1932

Abstract

This article reviews the present state of insects, describing their taxonomic position, cost, and value as well as the threats to their well-being. Insects are an important source of both ecosystem services and ecosystem disservices. Recent studies have indicated a worrying decline in insect species, especially in flying insects in the northern temperate region, and this has spawned much media attention. Some decline has occurred, it is clear, due to agricultural intensification, urbanization, overuse of pesticides, and global climate change. A decline would seriously affect the ecosystem services that insects provide. However, there is too little data to warrant the belief that all insects are declining everywhere. There is a pressing need for more basic research on insect diversity in the context of a changing world.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012420-050035
2020-10-17
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/energy/45/1/annurev-environ-012420-050035.html?itemId=/content/journals/10.1146/annurev-environ-012420-050035&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Brook BW, Ellis EC, Perring MP, Mackay AW, Blomqvist L 2013. Does the terrestrial biosphere have planetary tipping points. Trends Ecol. Evol. 28:396–401
    [Google Scholar]
  2. 2. 
    Russill C. 2008. Tipping point forewarnings in climate change communication: some implications of an emerging trend. Environ. Commun. 2:133–53
    [Google Scholar]
  3. 3. 
    Vogel G. 2017. Where have all the insects gone. Science 356:57679
    [Google Scholar]
  4. 4. 
    Janzen DH, Hallwachs W. 2019. Perspective: Where might be many tropical insects. Biol. Conserv. 233:102–8
    [Google Scholar]
  5. 5. 
    Jarvis B. 2018. The insect apocalypse is here: What does it mean for the rest of life on Earth. New York Times Nov. 27. https://www.nytimes.com/2018/11/27/magazine/insect-apocalypse.html
    [Google Scholar]
  6. 6. 
    Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T et al. 2015. A higher level classification of all living organisms. PLOS ONE 10:e0119248
    [Google Scholar]
  7. 7. 
    Schwentner M, Combosch DJ, Pakes Nelson J, Giribet G 2017. A phylogenomic solution to the origin of insects by resolving crustacean-hexapod relationships. Curr. Biol. 27:1818–24.e5
    [Google Scholar]
  8. 8. 
    Richter S. 2002. The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Organ. Divers. Evol. 2:217–37
    [Google Scholar]
  9. 9. 
    Misof B, Liu S, Meusemann K, Peters RS, Donath A et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:76367
    [Google Scholar]
  10. 10. 
    Condamine FL, Clapham ME, Kergoat GJ 2016. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence. Sci. Rep. 6:19208
    [Google Scholar]
  11. 11. 
    Gullan PJ, Cranston PS. 2000. The Insects: An Outline of Entomology Malden, MA: Blackwell Sci.
  12. 12. 
    Snodgrass RE. 1993. Principles of Insect Morphology Ithaca, NY: Cornell Univ. Press
  13. 13. 
    Mitter C, Farrell B, Wiegmann B 1988. The phylogenetic study of adaptive zones: Has phytophagy promoted insect diversification. Am. Nat. 132:107–28
    [Google Scholar]
  14. 14. 
    Roskov Y, Ower G, Orrell T, Nicolson D, Bailly N et al. 2020. Species 2000 & ITIS Catalogue of Life, 25th March 2019 Species 200, Naturalis Leiden, Neth: http://www.catalogueoflife.org/col
  15. 15. 
    Hutchinson GE. 1959. Homage to Santa Rosalia or why are there so many kinds of animals. Am. Nat. 93:145–59
    [Google Scholar]
  16. 16. 
    Stork NE. 2018. How many species of insects and other terrestrial arthropods are there on Earth. Annu. Rev. Entomol. 63:31–45
    [Google Scholar]
  17. 17. 
    Gaston KJ. 1994. Spatial patterns of species description: How is our knowledge of the global insect fauna growing. Biol. Conserv. 67:37–40
    [Google Scholar]
  18. 18. 
    Pennington R, Hughes M, Moonlight P 2015. The origins of tropical rainforest hyperdiversity. Trends Plant Sci 20:693–95
    [Google Scholar]
  19. 19. 
    Hillebrand H. 2004. On the generality of the latitudinal diversity gradient. Am. Nat. 163:192–211
    [Google Scholar]
  20. 20. 
    Willig MR, Kaufman DM, Stevens RD 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol., Evol. Syst. 34:273–309
    [Google Scholar]
  21. 21. 
    Basset Y, Missa O, Alonso A, Miller S, Curletti G et al. 2008. Faunal turnover of arthropod assemblages along a wide gradient of disturbance in Gabon. Afr. Entomol. 16:47–59
    [Google Scholar]
  22. 22. 
    Basset Y, Eastwood R, Sam L, Lohman D, Novotny V et al. 2013. Cross-continental comparisons of butterfly assemblages in tropical rainforests: implications for biological monitoring. Insect Conserv. Divers. 6:223–33
    [Google Scholar]
  23. 23. 
    Novotny V, Basset Y, Miller S, Weiblen G, Bremer B et al. 2002. Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–44
    [Google Scholar]
  24. 24. 
    Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19:134–43
    [Google Scholar]
  25. 25. 
    Coddington JA, Agnarsson I, Miller JA, Kuntner M, Hormiga G 2009. Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. J. Anim. Ecol. 78:573–84
    [Google Scholar]
  26. 26. 
    Morrison LW. 2017. Insular plant turnover across a 22-year interval: a critical retrospective of the roles of pseudoturnover and cryptoturnover. J. Biogeogr. 44:1007–17
    [Google Scholar]
  27. 27. 
    Condit R, Pitman N, Leigh EG, Chave J, Terborgh J et al. 2002. Beta-diversity in tropical forest trees. Science 295:666–69
    [Google Scholar]
  28. 28. 
    Bar-On YM, Phillips R, Milo R 2018. The biomass distribution on Earth. PNAS 115:6506–11
    [Google Scholar]
  29. 29. 
    Tuma J, Eggleton P, Fayle T 2020. Ant-termite interactions: an important but under-explored ecological linkage. Biol. Rev. 95:55572
    [Google Scholar]
  30. 30. 
    Ward PS. 2007. Phylogeny, classification, and species-level taxonomy of ants (Hymenoptera: Formicidae). Zootaxa 1668. http://dx.doi.org/10.11646/zootaxa.1668.1.26
    [Crossref] [Google Scholar]
  31. 31. 
    Engel M, Grimaldi D, Krishna K 2009. Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am. Mus. Novit. 3650. http://hdl.handle.net/2246/5969
    [Google Scholar]
  32. 32. 
    Bebber DP, Holmes T, Gurr SJ 2014. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23:1398–407
    [Google Scholar]
  33. 33. 
    New TR. 2018. Conservation versus pest suppression: finding the balance. Forests and Insect Conservation in Australia TR New 141–9 Cham, Switz.: Springer Int. Publ.
    [Google Scholar]
  34. 34. 
    Stejskal V, Hubert J, Aulicky R, Kucerova Z 2015. Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J. Stored Prod. Res. 64:122–32
    [Google Scholar]
  35. 35. 
    Lounibos LP. 2002. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47:233–66
    [Google Scholar]
  36. 36. 
    Grabowski NT, Klein G. 2017. Bacteria encountered in raw insect, spider, scorpion, and centipede taxa including edible species, and their significance from the food hygiene point of view. Trends Food Sci. Technol. 63:80–90
    [Google Scholar]
  37. 37. 
    Ali A. 1980. Nuisance chironomids and their control: a review. Am. Entomol. 26:3–16
    [Google Scholar]
  38. 38. 
    Hogue CL. 1987. Cultural entomology. Annu. Rev. Entomol. 32:181–99
    [Google Scholar]
  39. 39. 
    Cherry RH, Kritsky G. 1985. Insects as sacred symbols in ancient Egypt. Bull. Entomol. Soc. Am. 31:15–19
    [Google Scholar]
  40. 40. 
    Dicke M. 2000. Insects in Western Art. Am. Entomol. 46:228–37
    [Google Scholar]
  41. 41. 
    Southwood TRE. 1977. Entomology and mankind: insects over the ages have greatly affected man's health and food supply and have played an important role as religious and cultural symbols. Am. Sci. 65:30–39
    [Google Scholar]
  42. 42. 
    Nazari V. 2014. Chasing butterflies in Medieval Europe. J. Lepidopterists' Soc. 68:223–31
    [Google Scholar]
  43. 43. 
    Lesnik JJ. 2018. Edible Insects and Human Evolution Gainesville: Univ. Press Fla.
  44. 44. 
    Crane E. 1990. Bees and Beekeeping. Science, Practice and World Resources. Los. Angel., CA: NCROL
  45. 45. 
    Van Mele P. 2008. A historical review of research on the weaver ant Oecophylla in biological control. Agric. Forest Entomol. 10:13–22
    [Google Scholar]
  46. 46. 
    Dicke M. 2004. From Venice to Fabre: insects in western art. Proc. Neth. Entomol. Soc. 15: https://www.nev.nl/pages/publicaties/proceedings/nummers/15/9-14.pdf
    [Google Scholar]
  47. 47. 
    Allsopp MH, de Lange WJ, Veldtman R 2008. Valuing insect pollination services with cost of replacement. PLOS ONE 3:e3128
    [Google Scholar]
  48. 48. 
    Nogué S, Long PR, Eycott AE, de Nascimento L, Fernández-Palacios JM et al. 2016. Pollination service delivery for European crops: challenges and opportunities. Ecol. Econ. 128:1–7
    [Google Scholar]
  49. 49. 
    Heard TA. 1999. The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44:183–206
    [Google Scholar]
  50. 50. 
    Goulson D. 2003. Conserving wild bees for crop pollination. J. Food Agric. Environ. 1:142–44
    [Google Scholar]
  51. 51. 
    Rader R, Bartomeus I, Garibaldi LA, Garratt MPD, Howlett BG et al. 2016. Non-bee insects are important contributors to global crop pollination. PNAS 113:146–51
    [Google Scholar]
  52. 52. 
    Glendinning DR. 1972. Natural pollination of cocoa. New Phytol 71:719–29
    [Google Scholar]
  53. 53. 
    Huffaker CB. 1959. Biological control of weeds with insects. Annu. Rev. Entomol. 4:251–76
    [Google Scholar]
  54. 54. 
    Stork NE, Eggleton P. 1992. Invertebrates as determinants and indicators of soil quality. Am. J. Altern. Agric. 7:38–47
    [Google Scholar]
  55. 55. 
    Tuma J, Fleiss S, Eggleton P, Frouz J, Klimes P et al. 2019. Logging of rainforest and conversion to oil palm reduces bioturbator diversity but not levels of bioturbation. Appl. Soil Ecol. 144:123–33
    [Google Scholar]
  56. 56. 
    Griffiths HM, Ashton LA, Evans TA, Parr CL, Eggleton P 2019. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29:R118–R19
    [Google Scholar]
  57. 57. 
    Ulyshen MD. 2015. Insect-mediated nitrogen dynamics in decomposing wood. Ecol. Entomol. 40:97–112
    [Google Scholar]
  58. 58. 
    Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell D 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47:215–22
    [Google Scholar]
  59. 59. 
    Losey JE, Vaughan M. 2006. The economic value of ecological services provided by insects. BioScience 56:311–23
    [Google Scholar]
  60. 60. 
    Wilson EO. 1987. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1:344–46
    [Google Scholar]
  61. 61. 
    Habel JC, Segerer A, Ulrich W, Torchyk O, Weisser WW, Schmitt T 2016. Butterfly community shifts over two centuries. Conserv. Biol. 30:754–62
    [Google Scholar]
  62. 62. 
    Fox R, Oliver TH, Harrower C, Parsons MS, Thomas CD, Roy DB 2014. Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes. J. Appl. Ecol. 51:949–57
    [Google Scholar]
  63. 63. 
    Engel MS, Kristensen NP. 2013. A history of entomological classification. Annu. Rev. Entomol. 58:585–607
    [Google Scholar]
  64. 64. 
    Riley JC. 1986. Insects and the European mortality decline. Am. Hist. Rev. 91:833–58
    [Google Scholar]
  65. 65. 
    Parfitt SA, Ashton NM, Lewis SG, Abel RL, Coope GR et al. 2010. Early Pleistocene human occupation at the edge of the boreal zone in northwest Europe. Nature 466:229–33
    [Google Scholar]
  66. 66. 
    Brown T. 1997. Clearances and clearings: deforestation in Mesolithic/Neolithic Britain. Oxf. J. Archaeol. 16:133–46
    [Google Scholar]
  67. 67. 
    Whitehouse NJ. 2006. The Holocene British and Irish ancient forest fossil beetle fauna: implications for forest history, biodiversity and faunal colonisation. Quat. Sci. Rev. 25:1755–89
    [Google Scholar]
  68. 68. 
    Thomas KV. 1983. Man and the Natural World: Changing Attitudes in England, 15001800 London: Penguin Books
    [Google Scholar]
  69. 69. 
    Kim KC. 1993. Biodiversity, conservation and inventory: why insects matter. Biodivers. Conserv. 2:191–214
    [Google Scholar]
  70. 70. 
    Sánchez-Bayo F, Wyckhuys KAG. 2019. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232:8–27
    [Google Scholar]
  71. 71. 
    Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J et al. 2019. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574:671–74
    [Google Scholar]
  72. 72. 
    Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N et al. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12:e0185809
    [Google Scholar]
  73. 73. 
    Vanbergen AJ, Initiative Insect Pollinators 2013. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11:251–59
    [Google Scholar]
  74. 74. 
    Fonseca C. 2009. The silent mass extinction of insect herbivores in biodiversity hotspots. Conserv. Biol. 23:1507–15
    [Google Scholar]
  75. 75. 
    Leather SR. 2018. “Ecological Armageddon”—more evidence for the drastic decline in insect numbers. Ann. Appl. Biol. 172:1–3
    [Google Scholar]
  76. 76. 
    Dobson A, Lodge D, Alder J, Cumming GS, Keymer J et al. 2006. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87:1915–24
    [Google Scholar]
  77. 77. 
    Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A et al. 2015. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29:299–307
    [Google Scholar]
  78. 78. 
    Campbell JW, Hanula JL. 2007. Efficiency of Malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. J. Insect Conserv. 11:399–408
    [Google Scholar]
  79. 79. 
    Carrington D. 2017. Warning of “ecological Armageddon” after dramatic plunge in insect numbers. The Guardian Oct. 18. https://www.theguardian.com/environment/2017/oct/18/warning-of-ecological-armageddon-after-dramatic-plunge-in-insect-numbers
    [Google Scholar]
  80. 80. 
    Farah T. 2019. Are insects going extinct? The debate obscures the real dangers they face. Discover Magazine March 6. http://blogs.discovermagazine.com/crux/2019/03/06/insect-declines-extinction/#.XcVhXDP7Q2w
    [Google Scholar]
  81. 81. 
    Benton TG, Bryant DM, Cole L, Crick HQP 2002. Linking agricultural practice to insect and bird populations: a historical study over three decades. J. Appl. Ecol. 39:673–87
    [Google Scholar]
  82. 82. 
    Fattorini S. 2011. Insect rarity, extinction and conservation in urban Rome (Italy): a 120-year-long study of tenebrionid beetles. Insect Conserv. Divers. 4:307–15
    [Google Scholar]
  83. 83. 
    Lister BC, Garcia A. 2018. Climate-driven declines in arthropod abundance restructure a rainforest food web. PNAS 115:E10397–E10406
    [Google Scholar]
  84. 84. 
    Willig MR, Woolbright L, Presley SJ, Schowalter TD, Waide RB et al. 2019. Populations are not declining and food webs are not collapsing at the Luquillo Experimental Forest. PNAS 116:12143–44
    [Google Scholar]
  85. 85. 
    Komonen A, Halme P, Kotiaho JS 2019. Alarmist by bad design: strongly popularized unsubstantiated claims undermine credibility of conservation science. Rethink. Ecol. 4:17–19
    [Google Scholar]
  86. 86. 
    Outhwaite CL, Gregory RD, Chandler RE, Collen B, Isaac NJB 2020. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4:384–92
    [Google Scholar]
  87. 87. 
    Tsiafouli MA, Thébault E, Sgardelis SP, de Ruiter PC, van der Putten WH et al. 2015. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21:973–85
    [Google Scholar]
  88. 88. 
    Karp DS, Rominger AJ, Zook J, Ranganathan J, Ehrlich PR, Daily GC 2012. Intensive agriculture erodes β-diversity at large scales. Ecol. Lett. 15:963–70
    [Google Scholar]
  89. 89. 
    Frankie GW, Ehler LE. 1978. Ecology of insects in urban environments. Annu. Rev. Entomol. 23:367–87
    [Google Scholar]
  90. 90. 
    Quartau JA. 2009. Preventative fire procedures in Mediterranean woods are destroying their insect biodiversity: a plea to the EU Governments. J. Insect Conserv. 13:267–70
    [Google Scholar]
  91. 91. 
    Schreinemachers P, Tipraqsa P. 2012. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37:616–26
    [Google Scholar]
  92. 92. 
    Heliovaara K, Vaisanen R. 1993. Insects and Pollution London: Taylor & Francis
  93. 93. 
    Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM et al. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8:1–16
    [Google Scholar]
  94. 94. 
    Meyer WB, Turner BL. 1992. Human population growth and global land-use/cover change. Annu. Rev. Ecol. Syst. 23:39–61
    [Google Scholar]
  95. 95. 
    Batzer DP, Wissinger SA. 1996. Ecology of insect communities in nontidal wetlands. Annu. Rev. Entomol. 41:75–100
    [Google Scholar]
  96. 96. 
    Hunter MD. 2002. Landscape structure, habitat fragmentation, and the ecology of insects. Agric. Forest Entomol. 4:159–66
    [Google Scholar]
  97. 97. 
    Arnold EJ, Egerer M, Daane MK 2019. Local and landscape effects to biological controls in urban agriculture—a review. Insects 10:215
    [Google Scholar]
  98. 98. 
    Kalarus K, Halecki W, Skalski T 2019. Both semi-natural and ruderal habitats matter for supporting insect functional diversity in an abandoned quarry in the city of Kraków (S Poland). Urban Ecosyst 22:943–53
    [Google Scholar]
  99. 99. 
    Smith J, Potts SG, Woodcock BA, Eggleton P 2008. Can arable field margins be managed to enhance their biodiversity, conservation and functional value for soil macrofauna. J. Appl. Ecol. 45:269–78
    [Google Scholar]
  100. 100. 
    Smith J, Potts S, Eggleton P 2008. The value of sown grass margins for enhancing soil macrofaunal biodiversity in arable systems. Agric. Ecosyst. Environ. 127:119–25
    [Google Scholar]
  101. 101. 
    Zhang X, Axmacher JC, Wu P, Zhang X, Liu Y 2019. Productive oilseed rape strips supplement seminatural field-margins in promoting ground-dwelling predatory invertebrates in agricultural landscapes. J. Insect Sci. 19:18
    [Google Scholar]
  102. 102. 
    Rouabah A, Villerd J, Amiaud B, Plantureux S, Lasserre-Joulin F 2015. Response of carabid beetles diversity and size distribution to the vegetation structure within differently managed field margins. Agric. Ecosyst. Environ. 200:21–32
    [Google Scholar]
  103. 103. 
    Boatman N, Parry H, Bishop J, Cuthbertson A 2007. Impacts of agricultural change on farmland biodiversity in the UK. Issues Environ. Sci. Technol. 25: https://doi.org/10.1039/9781847557650-00001
    [Crossref] [Google Scholar]
  104. 104. 
    Bardgett RD, Cook R. 1998. Functional aspects of soil animal diversity in agricultural grasslands. Appl. Soil Ecol. 10:263–76
    [Google Scholar]
  105. 105. 
    Power AG. 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philos. Trans. R. Soc. B 365:2959–71
    [Google Scholar]
  106. 106. 
    Seto KC, Fragkias M, Güneralp B, Reilly MK 2011. A meta-analysis of global urban land expansion. PLOS ONE 6:e23777
    [Google Scholar]
  107. 107. 
    Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C 2002. Characteristics of insect populations on habitat fragments: a mini review. Ecol. Res. 17:229–39
    [Google Scholar]
  108. 108. 
    Guenat S, Kunin WE, Dougill AJ, Dallimer M 2019. Effects of urbanisation and management practices on pollinators in tropical Africa. J. Appl. Ecol. 56:214–24
    [Google Scholar]
  109. 109. 
    Docile T, Figueiro R, Portela C, Nessimian J 2016. Macroinvertebrate diversity loss in urban streams from tropical forests. Environ. Monit. Assess. 188:237
    [Google Scholar]
  110. 110. 
    Penone C, Kerbiriou C, Julien J-F, Julliard R, Machon N, Le Viol I 2013. Urbanisation effect on Orthoptera: Which scale matters. Insect Conserv. Divers. 6:319–27
    [Google Scholar]
  111. 111. 
    Hall DM, Camilo GR, Tonietto RK, Ollerton J, Ahrné K et al. 2017. The city as a refuge for insect pollinators. Conserv. Biol. 31:24–29
    [Google Scholar]
  112. 112. 
    Feurdean AN, Willis KJ, Astaloş C 2009. Legacy of the past land-use changes and management on the “natural” upland forest composition in the Apuseni Natural Park, Romania. Holocene 19:967–81
    [Google Scholar]
  113. 113. 
    Salvati L, Forino G. 2014. A “laboratory” of landscape degradation: social and economic implications for sustainable development in peri-urban areas. Int. J. Innov. Sustain. Dev. 8:232–49
    [Google Scholar]
  114. 114. 
    Similä M, Kouki J, Martikainen P 2003. Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters. Forest Ecol. Manag. 174:365–81
    [Google Scholar]
  115. 115. 
    Thorn S, Bässler C, Brandl R, Burton PJ, Cahall R et al. 2018. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55:279–89
    [Google Scholar]
  116. 116. 
    Noordijk J, Delille K, Schaffers AP, Sýkora KV 2009. Optimizing grassland management for flower-visiting insects in roadside verges. Biol. Conserv. 142:2097–103
    [Google Scholar]
  117. 117. 
    van Lexmond MB, Bonmatin J-M, Goulson D, Noome DA 2015. Worldwide integrated assessment on systemic pesticides. Environ. Sci. Pollution Res. 22:1–4
    [Google Scholar]
  118. 118. 
    Goulson D, Nicholls E, Botías C, Rotheray EL 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957
    [Google Scholar]
  119. 119. 
    Metcalf RL, Kapoor IP, Nystrom RF, Sangha GK 1970. Comparative metabolism of methoxychlor, methiochlor, and DDT in mouse, insects, and in a model ecosystem. J. Agric. Food Chem. 18:1145–52
    [Google Scholar]
  120. 120. 
    Zeng G, Chen M, Zeng Z 2013. Risks of neonicotinoid pesticides. Science 340:1403
    [Google Scholar]
  121. 121. 
    Jeschke P, Nauen R, Schindler M, Elbert A 2011. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 59:2897–908
    [Google Scholar]
  122. 122. 
    Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA et al. 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollution Res. 22:68–102
    [Google Scholar]
  123. 123. 
    Powney GD, Carvell C, Edwards M, Morris RKA, Roy HE et al. 2019. Widespread losses of pollinating insects in Britain. Nat. Commun. 10:1018
    [Google Scholar]
  124. 124. 
    Holder PJ, Jones A, Tyler CR, Cresswell JE 2018. Fipronil pesticide as a suspect in historical mass mortalities of honey bees. PNAS 115:1303338
    [Google Scholar]
  125. 125. 
    Kessler SC, Tiedeken EJ, Simcock KL, Derveau S, Mitchell J et al. 2015. Bees prefer foods containing neonicotinoid pesticides. Nature 521:74–76
    [Google Scholar]
  126. 126. 
    Fischer J, Müller T, Spatz A-K, Greggers U, Grünewald B, Menzel R 2014. Neonicotinoids interfere with specific components of navigation in honeybees. PLOS ONE 9:e91364
    [Google Scholar]
  127. 127. 
    Majewski MS, Capel PD. 1995. Pesticides in the atmosphere; distribution, trends, and governing factors Rep. 94-506, US Geol Survey, Reston, VA:
  128. 128. 
    Whittaker JB. 2001. Presidential address: insects and plants in a changing atmosphere. J. Ecol. 89:507–18
    [Google Scholar]
  129. 129. 
    Campbell SA, Vallano DM. 2018. Plant defences mediate interactions between herbivory and the direct foliar uptake of atmospheric reactive nitrogen. Nat. Commun. 9:4743
    [Google Scholar]
  130. 130. 
    Sun H, Liu Y, Zhang G Effects of heavy metal pollution on insects. Acta Entomol. Sinica 50:178–85
    [Google Scholar]
  131. 131. 
    Hain FP. 1987. Interactions of insects, trees and air pollutants. Tree Physiol 3:93–102
    [Google Scholar]
  132. 132. 
    Arimoro FO, Ikomi RB. 2009. Ecological integrity of upper Warri River, Niger Delta using aquatic insects as bioindicators. Ecol. Indicators 9:455–61
    [Google Scholar]
  133. 133. 
    Owens ACS, Lewis SM. 2018. The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecol. Evol. 8:11337–58
    [Google Scholar]
  134. 134. 
    Warrant E, Dacke M. 2016. Visual navigation in nocturnal insects. Physiology 31:182–92
    [Google Scholar]
  135. 135. 
    Hölker F, Wolter C, Perkin EK, Tockner K 2010. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25:681–82
    [Google Scholar]
  136. 136. 
    Grubisic M. 2018. Insect declines and agroecosystems: does light pollution matter. Ann. Appl. Biol. 173:2180–89
    [Google Scholar]
  137. 137. 
    Barghini A, Souza de Medeiros BA 2012. UV radiation as an attractor for insects. LEUKOS 9:47–56
    [Google Scholar]
  138. 138. 
    Blaho M, Herczeg T, Kriska G, Egri A, Szaz D et al. 2014. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars. PLOS ONE 9:e103339
    [Google Scholar]
  139. 139. 
    McDonnell MJ, Hahs AK, Breuste JH 2009. Ecology of Cities and Towns: A Comparative Approach Cambridge, UK: Cambridge Univ. Press
  140. 140. 
    Brooks TM, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Rylands AB et al. 2002. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16:909–23
    [Google Scholar]
  141. 141. 
    Hoekstra JM, Boucher TM, Ricketts TH, Roberts C 2005. Confronting a biome crisis: global disparities of habitat loss and protection. Ecol. Lett. 8:23–29
    [Google Scholar]
  142. 142. 
    Stork N, Srivastava D, Eggleton P, Hodda M, Lawson G et al. 2017. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa. Conserv. Biol. 31:924–33
    [Google Scholar]
  143. 143. 
    Robinet C, Roques A. 2010. Direct impacts of recent climate warming on insect populations. Integr. Zool. 5:132–42
    [Google Scholar]
  144. 144. 
    Forrest JRK. 2016. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17:49–54
    [Google Scholar]
  145. 145. 
    Bell JR, Botham MS, Henrys PA, Leech DI, Pearce-Higgins JW et al. 2019. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Glob. Change Biol. 25:1982–94
    [Google Scholar]
  146. 146. 
    Hickling R, Roy DB, Hill JK, Thomas CD 2005. A northward shift of range margins in British Odonata. Glob. Change Biol. 11:502–6
    [Google Scholar]
  147. 147. 
    Kingsolver JG, Arthur Woods H, Buckley LB, Potter KA, MacLean HJ, Higgins JK 2011. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51:719–32
    [Google Scholar]
  148. 148. 
    Wilson RJ, Maclean IMD. 2011. Recent evidence for the climate change threat to Lepidoptera and other insects. J. Insect Conserv. 15:259–68
    [Google Scholar]
  149. 149. 
    Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ et al. 2013. How does climate change cause extinction. Proc. R. Soc. B 280:20121890
    [Google Scholar]
  150. 150. 
    Tewksbury JJ, Huey RB, Deutsch CA 2008. Putting the heat on tropical animals. Science 320:1296–97
    [Google Scholar]
  151. 151. 
    Chen I, Shiu H, Benedick S, Holloway J, Cheye V et al. 2009. Elevation increases in moth assemblages over 42 years on a tropical mountain. PNAS 106:1479–83
    [Google Scholar]
  152. 152. 
    Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS 2008. Five potential consequences of climate change for invasive species. Conserv. Biol. 22:534–43
    [Google Scholar]
  153. 153. 
    Breton J, Chazeau J, Jourdan H 2003. Immediate impacts of invasion by Wasmannia auropunctata (Hymenoptera: Formicidae) on native litter ant fauna in a New Caledonian rainforest. Austral Ecol 28:204–9
    [Google Scholar]
  154. 154. 
    Leather SR. 2009. Taxonomic chauvinism threatens the future of entomology. Biologist 56:1 http://cb.naturalsciences.be/ants/pdf_free/Biol_56_1_IMV.pdf
    [Google Scholar]
  155. 155. 
    Naeem S, Chazdon R, Duffy JE, Prager C, Worm B 2016. Biodiversity and human well-being: an essential link for sustainable development. Proc. Biol. Sci. 283:20162091
    [Google Scholar]
  156. 156. 
    Thomas CD, Jones TH, Hartley SE 2019. “Insectageddon”: a call for more robust data and rigorous analyses. Glob. Change Biol. 25:1891–92
    [Google Scholar]
  157. 157. 
    Haldane J. 1947. What is Life New York: Boni and Gaer
  158. 158. 
    Hanski I, Meyke E, Miinala M 2009. Deforestation and tropical insect extinctions. Biol. Lett. 5:653–55
    [Google Scholar]
  159. 159. 
    Foster WA, Snaddon JL, Turner EC, Fayle TM, Cockerill TD et al. 2011. Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philos. Trans. R. Soc. B 366:3277–91
    [Google Scholar]
  160. 160. 
    Dale VH, Polasky S. 2007. Measures of the effects of agricultural practices on ecosystem services. Ecol. Econ. 64:286–96
    [Google Scholar]
  161. 161. 
    Altieri MA. 1999. The ecological role of biodiversity in agroecosystems. Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes MG Paoletti 19–31 Amsterdam: Elsevier
    [Google Scholar]
  162. 162. 
    Morley R. 2000. Origin and Evolution of Tropical Rain Forests Hoboken, NJ: Wiley
  163. 163. 
    Roque F, Menezes J, Northfield T, Ochoa-Quintero J, Campbell M, Laurance W 2018. Warning signals of biodiversity collapse across gradients of tropical forest loss. Sci. Rep. 8:1622
    [Google Scholar]
  164. 164. 
    Lees AC, Pimm SL. 2015. Species, extinct before we know them. Curr. Biol. 25:R177–R80
    [Google Scholar]
  165. 165. 
    Rittel HWJ, Webber MM. 1973. Dilemmas in a general theory of planning. Policy Sci 4:155–69
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012420-050035
Loading
/content/journals/10.1146/annurev-environ-012420-050035
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error