1932

Abstract

The insect fat body is analogous to vertebrate adipose tissue and liver. In this review, the new and exciting advancements made in fat body biology in the last decade are summarized. Controlled by hormonal and nutritional signals, insect fat body cells undergo mitosis during embryogenesis, endoreplication during the larval stages, and remodeling during metamorphosis and regulate reproduction in adults. Fat body tissues are major sites for nutrient storage, energy metabolism, innate immunity, and detoxification. Recent studies have revealed that the fat body plays a central role in the integration of hormonal and nutritional signals to regulate larval growth, body size, circadian clock, pupal diapause, longevity, feeding behavior, and courtship behavior, partially by releasing fat body signals to remotely control the brain. In addition, the fat body has emerged as a fascinating model for studying metabolic disorders and immune diseases. Potential future directions for fat body biology are also proposed herein.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011118-112007
2019-01-07
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-011118-112007.html?itemId=/content/journals/10.1146/annurev-ento-011118-112007&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abdou MA, He Q, Wen D, Zyaan O, Wang J et al. 2011. Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochem. Mol. Biol. 41:938–45
    [Google Scholar]
  2. 2.  Abrisqueta M, Suren-Castillo S, Maestro JL 2014. Insulin receptor-mediated nutritional signalling regulates juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochem. Mol. Biol. 49:14–23
    [Google Scholar]
  3. 3.  Agrawal N, Delanoue R, Mauri A, Basco D, Pasco M et al. 2016. The Drosophila TNF Eiger is an adipokine that acts on insulin-producing cells to mediate nutrient response. Cell Metab 23:675–84
    [Google Scholar]
  4. 4.  Aguila JR, Suszko J, Gibbs AG, Hoshizaki DK 2007. The role of larval fat cells in adult Drosophila melanogaster. J. Exp. Biol. 210:956–63
    [Google Scholar]
  5. 5.  Ahn SJ, Vogel H, Heckel DG 2012. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem. Mol. Biol. 42:133–47
    [Google Scholar]
  6. 6.  Alfa RW, Kim SK 2016. Using Drosophila to discover mechanisms underlying type 2 diabetes. Dis. Models Mech. 9:365–76
    [Google Scholar]
  7. 7.  Alves-Bezerra M, De Paula IF, Medina JM, Silva-Oliveira G, Medeiros JS et al. 2016. Adipokinetic hormone receptor gene identification and its role in triacylglycerol metabolism in the blood-sucking insect Rhodnius prolixus. Insect Biochem. Mol. Biol. 69:51–60
    [Google Scholar]
  8. 8.  Arquier N, Géminard C, Bourouis M, Jarretou G, Honegger B et al. 2008. Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab 7:333–38
    [Google Scholar]
  9. 9.  Arquier N, Leopold P 2007. Fly foie gras: modeling fatty liver in Drosophila. Cell Metab 5:83–85
    [Google Scholar]
  10. 10.  Arrese EL, Soulages JL 2010. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55:207–25
    [Google Scholar]
  11. 11.  Aw D, Silva AB, Palmer DB 2007. Immunosenescence: emerging challenges for an ageing population. Immunology 120:435–46
    [Google Scholar]
  12. 12.  Banerjee KK, Ayyub C, Ali SZ, Mandot V, Prasad NG, Kolthur-Seetharam U 2012. dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep 2:1485–91
    [Google Scholar]
  13. 13.  Banerjee KK, Deshpande RS, Koppula P, Ayyub C, Kolthur-Seetharam U 2017. Central metabolic sensing remotely controls nutrient-sensitive endocrine response in Drosophila via Sir2/Sirt1-upd2-IIS axis. J. Exp. Biol. 220:1187–91
    [Google Scholar]
  14. 14.  Bangi E 2013. Drosophila at the intersection of infection, inflammation, and cancer. Front. Cell. Infect. Microbiol. 3:103
    [Google Scholar]
  15. 15.  Beller M, Bulankina AV, Hsiao HH, Urlaub H, Jackle H, Kuhnlein RP 2010. PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab 12:521–32
    [Google Scholar]
  16. 16.  Benito J, Hoxha V, Lama C, Lazareva AA, Ferveur JF et al. 2010. The circadian output gene takeout is regulated by Pdp1ε. PNAS 107:2544–49
    [Google Scholar]
  17. 17.  Beshel J, Dubnau J, Zhong Y 2017. A leptin analog locally produced in the brain acts via a conserved neural circuit to modulate obesity-linked behaviors in Drosophila. Cell Metab 25:208–17
    [Google Scholar]
  18. 18.  Bi J, Wang W, Liu Z, Huang X, Jiang Q et al. 2014. Seipin promotes adipose tissue fat storage through the ER Ca2+-ATPase SERCA. Cell Metab 19:861–71
    [Google Scholar]
  19. 19.  Bi J, Xiang Y, Chen H, Liu Z, Gronke S et al. 2012. Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. J. Cell Sci. 125:3568–77
    [Google Scholar]
  20. 20.  Birse RT, Choi J, Reardon K, Rodriguez J, Graham S et al. 2010. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 12:533–44
    [Google Scholar]
  21. 21.  Bond ND, Nelliot A, Bernardo MK, Ayerh MA, Gorski KA et al. 2011. βFTZ-F1 and Matrix metalloproteinase 2 are required for fat-body remodeling in Drosophila. Dev. Biol 360:286–96
    [Google Scholar]
  22. 22.  Buchon N, Silverman N, Cherry S 2014. Immunity in Drosophila melanogaster—from microbial recognition to whole-organism physiology. Nat. Rev. Immunol. 14:796–810
    [Google Scholar]
  23. 23.  Cai M-J, Zhao W-L, Jing Y-P, Song Q, Zhang X-Q et al. 2016. 20-hydroxyecdysone activates Forkhead box O to promote proteolysis during Helicoverpa armigera molting. Development 143:1005–15
    [Google Scholar]
  24. 24.  Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA 2001. Fat metabolism in insects. Annu. Rev. Nutr. 21:23–46
    [Google Scholar]
  25. 25.  Chang Y-Y, Neufeld TP 2009. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol. Biol. Cell 20:2004–14
    [Google Scholar]
  26. 26.  Chatterjee D, Katewa SD, Qi Y, Jackson SA, Kapahi P, Jasper H 2014. Control of metabolic adaptation to fasting by dILP6-induced insulin signaling in Drosophila oenocytes. PNAS 111:17959–64
    [Google Scholar]
  27. 27.  Chell JM, Brand AH 2010. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143:1161–73
    [Google Scholar]
  28. 28.  Chen H, Zheng X, Zheng Y 2015. Lamin-B in systemic inflammation, tissue homeostasis, and aging. Nucleus 6:183–86
    [Google Scholar]
  29. 29.  Choi S, Lim D-S, Chung J 2015. Feeding and fasting signals converge on the LKB1-SIK3 pathway to regulate lipid metabolism in Drosophila. PLOS Genet 11:e1005263
    [Google Scholar]
  30. 30.  Colombani J, Bianchini L, Layalle S, Pondeville E, Dauphin-Villemant C et al. 2005. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 310:667–70
    [Google Scholar]
  31. 31.  Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Léopold P 2003. A nutrient sensor mechanism controls Drosophila growth. Cell 114:739–49
    [Google Scholar]
  32. 32.  Corona M, Libbrecht R, Wurm Y, Riba-Grognuz O, Studer RA, Keller L 2013. Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLOS Genet 9:e1003730
    [Google Scholar]
  33. 33.  Defferrari MS, Orchard I, Lange AB 2016. Identification of the first insulin-like peptide in the disease vector Rhodnius prolixus: involvement in metabolic homeostasis of lipids and carbohydrates. Insect Biochem. Mol. Biol. 70:148–59
    [Google Scholar]
  34. 34.  Delanoue R, Meschi E, Agrawal N, Mauri A, Tsatskis Y et al. 2016. Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor. Science 353:1553–56
    [Google Scholar]
  35. 35.  Delanoue R, Slaidina M, Léopold P 2010. The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells. Dev. Cell 18:1012–21
    [Google Scholar]
  36. 36.  Dermauw W, Van Leeuwen T 2014. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem. Mol. Biol. 45:89–110
    [Google Scholar]
  37. 37.  Diop SB, Bisharat-Kernizan J, Birse RT, Oldham S, Ocorr K, Bodmer R 2015. PGC-1/spargel counteracts high-fat-diet-induced obesity and cardiac lipotoxicity downstream of TOR and brummer ATGL lipase. Cell Rep 10:1572–84
    [Google Scholar]
  38. 38.  Edgar BA, Orr-Weaver TL 2001. Endoreplication cell cycles: more for less. Cell 105:297–306
    [Google Scholar]
  39. 39.  Felix TM, Hughes KA, Stone EA, Drnevich JM, Leips J 2012. Age-specific variation in immune response in Drosophila melanogaster has a genetic basis. Genetics 191:989–1002
    [Google Scholar]
  40. 40.  Ferreira AG, Naylor H, Esteves SS, Pais IS, Martins NE, Teixeira L 2014. The Toll-dorsal pathway is required for resistance to viral oral infection in Drosophila. PLOS Pathog 10:e1004507
    [Google Scholar]
  41. 41.  Feyereisen R 2011. Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim. Biophys. Acta Proteins Proteom. 1814:19–28
    [Google Scholar]
  42. 42.  Frei C, Galloni M, Hafen E, Edgar BA 2005. The Drosophila mitochondrial ribosomal protein mRpL12 is required for Cyclin D/Cdk4-driven growth. EMBO J 24:623–34
    [Google Scholar]
  43. 43.  Gäde G 2004. Regulation of intermediary metabolism and water balance of insects by neuropeptides. Annu. Rev. Entomol. 49:93–113
    [Google Scholar]
  44. 44.  Gáliková M, Diesner M, Klepsatel P, Hehlert P, Xu YJ et al. 2015. Energy homeostasis control in Drosophila adipokinetic hormone mutants. Genetics 201:665–83
    [Google Scholar]
  45. 45.  Géminard C, Rulifson EJ, Léopold P 2009. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab 10:199–207
    [Google Scholar]
  46. 46.  Giannakou ME, Goss M, Junger MA, Hafen E, Leevers SJ, Partridge L 2004. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305:361
    [Google Scholar]
  47. 47.  Graham P, Pick L 2017. Drosophila as a model for diabetes and diseases of insulin resistance. Curr. Top. Dev. Biol. 121:397–419
    [Google Scholar]
  48. 48.  Grewal SS, Li L, Orian A, Eisenman RN, Edgar BA 2005. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat. Cell Biol. 7:295–302
    [Google Scholar]
  49. 49.  Gronke S, Mildner A, Fellert S, Tennagels N, Petry S et al. 2005. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1:323–30
    [Google Scholar]
  50. 50.  Gronke S, Muller G, Hirsch J, Fellert S, Andreou A et al. 2007. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLOS Biol 5:1248–56
    [Google Scholar]
  51. 51.  Grosso CG, Blariza MJ, Mougabure-Cueto G, Picollo MI, Garcia BA 2016. Identification of three cytochrome P450 genes in the Chagas' disease vector Triatoma infestans: expression analysis in deltamethrin susceptible and resistant populations. Infect. Genet. Evol. 44:459–70
    [Google Scholar]
  52. 52.  Guo W, Wu Z, Song J, Jiang F, Wang Z et al. 2014. Juvenile hormone-receptor complex acts on Mcm4 and Mcm7 to promote polyploidy and vitellogenesis in the migratory locust. PLOS Genet 10:e1004702
    [Google Scholar]
  53. 53.  Gutierrez E, Wiggins D, Fielding B, Gould AP 2007. Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445:275–80
    [Google Scholar]
  54. 54.  Hardy CM, Birse RT, Wolf MJ, Yu L, Bodmer R, Gibbs AG 2015. Obesity-associated cardiac dysfunction in starvation-selected Drosophila melanogaster. Am. J. Physiol. Regul. Integr. Comp. Physiol 309:R658–67
    [Google Scholar]
  55. 55.  Hardy CM, Burke MK, Everett LJ, Han MV, Lantz KM, Gibbs AG 2018. Genome-wide analysis of starvation-selected Drosophila melanogaster—a genetic model of obesity. Mol. Biol. Evol. 35:50–65
    [Google Scholar]
  56. 56.  Hirabayashi S 2016. The interplay between obesity and cancer: a fly view. Dis. Models Mech. 9:917–26
    [Google Scholar]
  57. 57.  Hoffmann J, Romey R, Fink C, Roeder T 2013. Drosophila as a model to study metabolic disorders. Yellow Biotechnology I. Advances in Biochemical Engineering/Biotechnology A Vilcinskas 41–61 Heidelberg, Ger.: Springer
    [Google Scholar]
  58. 58.  Hong S-H, Kang M, Lee K-S, Yu K 2016. High fat diet-induced TGF-β/Gbb signaling provokes insulin resistance through the tribbles expression. Sci. Rep. 6:30265
    [Google Scholar]
  59. 59.  Hossain MS, Liu Y, Zhou S, Li K, Tian L, Li S 2013. 20-Hydroxyecdysone-induced transcriptional activity of FoxO upregulates brummer and acid lipase-1 and promotes lipolysis in Bombyx fat body. Insect Biochem. Mol. Biol. 43:829–38
    [Google Scholar]
  60. 60.  Hou QL, Chen EH, Jiang HB, Wei DD, Gui SH et al. 2017. Adipokinetic hormone receptor gene identification and its role in triacylglycerol mobilization and sexual behavior in the oriental fruit fly (Bactrocera dorsalis). Insect Biochem. Mol. Biol. 90:1–13
    [Google Scholar]
  61. 61.  Hou Y, Wang XL, Saha TT, Roy S, Zhao B et al. 2015. Temporal coordination of carbohydrate metabolism during mosquito reproduction. PLOS Genet 11:e1005309
    [Google Scholar]
  62. 62.  Hwangbo DS, Gershman B, Tu M-P, Palmer M, Tatar M 2004. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429:562–66
    [Google Scholar]
  63. 63.  Jackson CJ, Liu JW, Carr PD, Younus F, Coppin C et al. 2013. Structure and function of an insect α-carboxylesterase (αEsterase7) associated with insecticide resistance. PNAS 110:10177–82
    [Google Scholar]
  64. 64.  Jia Q, Liu S, Wen D, Cheng Y, Bendena WG et al. 2017. Juvenile hormone and 20-hydroxyecdysone coordinately control the developmental timing of matrix metalloproteinase-induced fat body cell dissociation. J. Biol. Chem. 292:21504–16
    [Google Scholar]
  65. 65.  Jia Q, Liu Y, Liu H, Li S 2014. Mmp1 and Mmp2 cooperatively induce Drosophila fat body cell dissociation with distinct roles. Sci. Rep. 4:7535
    [Google Scholar]
  66. 66.  Jimenez-Sanchez M, Menzies FM, Chang Y-Y, Simecek N, Neufeld TP, Rubinsztein DC 2012. The Hedgehog signalling pathway regulates autophagy. Nat. Commun. 3:1200
    [Google Scholar]
  67. 67.  Jindra M, Palli SR, Riddiford LM 2013. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58:181–204
    [Google Scholar]
  68. 68.  Katewa SD, Akagi K, Bose N, Rakshit K, Camarella T et al. 2016. Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in Drosophila. Cell Metab 23:143–54
    [Google Scholar]
  69. 69.  Ketterman AJ, Saisawang C, Wongsantichon J 2011. Insect glutathione transferases. Drug Metab. Rev. 43:253–65
    [Google Scholar]
  70. 70.  Kim DH, Shin M, Jung SH, Kim YJ, Jones WD 2017. A fat-derived metabolite regulates a peptidergic feeding circuit in Drosophila. PLOS Biol 15:e2000532
    [Google Scholar]
  71. 71.  Kim J, Neufeld TP 2015. Dietary sugar promotes systemic TOR activation in Drosophila through AKH-dependent selective secretion of Dilp3. Nat. Commun. 6:6846
    [Google Scholar]
  72. 72.  Koyama T, Mirth CK 2016. Growth-blocking peptides as nutrition-sensitive signals for insulin secretion and body size regulation. PLOS Biol 14:e1002392
    [Google Scholar]
  73. 73.  Lazareva AA, Roman G, Mattox W, Hardin PE, Dauwalder B 2007. A role for the adult fat body in Drosophila male courtship behavior. PLOS Genet 3:e16
    [Google Scholar]
  74. 74.  Lemaitre B, Hoffmann J 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol 25:697–743
    [Google Scholar]
  75. 75.  Li K, Tian L, Guo Z, Guo S, Zhang J et al. 2016. 20-Hydroxyecdysone (20E) primary response gene E75 isoforms mediate steroidogenesis autoregulation and regulate developmental timing in Bombyx. J. Biol. Chem. 291:18163–75
    [Google Scholar]
  76. 76.  Li S, Koe CT, Tay ST, Tan ALK, Zhang S et al. 2017. An intrinsic mechanism controls reactivation of neural stem cells by spindle matrix proteins. Nat. Commun. 8:122
    [Google Scholar]
  77. 77.  Li S, Zhu S, Jia Q, Yuan D, Ren C et al. 2016. The genomic and functional landscapes of developmental plasticity in the American cockroach. Nat. Commun. 9:1008
    [Google Scholar]
  78. 78.  Li X, Schuler MA, Berenbaum MR 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52:231–53
    [Google Scholar]
  79. 79.  Libert S, Chao Y, Chu X, Pletcher SD 2006. Trade-offs between longevity and pathogen resistance in Drosophila melanogaster are mediated by NFκB signaling. Aging Cell 5:533–43
    [Google Scholar]
  80. 80.  Lindsay SA, Wasserman SA 2014. Conventional and non-conventional Drosophila Toll signaling. Dev. Comp. Immunol. 42:16–24
    [Google Scholar]
  81. 81.  Lippai M, Csikós G, Maróy P, Lukácsovich T, Juhász G, Sass M 2008. SNF4Aγ, the Drosophila AMPK γ subunit is required for regulation of developmental and stress-induced autophagy. Autophagy 4:476–86
    [Google Scholar]
  82. 82.  Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D 2016. Toll receptor-mediated Hippo signaling controls innate immunity in Drosophila. Cell 164:406–19
    [Google Scholar]
  83. 83.  Liu H, Jia Q, Tettamanti G, Li S 2013. Balancing crosstalk between 20-hydroxyecdysone-induced autophagy and caspase activity in the fat body during Drosophila larval-prepupal transition. Insect Biochem. Mol. Biol. 43:1068–78
    [Google Scholar]
  84. 84.  Liu H, Wang J, Li S 2014. E93 predominantly transduces 20-hydroxyecdysone signaling to induce autophagy and caspase activity in Drosophila fat body. Insect Biochem. Mol. Biol. 45:30–39
    [Google Scholar]
  85. 85.  Liu S, Li K, Gao Y, Liu X, Chen W et al. 2018. Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. PNAS 115:139–44
    [Google Scholar]
  86. 86.  Liu S, Zhou S, Tian L, Guo E, Luan Y et al. 2011. Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori. BMC Genom. 12:491
    [Google Scholar]
  87. 87.  Liu X, Dai F, Guo E, Li K, Ma L et al. 2015. 20-Hydroxyecdysone (20E) primary response gene E93 modulates 20E signaling to promote Bombyx larval-pupal metamorphosis. J. Biol. Chem. 290:27370–83
    [Google Scholar]
  88. 88.  Liu Y, Sheng Z, Liu H, Wen D, He Q et al. 2009. Juvenile hormone counteracts the bHLH-PAS transcription factors MET and GCE to prevent caspase-dependent programmed cell death in Drosophila. Development 136:2015–25
    [Google Scholar]
  89. 89.  Mussabekova A, Daeffler L, Imler JL 2017. Innate and intrinsic antiviral immunity in Drosophila. Cell. Mol. Life Sci. 74:2039–54
    [Google Scholar]
  90. 90.  Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS et al. 2011. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Models Mech. 4:842–49
    [Google Scholar]
  91. 91.  Myllymäki H, Valanne S, Rämet M 2014. The Drosophila Imd signaling pathway. J. Immunol. 192:3455–62
    [Google Scholar]
  92. 92.  Nässel DR, Broeck JV 2016. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cell. Mol. Life Sci. 73:271–90
    [Google Scholar]
  93. 93.  Nelliot A, Bond N, Hoshizaki DK 2006. Fat-body remodeling in Drosophila melanogaster. Genesis 44:396–400
    [Google Scholar]
  94. 94.  Nijhout HF, Callier V 2015. Developmental mechanisms of body size and wing-body scaling in insects. Annu. Rev. Entomol. 60:141–56
    [Google Scholar]
  95. 95.  Nilsen KA, Ihle KE, Frederick K, Fondrk MK, Smedal B et al. 2011. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology. J. Exp. Biol. 214:1488–97
    [Google Scholar]
  96. 96.  Okamoto N, Yamanaka N, Yagi Y, Nishida Y, Kataoka H et al. 2009. A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Dev. Cell 17:885–91
    [Google Scholar]
  97. 97.  Pospisilik JA, Schramek D, Schnidar H, Cronin SJ, Nehme NT et al. 2010. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140:148–60
    [Google Scholar]
  98. 98.  Rajan A, Perrimon N 2012. Drosophila cytokine Unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151:123–37
    [Google Scholar]
  99. 99.  Rao X-J, Zhan M-Y, Pan Y-M, Liu S, Yang P-J et al. 2017. Immune functions of insect βGRPs and their potential application. Dev. Comp. Immunol. 83:80–88
    [Google Scholar]
  100. 100.  Razzell W, Wood W, Martin P 2011. Swatting flies: modelling wound healing and inflammation in Drosophila. Dis. Models Mech. 4:569–74
    [Google Scholar]
  101. 101.  Reis T, Van Gilst MR, Hariharan IK 2010. A buoyancy-based screen of Drosophila larvae for fat-storage mutants reveals a role for Sir2 in coupling fat storage to nutrient availability. PLOS Genet 6:e1001206
    [Google Scholar]
  102. 102.  Rodenfels J, Lavrynenko O, Ayciriex S, Sampaio JL, Carvalho M et al. 2014. Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development. Genes Dev 28:2636–51
    [Google Scholar]
  103. 103.  Roy S, Saha TT, Zou Z, Raikhel AS 2018. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63:489–511
    [Google Scholar]
  104. 104.  Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO et al. 2004. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev. Cell 7:179–92
    [Google Scholar]
  105. 105.  Rynes J, Donohoe CD, Frommolt P, Brodesser S, Jindra M, Uhlirova M 2012. Activating transcription factor 3 regulates immune and metabolic homeostasis. Mol. Cell. Biol. 32:3949–62
    [Google Scholar]
  106. 106.  Ryoo HD, Baehrecke EH 2010. Distinct death mechanisms in Drosophila development. Curr. Opin. Cell Biol. 22:889–95
    [Google Scholar]
  107. 107.  Saha TT, Shin SW, Dou W, Roy S, Zhao B et al. 2016. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression. PNAS 113:E735–43
    [Google Scholar]
  108. 108.  Sajwan S, Sidorov R, Staskova T, Zaloudikova A, Takasu Y et al. 2015. Targeted mutagenesis and functional analysis of adipokinetic hormone-encoding gene in Drosophila. Insect Biochem. Mol. Biol. 61:79–86
    [Google Scholar]
  109. 109.  Sano H, Nakamura A, Texada MJ, Truman JW, Ishimoto H et al. 2015. The nutrient-responsive hormone CCHamide-2 controls growth by regulating insulin-like peptides in the brain of Drosophila melanogaster. PLOS Genet 11:e1005209
    [Google Scholar]
  110. 110.  Sarovblat L, So WV, Liu L, Rosbash M 2000. The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell 101:647–56
    [Google Scholar]
  111. 111.  Scott RC, Schuldiner O, Neufeld TP 2004. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell 7:167–78
    [Google Scholar]
  112. 112.  Shaukat Z, Liu DW, Gregory S 2015. Sterile inflammation in Drosophila. Mediators Inflamm 2015:369286
    [Google Scholar]
  113. 113.  Sheng Z, Xu J, Bai H, Zhu F, Palli SR 2011. Juvenile hormone regulates vitellogenin gene expression through insulin-like peptide signaling pathway in the red flour beetle, Tribolium castaneum. J. Biol. Chem. 286:41924–36
    [Google Scholar]
  114. 114.  Slaidina M, Delanoue R, Gronke S, Partridge L, Leopold P 2009. A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev. Cell 17:874–84
    [Google Scholar]
  115. 115.  Sousa-Nunes R, Yee LL, Gould AP 2011. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471:508–12
    [Google Scholar]
  116. 116.  Srinivasan N, Gordon O, Ahrens S, Franz A, Deddouche S et al. 2016. Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. eLife 5:19662
    [Google Scholar]
  117. 117.  Stenesen D, Suh JM, Seo J, Yu K, Lee K-S et al. 2013. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab 17:101–12
    [Google Scholar]
  118. 118.  Stroschein-Stevenson SL, Foley E, O'Farrell PH, Johnson AD 2006. Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLOS Biol 4:e4
    [Google Scholar]
  119. 119.  Sun J, Liu C, Bai X, Li X, Li J et al. 2017. Drosophila FIT is a protein-specific satiety hormone essential for feeding control. Nat. Commun. 8:14161
    [Google Scholar]
  120. 120.  Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA et al. 2003. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J. Cell Biol. 161:1093–103
    [Google Scholar]
  121. 121.  Tatar M, Post S, Yu K 2014. Nutrient control of Drosophila longevity. Trends Endocrinol. Metab. 25:509–17
    [Google Scholar]
  122. 122.  Tetlak AG, Burnett JB, Hahn DA, Hatle JD 2015. Vitellogenin-RNAi and ovariectomy each increase lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers. Biogerontology 16:761–74
    [Google Scholar]
  123. 123.  Tian L, Guo E, Wang S, Liu S, Jiang RJ et al. 2010. Developmental regulation of glycolysis by 20-hydroxyecdysone and juvenile hormone in fat body tissues of the silkworm, Bombyx mori. J. Mol. Cell Biol. 2:255–63
    [Google Scholar]
  124. 124.  Tian L, Ma L, Guo E, Deng X, Ma S et al. 2013. 20-Hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body. Autophagy 9:1172–87
    [Google Scholar]
  125. 125.  Tian Y, Bi J, Shui G, Liu Z, Xiang Y et al. 2011. Tissue-autonomous function of Drosophila seipin in preventing ectopic lipid droplet formation. PLOS Genet 7:e1001364
    [Google Scholar]
  126. 126.  Tran JR, Chen H, Zheng X, Zheng Y 2016. Lamin in inflammation and aging. Curr. Opin. Cell Biol. 40:124–30
    [Google Scholar]
  127. 127.  Ugrankar R, Berglund E, Akdemir F, Tran C, Kim MS et al. 2015. Drosophila glucome screening identifies Ck1alpha as a regulator of mammalian glucose metabolism. Nat. Commun. 6:7102
    [Google Scholar]
  128. 128.  Ugrankar R, Liu YL, Provaznik J, Schmitt S, Lehmann M 2011. Lipin is a central regulator of adipose tissue development and function in Drosophila melanogaster. Mol. Cell. Biol. 31:1646–56
    [Google Scholar]
  129. 129.  Ugur B, Chen K, Bellen HJ 2016. Drosophila tools and assays for the study of human diseases. Dis. Models Mech. 9:235–44
    [Google Scholar]
  130. 130.  Wang J-L, Saha TT, Zhang Y, Zhang C, Raikhel AS 2017. Juvenile hormone and its receptor methoprene-tolerant promote ribosomal biogenesis and vitellogenesis in the Aedes aegypti mosquito. J. Biol. Chem. 292:10306–15
    [Google Scholar]
  131. 131.  Wang S, Liu S, Liu H, Wang J, Zhou S et al. 2010. 20-hydroxyecdysone reduces insect food consumption resulting in fat body lipolysis during molting and pupation. J. Mol. Cell Biol. 2:128–38
    [Google Scholar]
  132. 132.  Wen Z, Gulia M, Clark KD, Dhara A, Crim JW et al. 2010. Two insulin-like peptide family members from the mosquito Aedes aegypti exhibit differential biological and receptor binding activities. Mol. Cell. Endocrinol. 328:47–55
    [Google Scholar]
  133. 133.  Woodcock KJ, Kierdorf K, Pouchelon CA, Vivancos V, Dionne MS, Geissmann F 2015. Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity 42:133–44
    [Google Scholar]
  134. 134.  Wu Z, Guo W, Xie Y, Zhou S 2016. Juvenile hormone activates the transcription of cell-division-cycle 6 (Cdc6) for polyploidy-dependent insect vitellogenesis and oogenesis. J. Biol. Chem. 291:5418–27
    [Google Scholar]
  135. 135.  Xie K, Tian L, Guo X, Li K, Li J et al. 2016. BmATG5 and BmATG6 mediate apoptosis following autophagy induced by 20-hydroxyecdysone or starvation. Autophagy 12:381–96
    [Google Scholar]
  136. 136.  Xu K, Diangelo J, Hughes M, Hogenesch J, Sehgal A 2011. The circadian clock interacts with metabolic physiology to influence reproductive fitness. Cell Metab 13:639–54
    [Google Scholar]
  137. 137.  Xu W-H, Lu Y-X, Denlinger DL 2012. Cross-talk between the fat body and brain regulates insect developmental arrest. PNAS 109:14687–92
    [Google Scholar]
  138. 138.  Yamamoto R, Bai H, Dolezal AG, Amdam G, Tatar M 2013. Juvenile hormone regulation of Drosophila aging. BMC Biol. 11:85
    [Google Scholar]
  139. 139.  Yamanaka N, Rewitz KF, O'Connor MB 2013. Ecdysone control of developmental transitions: lessons from Drosophila research. Annu. Rev. Entomol. 58:497–516
    [Google Scholar]
  140. 140.  Yi H-Y, Chowdhury M, Huang Y-D, Yu X-Q 2014. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98:5807–22
    [Google Scholar]
  141. 141.  Zhang H, Liu JN, Li CR, Momen B, Kohanski RA, Pick L 2009. Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities. PNAS 106:19617–22
    [Google Scholar]
  142. 142.  Zhang X, Aksoy E, Girke T, Raikhel AS, Karginov FV 2017. Transcriptome-wide microRNA and target dynamics in the fat body during the gonadotrophic cycle of Aedes aegypti. PNAS 114:E1895–903
    [Google Scholar]
  143. 143.  Zhang X-S, Wang T, Lin X-W, Denlinger DL, Xu W-H 2017. Reactive oxygen species extend insect life span using components of the insulin-signaling pathway. PNAS 114:E7832–40
    [Google Scholar]
  144. 144.  Zhang Y, Lu Y-X, Liu J, Yang C, Feng Q-L, Xu W-H 2013. A regulatory pathway, ecdysone-transcription factor relish-cathepsin L, is involved in insect fat body dissociation. PLOS Genet. 9:e1003273
    [Google Scholar]
  145. 145.  Zheng H, Yang X, Xi Y 2016. Fat body remodeling and homeostasis control in Drosophila. Life Sci. 167:22–31
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011118-112007
Loading
/content/journals/10.1146/annurev-ento-011118-112007
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error