et al. 2017. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biol 15:16
    [Google Scholar]
  30. Csilléry K, Blum MGB, Gaggiotti OE, François O 2010. Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 25:7410–18
    [Google Scholar]
  31. DeGiorgio M, Rosenberg NA 2013. Geographic sampling scheme as a determinant of the major axis of genetic variation in principal components analysis. Mol. Biol. Evol. 30:2480–88
    [Google Scholar]
  32. Douglas GM, Gos G, Steige KA, Salcedo A, Holm K et al. 2015. Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. PNAS 112:92806–11
    [Google Scholar]
  33. Durand EY, Eriksson N, McLean CY 2014. Reducing pervasive false-positive identical-by-descent segments detected by large-scale pedigree analysis. Mol. Biol. Evol. 31:82212–22
    [Google Scholar]
  34. Edwards T, Tollis M, Hsieh P, Gutenkunst RN, Liu Z et al. 2016. Assessing models of speciation under different biogeographic scenarios; an empirical study using multi-locus and RNA-seq analyses. Ecol. Evol. 6:2379–96
    [Google Scholar]
  35. Egger B, Roesti M, Böhne A, Roth O, Salzburger W 2017. Demography and genome divergence of lake and stream populations of an East African cichlid fish. Mol. Ecol. 26:195016–30
    [Google Scholar]
  36. Enard D, Messer PW, Petrov DA 2014. Genome-wide signals of positive selection in human evolution. Genome Res 24:6885–95
    [Google Scholar]
  37. Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M 2013. Robust demographic inference from genomic and SNP data. PLOS Genet 9:10e1003905
    [Google Scholar]
  38. Fagundes NJR, Ray N, Beaumont M, Neuenschwander S, Salzano FM et al. 2007. Statistical evaluation of alternative models of human evolution. PNAS 104:4517614–19
    [Google Scholar]
  39. Filatov DA, Osborne OG, Papadopulos AS 2016. Demographic history of speciation in a Senecio altitudinal hybrid zone on Mt. Etna. Mol. Ecol. 25:112467–81
    [Google Scholar]
  40. Fitak RR, Mohandesan E, Corander J, Burger PA 2016. The de novo genome assembly and annotation of a female domestic dromedary of North African origin. Mol. Ecol. Resour. 16:1314–24
    [Google Scholar]
  41. Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E et al. 2014. Genome sequencing highlights the dynamic early history of dogs. PLOS Genet 10:1e1004016
    [Google Scholar]
  42. Fu YX. 1995. Statistical properties of segregating sites. Theor. Popul. Biol. 48:2172–97
    [Google Scholar]
  43. Fu YX, Li WH 1997. Estimating the age of the common ancestor of a sample of DNA sequences. Mol. Biol. Evol. 14:2195–99
    [Google Scholar]
  44. Garud NR, Messer PW, Buzbas EO, Petrov DA 2015. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLOS Genet 11:2e1005004
    [Google Scholar]
  45. Gazave E, Ma L, Chang D, Coventry A, Gao F et al. 2014. Neutral genomic regions refine models of recent rapid human population growth. PNAS 111:2757–62
    [Google Scholar]
  46. Griffiths RC, Tavaré S 1998. The age of a mutation in a general coalescent tree. Stoch. Models 14:1–2273–95
    [Google Scholar]
  47. Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:7424393–98
    [Google Scholar]
  48. Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A 2011. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43:101031–34
    [Google Scholar]
  49. Gusev A, Lowe JK, Stoffel M, Daly MJ, Altshuler D et al. 2009. Whole population, genome-wide mapping of hidden relatedness. Genome Res 19:2318–26
    [Google Scholar]
  50. Gusev A, Palamara PF, Aponte G, Zhuang Z, Darvasi A et al. 2012. The architecture of long-range haplotypes shared within and across populations. Mol. Biol. Evol. 29:2473–86
    [Google Scholar]
  51. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD 2009. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLOS Genet 5:10e1000695
    [Google Scholar]
  52. Han Y, Gao S, Muegge K, Zhang W, Zhou B 2015. Advanced applications of RNA sequencing and challenges. Bioinform. Biol. Insights 9:Suppl. 129–46
    [Google Scholar]
  53. Harrington SM, Hollingsworth BD, Higham TE, Reeder TW 2018. Pleistocene climatic fluctuations drive isolation and secondary contact in the red diamond rattlesnake (Crotalus ruber) in Baja California. J. Biogeogr. 45:164–75
    [Google Scholar]
  54. Harris K, Nielsen R 2013. Inferring demographic history from a spectrum of shared haplotype lengths. PLOS Genet 9:6e1003521
    [Google Scholar]
  55. Hartl DL, Moriyama EN, Sawyer SA 1994. Selection intensity for codon bias. Genetics 138:1227–34
    [Google Scholar]
  56. Harvey MG, Smith BT, Glenn TC, Faircloth BC, Brumfield RT 2016. Sequence capture versus restriction site associated DNA sequencing for shallow systematics. Syst. Biol. 65:5910–24
    [Google Scholar]
  57. Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A et al. 2011. Classic selective sweeps were rare in recent human evolution. Science 331:6019920–24
    [Google Scholar]
  58. Holliday JA, Zhou L, Bawa R, Zhang M, Oubida RW 2016. Evidence for extensive parallelism but divergent genomic architecture of adaptation along altitudinal and latitudinal gradients in Populus trichocarpa. New Phytol. 209:31240–51
    [Google Scholar]
  59. Hung C-M, Shaner P-JL, Zink RM, Liu W-C, Chu T-C et al. 2014. Drastic population fluctuations explain the rapid extinction of the passenger pigeon. PNAS 111:2910636–41
    [Google Scholar]
  60. Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, Pérez-Torres CA, Carretero-Paulet L et al. 2013. Architecture and evolution of a minute plant genome. Nature 498:745294–98
    [Google Scholar]
  61. Joyce P, Marjoram P 2008. Approximately sufficient statistics and Bayesian computation. Stat. Appl. Genet. Mol. Biol. 7:1 https://doi.org/10.2202/1544-6115.1389
    [Crossref] [Google Scholar]
  62. Jung H, Marjoram P 2011. Choice of summary statistic weights in approximate Bayesian computation. Stat. Appl. Genet. Mol. Biol. 10:1 https://doi.org/10.2202/1544-6115.1586
    [Crossref] [Google Scholar]
  63. Kalinowski ST. 2011. The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:4625–32
    [Google Scholar]
  64. Kautt AF, Machado-Schiaffino G, Torres-Dowdall J, Meyer A 2016. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats. Ecol. Evol. 6:155342–57
    [Google Scholar]
  65. Keinan A, Mullikin JC, Patterson N, Reich D 2007. Measurement of the human allele frequency spectrum demonstrates greater genetic drift in East Asians than in Europeans. Nat. Genet. 39:101251–55
    [Google Scholar]
  66. Kimura M. 1964. Diffusion models in population genetics. J. Appl. Probability 1:177–232
    [Google Scholar]
  67. Lam H-M, Xu X, Liu X, Chen W, Yang G et al. 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 42:121053–59
    [Google Scholar]
  68. Lanier HC, Massatti R, He Q, Olson LE, Knowles LL 2015. Colonization from divergent ancestors: glaciation signatures on contemporary patterns of genomic variation in collared pikas (Ochotona collaris). Mol. Ecol. 24:143688–705
    [Google Scholar]
  69. Laurent S, Pfeifer SP, Settles ML, Hunter SS, Hardwick KM et al. 2016. The population genomics of rapid adaptation: disentangling signatures of selection and demography in White Sands lizards. Mol. Ecol. 25:1306–23
    [Google Scholar]
  70. Lawson D, van Dorp L, Falush D 2017. A tutorial on how (not) to over-interpret STRUCTURE/ADMIXTURE bar plots. bioRxiv 066431. https://doi.org/10.1101/066431
    [Crossref]
  71. Le Moan A, Gagnaire P-A, Bonhomme F 2016. Parallel genetic divergence among coastal-marine ecotype pairs of European anchovy explained by differential introgression after secondary contact. Mol. Ecol. 25:133187–202
    [Google Scholar]
  72. Li H, Durbin R 2011. Inference of human population history from individual whole-genome sequences. Nature 475:7357493–96
    [Google Scholar]
  73. Lin T, Zhu G, Zhang J, Xu X, Yu Q et al. 2014. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46:111220–26
    [Google Scholar]
  74. Lipshutz SE, Overcast IA, Hickerson MJ, Brumfield RT, Derryberry EP 2017. Behavioural response to song and genetic divergence in two subspecies of white-crowned sparrows (Zonotrichia leucophrys). Mol. Ecol. 26:113011–27
    [Google Scholar]
  75. Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K et al. 2014. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157:4785–94
    [Google Scholar]
  76. Lohmueller KE, Albrechtsen A, Li Y, Kim SY, Korneliussen T et al. 2011. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome. PLOS Genet 7:10e1002326
    [Google Scholar]
  77. Lohmueller KE, Bustamante CD, Clark AG 2009. Methods for human demographic inference using haplotype patterns from genomewide single-nucleotide polymorphism data. Genetics 182:1217–31
    [Google Scholar]
  78. Lopes JS, Balding D, Beaumont MA 2009. PopABC: a program to infer historical demographic parameters. Bioinformatics 25:202747–49
    [Google Scholar]
  79. Lukic S, Hey J 2012. Demographic inference using spectral methods on SNP data, with an analysis of the human out-of-Africa expansion. Genetics 192:2619–39
    [Google Scholar]
  80. MacLeod IM, Larkin DM, Lewin HA, Hayes BJ, Goddard ME 2013. Inferring demography from runs of homozygosity in whole-genome sequence, with correction for sequence errors. Mol. Biol. Evol. 30:92209–23
    [Google Scholar]
  81. Marjoram P. 2013. Approximation Bayesian computation. OA Genet 1:3853
    [Google Scholar]
  82. Marjoram P, Molitor J, Plagnol V, Tavaré S 2003. Markov chain Monte Carlo without likelihoods. PNAS 100:2615324–28
    [Google Scholar]
  83. Marjoram P, Wall JD 2006. Fast “coalescent” simulation. BMC Genet. 7:16
    [Google Scholar]
  84. Marth GT, Czabarka E, Murvai J, Sherry ST 2004. The allele frequency spectrum in genome-wide human variation data reveals signals of differential demographic history in three large world populations. Genetics 166:1351–72
    [Google Scholar]
  85. Mazet O, Rodriguez W, Grusea S, Boitard S, Chikhi L 2016. On the importance of being structured: instantaneous coalescence rates and human evolution—lessons for ancestral population size inference. Heredity 116:4362–71
    [Google Scholar]
  86. McCoy RC, Garud NR, Kelley JL, Boggs CL, Petrov DA 2014. Genomic inference accurately predicts the timing and severity of a recent bottleneck in a non-model insect population. Mol. Ecol. 23:1136–50
    [Google Scholar]
  87. McManus KF, Kelley JL, Song S, Veeramah KR, Woerner AE et al. 2015. Inference of gorilla demographic and selective history from whole-genome sequence data. Mol. Biol. Evol. 32:3600–12
    [Google Scholar]
  88. McVean G. 2009. A genealogical interpretation of principal components analysis. PLOS Genet 5:10e1000686
    [Google Scholar]
  89. Moltke I, Albrechtsen A 2014. RelateAdmix: a software tool for estimating relatedness between admixed individuals. Bioinformatics 30:71027–28
    [Google Scholar]
  90. Murray GGR, Soares AER, Novak BJ, Schaefer NK, Cahill JA et al. 2017. Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science 358:6365951–54
    [Google Scholar]
  91. Nabholz B, Sarah G, Sabot F, Ruiz M, Adam H et al. 2014. Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima). Mol. Ecol. 23:92210–27
    [Google Scholar]
  92. Nadachowska-Brzyska K, Burri R, Olason PI, Kawakami T, Smeds L, Ellegren H 2013. Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data. PLOS Genet 9:11e1003942
    [Google Scholar]
  93. Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H 2016. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol. Ecol. 25:51058–72
    [Google Scholar]
  94. Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H 2015. Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr. Biol. 25:101375–80
    [Google Scholar]
  95. Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, de Manuel M et al. 2017. Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr. Biol. 27:223487–3498.e10
    [Google Scholar]
  96. Nielsen R. 2000. Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics 154:2931–42
    [Google Scholar]
  97. Nielsen R, Beaumont MA 2009. Statistical inferences in phylogeography. Mol. Ecol. 18:61034–47
    [Google Scholar]
  98. Nielsen R, Korneliussen T, Albrechtsen A, Li Y, Wang J 2012. SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data. PLOS ONE 7:7e37558
    [Google Scholar]
  99. Nunes MA, Balding DJ 2010. On optimal selection of summary statistics for approximate Bayesian computation. Stat. Appl. Genet. Mol. Biol. 9:1 https://doi.org/10.2202/1544-6115.1576
    [Crossref] [Google Scholar]
  100. Orozco-terWengel P. 2016. The devil is in the details: the effect of population structure on demographic inference. Heredity 116:4349
    [Google Scholar]
  101. Palamara PF, Lencz T, Darvasi A, Pe'er I 2012. Length distributions of identity by descent reveal fine-scale demographic history. Am. J. Hum. Genet. 91:5809–22
    [Google Scholar]
  102. Palkopoulou E, Mallick S, Skoglund P, Enk J, Rohland N et al. 2015. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 25:101395–400
    [Google Scholar]
  103. Peter BM, Wegmann D, Excoffier L 2010. Distinguishing between population bottleneck and population subdivision by a Bayesian model choice procedure. Mol. Ecol. 19:214648–60
    [Google Scholar]
  104. Pickrell JK, Pritchard JK 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLOS Genet 8:11e1002967
    [Google Scholar]
  105. Plagnol V, Wall JD 2006. Possible ancestral structure in human populations. PLOS Genet 2:7e105
    [Google Scholar]
  106. Polanski A, Kimmel M 2003. New explicit expressions for relative frequencies of single-nucleotide polymorphisms with application to statistical inference on population growth. Genetics 165:1427–36
    [Google Scholar]
  107. Polanski A, Kimmel M, Chakraborty R 1998. Application of a time-dependent coalescence process for inferring the history of population size changes from DNA sequence data. PNAS 95:105456–61
    [Google Scholar]
  108. Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL et al. 2013. Great ape genetic diversity and population history. Nature 499:7459471–75
    [Google Scholar]
  109. Prates I, Xue AT, Brown JL, Alvarado-Serrano DF, Rodrigues MT et al. 2016. Inferring responses to climate dynamics from historical demography in neotropical forest lizards. PNAS 113:297978–85
    [Google Scholar]
  110. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38:8904
    [Google Scholar]
  111. Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman MW 1999. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol. 16:121791–98
    [Google Scholar]
  112. Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S et al. 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:748143
    [Google Scholar]
  113. Qi J, Liu X, Shen D, Miao H, Xie B et al. 2013. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 45:121510–15
    [Google Scholar]
  114. Raghavan M, Steinrücken M, Harris K, Schiffels S, Rasmussen S et al. 2015. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349:6250aab3884
    [Google Scholar]
  115. Ralph P, Coop G 2013. The geography of recent genetic ancestry across Europe. PLOS Biol 11:5e1001555
    [Google Scholar]
  116. Ramstetter MD, Dyer TD, Lehman DM, Curran JE, Duggirala R et al. 2017. Benchmarking relatedness inference methods with genome-wide data from thousands of relatives. Genetics 207:175–82
    [Google Scholar]
  117. Rannala B, Yang Z 2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164:41645–56
    [Google Scholar]
  118. Robinson JA, Ortega-Del Vecchyo D, Fan Z, Kim BY, vonHoldt BM et al. 2016. Genomic flatlining in the endangered island fox. Curr. Biol. 26:91183–89
    [Google Scholar]
  119. Robinson JD, Bunnefeld L, Hearn J, Stone GN, Hickerson MJ 2014. ABC inference of multi-population divergence with admixture from unphased population genomic data. Mol. Ecol. 23:184458–71
    [Google Scholar]
  120. Schiffels S, Durbin R 2014. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46:8919–25
    [Google Scholar]
  121. Schrider DR, Shanku AG, Kern AD 2016. Effects of linked selective sweeps on demographic inference and model selection. Genetics 204:31207–23
    [Google Scholar]
  122. Schubert M, Jónsson H, Chang D, Der Sarkissian C, Ermini L et al. 2014. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. PNAS 111:52E5661–69
    [Google Scholar]
  123. Sella G, Petrov DA, Przeworski M, Andolfatto P 2009. Pervasive natural selection in the Drosophila genome. PLOS Genet 5:6e1000495
    [Google Scholar]
  124. Shafer A, Gattepaille LM, Stewart RE, Wolf JB 2015. Demographic inferences using short-read genomic data in an approximate Bayesian computation framework: in silico evaluation of power, biases and proof of concept in Atlantic walrus. Mol. Ecol. 24:2328–45
    [Google Scholar]
  125. Shapiro MD, Kronenberg Z, Li C, Domyan ET, Pan H et al. 2013. Genomic diversity and evolution of the head crest in the rock pigeon. Science 339:61231063–67
    [Google Scholar]
  126. Sheehan S, Song YS 2016. Deep learning for population genetic inference. PLOS Comput. Biol. 12:3e1004845
    [Google Scholar]
  127. Singh ND, Jensen JD, Clark AG, Aquadro CF 2013. Inferences of demography and selection in an African population of Drosophila melanogaster. Genetics 193:1215–28
    [Google Scholar]
  128. Sovic MG, Carstens BC, Gibbs HL 2016. Genetic diversity in migratory bats: results from RADseq data for three tree bat species at an Ohio windfarm. PeerJ 4:e1647
    [Google Scholar]
  129. Stuglik MT, Babik W 2016. Genomic heterogeneity of historical gene flow between two species of newts inferred from transcriptome data. Ecol. Evol. 6:134513–25
    [Google Scholar]
  130. Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C 2013. Approximate Bayesian computation. PLOS Comput. Biol. 9:1e1002803
    [Google Scholar]
  131. Tataru P, Nirody JA, Song YS 2014. diCal-IBD: demography-aware inference of identity-by-descent tracts in unrelated individuals. Bioinformatics 30:233430–31
    [Google Scholar]
  132. Tavaré S, Balding DJ, Griffiths RC, Donnelly P 1997. Inferring coalescence times from DNA sequence data. Genetics 145:2505–18
    [Google Scholar]
  133. Terhorst J, Kamm JA, Song YS 2017. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49:2303–9
    [Google Scholar]
  134. Thornton K, Andolfatto P 2006. Approximate Bayesian inference reveals evidence for a recent, severe bottleneck in a Netherlands population of Drosophila melanogaster. Genetics 172:31607–19
    [Google Scholar]
  135. Tine M, Kuhl H, Gagnaire P-A, Louro B, Desmarais E et al. 2014. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat. Commun. 5:5770
    [Google Scholar]
  136. Trucchi E, Gratton P, Whittington JD, Cristofari R, Maho YL et al. 2014. King penguin demography since the last glaciation inferred from genome-wide data. Proc. R. Soc. B. 281:178720140528
    [Google Scholar]
  137. Wang G-D, Zhai W, Yang H-C, Wang L, Zhong L et al. 2016. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res 26:121–33
    [Google Scholar]
  138. Wegmann D, Leuenberger C, Neuenschwander S, Excoffier L 2010. ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC Bioinform 11:116
    [Google Scholar]
  139. Weiss G, von Haeseler A 1998. Inference of population history using a likelihood approach. Genetics 149:31539–46
    [Google Scholar]
  140. Weissman DB, Hallatschek O 2017. Minimal-assumption inference from population-genomic data. eLife 6:e24836
    [Google Scholar]
  141. Wiuf C. 2006. Consistency of estimators of population scaled parameters using composite likelihood. J. Math. Biol. 53:5821–41
    [Google Scholar]
  142. Wollstein A, Lao O, Becker C, Brauer S, Trent RJ et al. 2010. Demographic history of Oceania inferred from genome-wide data. Curr. Biol. 20:221983–92
    [Google Scholar]
  143. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF et al. 2005. The effects of artificial selection on the maize genome. Science 308:57261310–14
    [Google Scholar]
  144. Zhan S, Zhang W, Niitepold K, Hsu J, Haeger JF et al. 2014. The genetics of monarch butterfly migration and warning colouration. Nature 514:7522317–21
    [Google Scholar]
  145. Zhao S, Zheng P, Dong S, Zhan X, Wu Q et al. 2013. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 45:167–71
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110617-062431
Loading
/content/journals/10.1146/annurev-ecolsys-110617-062431
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error