1932

Abstract

Hundreds of millions of the world's poorest people directly depend on smallholder farming systems. These people now face a changing climate and associated societal responses. We use mapping and a literature review to juxtapose the climate fate of smallholder systems with that of other agricultural systems and population groups. Limited direct evidence contrasts climate impact risk in smallholder agricultural systems versus other farming systems, but proxy evidence suggests high smallholder vulnerability. Smallholders distinctively adapt to climate shocks and stressors. Their future adaptive capacity is uncertain and conditional upon the severity of climate change and socioeconomic changes from regional development. Smallholders present a greenhouse gas (GHG) mitigation paradox. They emit a small amount of CO per capita and are poor, making GHG regulation unwarranted. But they produce GHG-intensive food and emit disproportionate quantities of black carbon through traditional biomass energy. Effectively accounting for smallholders in mitigation and adaption policies is critical and will require innovative solutions to the transaction costs that enrolling smallholders often imposes. Together, our findings show smallholder farming systems to be a critical fulcrum between climate change and sustainable development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102016-060946
2017-10-17
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/energy/42/1/annurev-environ-102016-060946.html?itemId=/content/journals/10.1146/annurev-environ-102016-060946&mimeType=html&fmt=ahah

Literature Cited

  1. Collier P, Dercon S. 1.  2014. African agriculture in 50 years: smallholders in a rapidly changing world?. World Dev 63:92–101 [Google Scholar]
  2. Morton JF. 2.  2007. The impact of climate change on smallholder and subsistence agriculture. PNAS 104:19680–85 [Google Scholar]
  3. Lowder SK, Skoet J, Raney T. 3.  2016. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev 87:16–29 [Google Scholar]
  4. Jayne T, Mather D, Mghenyi E. 4.  2010. Principal challenges confronting smallholder agriculture in sub-Saharan Africa. World Dev 38:1384–98 [Google Scholar]
  5. Samberg LH, Gerber JS, Ramankutty N, Herrero M, West PC. 5.  2016. Subnational distribution of average farm size and smallholder contributions to global food production. Environ. Res. Lett. 11:124010 [Google Scholar]
  6. Bosc P, Berdegué J, Goïta M, van der Ploeg J, Sekine K, Zhang L. 6.  2013. Investing in smallholder agriculture for food security HLPE Rep. 6, High Level Panel of Experts on Food Secur. Nutr., Comm. World Food Secur. Rome, Italy:
  7. Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF. 7.  et al. 2012. The Amazon basin in transition. Nature 481:321–28 [Google Scholar]
  8. Graeub BE, Chappell MJ, Wittman H, Ledermann S, Kerr RB, Gemmill-Herren B. 8.  2016. The state of family farms in the world. World Dev 87:1–15 [Google Scholar]
  9. 9. Embrapa. 2017. The Forest Code: Fiscal Modules in Brazil (Portuguese) Brasília: Brazilian Agric. Res. Corp https://www.embrapa.br/codigo-florestal/area-de-reserva-legal-arl/modulo-fiscal
  10. Meert H, Van Huylenbroeck G, Vernimmen T, Bourgeois M, Van Hecke E. 10.  2005. Farm household survival strategies and diversification on marginal farms. J. Rural Stud. 21:81–97 [Google Scholar]
  11. Cassidy ES, West PC, Gerber JS, Foley JA. 11.  2013. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8:034015 [Google Scholar]
  12. Monfreda C, Ramankutty N, Foley JA. 12.  2008. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22:GB1022 [Google Scholar]
  13. Robinson TP, Thornton PK, Franceschini G, Kruska R, Chiozza F. 13.  et al. 2011. Global Livestock Production Systems Rome: Food Agric. Organ., UN/Int. Livest. Res. Inst.
  14. Weedon G, Gomes S, Viterbo P, Shuttleworth WJ, Blyth E. 14.  et al. 2011. Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 12:823–48 [Google Scholar]
  15. Sloat L, Gerber J, Samberg L, Smith W, West P. 15.  et al. 2016. Precipitation variability on global pasturelands may affect food security in livestock-dependent regions Presented at AGU Fall Meet., Dec. 12–16 San Franc.:
  16. Ray DK, Gerber JS, MacDonald GK, West PC. 16.  2015. Climate variation explains a third of global crop yield variability. Nat. Commun. 6:5989 [Google Scholar]
  17. Brauman KA, Richter BD, Postel S, Malsy M, Flörke M. 17.  2016. Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa Sci. Anthr. 4:83 [Google Scholar]
  18. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S. 18.  et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:850–53 [Google Scholar]
  19. Avitabile V, Herold M, Heuvelink G, Lewis SL, Phillips OL. 19.  et al. 2016. An integrated pan‐tropical biomass map using multiple reference datasets. Glob. Change Biol. 22:1406–20 [Google Scholar]
  20. Carlson KM, Gerber JS, Mueller ND, Herrero M, MacDonald GK. 20.  et al. 2016. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7:63–68 [Google Scholar]
  21. Masera OR, Bailis R, Drigo R, Ghilardi A, Ruiz-Mercado I. 21.  2015. Environmental burden of traditional bioenergy use. Annu. Rev. Environ. Resour. 40:121–50 [Google Scholar]
  22. de Sherbinin A. 22.  2015. Integration of remote sensing and population data: lessons from the NASA socioeconomic data and applications center. Proc. Geosci. Remote Sens. Symp. (IGARSS), 2015 IEEE Int. 20152537
  23. 23. NASA Socioecon. Data Appl. Cent. 2011. Global Rural-urban Mapping Project (GRUMP), v1: Urban Extents Grid New York: Cent. Int. Earth Sci. Inf. Netw., Columbia Univ.
  24. Vermeulen S, Wollenberg E. 24.  2017. A rough estimate of the proportion of global emissions from agriculture due to smallholders. InfoNote April. https://cgspace.cgiar.org/bitstream/handle/10568/80745/CCAFS_INsmallholder_emissions.pdf
  25. Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD. 25.  et al., eds. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change New York: Cambridge Univ. Press
  26. Antle JM, Jones JW, Rosenzweig CE. 26.  2017. Next generation agricultural system data, models and knowledge products: Introduction. Agric. Syst. 155:186–90 [Google Scholar]
  27. Boote KJ, Jones JW, White JW, Asseng S, Lizaso JI. 27.  2013. Putting mechanisms into crop production models. Plant Cell Environ 36:1658–72 [Google Scholar]
  28. Auffhammer M, Schlenker W. 28.  2014. Empirical studies on agricultural impacts and adaptation. Energy Econ 46:555–61 [Google Scholar]
  29. Lobell DB, Asseng S. 29.  2017. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 12:015001 [Google Scholar]
  30. Troost C, Berger T. 30.  2014. Dealing with uncertainty in agent-based simulation: farm-level modeling of adaptation to climate change in southwest Germany. Am. J. Agric. Econ. 97:833–54 [Google Scholar]
  31. Ray DK, Foley JA. 31.  2013. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8:44041–50 [Google Scholar]
  32. Cohn AS, VanWey LK, Spera SA, Mustard JF. 32.  2016. Cropping frequency and area response to climate variability can exceed yield response. Nat. Clim. Change 6:601–4 [Google Scholar]
  33. Hsiang SM. 33.  2016. Climate econometrics. Annu. Rev. Resour. Econ. 8:43–75 [Google Scholar]
  34. Reidsma P, Ewert F, Lansink AO, Leemans R. 34.  2010. Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur. J. Agron. 32:91–102 [Google Scholar]
  35. Rockström J, Karlberg L, Wani SP, Barron J, Hatibu N. 35.  et al. 2010. Managing water in rainfed agriculture—the need for a paradigm shift. Agric. Water Manag. 97:543–50 [Google Scholar]
  36. Thornton PK, Herrero M. 36.  2015. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Change 5:830–36 [Google Scholar]
  37. Stathers T, Lamboll R, Mvumi BM. 37.  2013. Postharvest agriculture in changing climates: its importance to African smallholder farmers. Food Secur 5:361–92 [Google Scholar]
  38. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C. 38.  et al. 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. PNAS 111:3268–73 [Google Scholar]
  39. Porter JR, Semenov MA. 39.  2005. Crop responses to climatic variation. Philos. Trans. R. Soc. Lond. B 360:2021–35 [Google Scholar]
  40. Sheahan M, Barrett CB. 40.  2017. Food loss and waste in sub-Saharan Africa: a critical review. Food Policy 70:1–12 [Google Scholar]
  41. Field CB, Barros V, Stocker TF, Dahe Q, Dokken DJ. 41.  et al. eds. 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups 1 and II of the Intergovernmental Panel on Climate Change Cambridge, UK/New York: IPCC/Cambridge Univ. Press
  42. Elliott J, Deryng D, Müller C, Frieler K, Konzmann M. 42.  et al. 2014. Constraints and potentials of future irrigation water availability on agricultural production under climate change. PNAS 111:3239–44 [Google Scholar]
  43. Gil JDB, Cohn AS, Duncan J, Newton P, Vermeulen S. 43.  2017. The resilience of integrated agricultural systems to climate change. Wires Clim. Change. 8:e461 doi:10.1002/wcc.461 [Google Scholar]
  44. Barrett CB, Reardon T, Webb P. 44.  2001. Nonfarm income diversification and household livelihood strategies in rural Africa: concepts, dynamics, and policy implications. Food Policy 26:315–31 [Google Scholar]
  45. Reardon T. 45.  1997. Using evidence of household income diversification to inform study of the rural nonfarm labor market in Africa. World Dev 25:735–47 [Google Scholar]
  46. Waha K, Müller C, Bondeau A, Dietrich JP, Kurukulasuriya P. 46.  et al. 2013. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Glob. Environ. Change 23:130–43 [Google Scholar]
  47. MacDonald AM, Calow RC, MacDonald DMJ, Darling WG, Dochartaigh BÉÓ. 47.  2009. What impact will climate change have on rural groundwater supplies in Africa?. Hydrol. Sci. J. 54:690–703 [Google Scholar]
  48. Lesk C, Rowhani P, Ramankutty N. 48.  2016. Influence of extreme weather disasters on global crop production. Nature 529:84–87 [Google Scholar]
  49. Hsiang SM, Jina AS. 49.  2014. The causal effect of environmental catastrophe on long-run economic growth: evidence from 6,700 cyclones NBER Work. Pap. No. 20352, Natl. Bur. Econ. Res. Cambridge, MA:
  50. Rao KN, Subraelu P, Kumar KCVN, Demudu G, Malini BH. 50.  et al. 2011. Climate change and sea-level rise: impact on agriculture along Andhra Pradesh coast—a geomatics analysis. J. Indian Soc. Remote Sens. 39:415–22 [Google Scholar]
  51. Ramanathan V, Agrawal M, Akimoto H, Auffhammer M, Autrup H. 51.  et al. 2008. Atmospheric brown clouds: regional assessment report with focus on Asia Nairobi, Kenya: UN Environ. Progr.
  52. Burney J, Ramanathan V. 52.  2014. Recent climate and air pollution impacts on Indian agriculture. PNAS 111:16319–24 [Google Scholar]
  53. Asada H, Matsumoto J. 53.  2009. Effects of rainfall variation on rice production in the Ganges-Brahmaputra basin. Climate Res 38:249–60 [Google Scholar]
  54. Exenberger A, Pondorfer A. 54.  2014. Genocidal risk and climate change: Africa in the twenty-first century. Int. J. Hum. Rights 18:350–68 [Google Scholar]
  55. von Uexkull N, Croicu M, Fjelde H, Buhaug H. 55.  2016. Civil conflict sensitivity to growing-season drought. PNAS 113:12391–96 [Google Scholar]
  56. Barnett J, Adger WN. 56.  2007. Climate change, human security and violent conflict. Polit. Geogr. 26:639–55 [Google Scholar]
  57. McGuirk E, Burke M. 57.  2017. The economic origins of conflict in Africa NBER Work. Pap. No. 23056, Natl. Bur. Econ. Res. Cambridge, MA:
  58. Brown D, Chanakira RR, Chatiza K, Dhliwayo M, Dodman D. 58.  et al. 2012. Climate change impacts, vulnerability and adaptation in Zimbabwe IIED Clim. Change Work. Pap. Ser. 3, Int. Inst. Environ. Dev. London, UK:
  59. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W. 59.  et al. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switz.: IPCC
  60. Nelson DR. 60.  2011. Adaptation and resilience: responding to a changing climate. Wires Clim. Change 2:113–20 [Google Scholar]
  61. Smit B, Wandel J. 61.  2006. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Change 16:282–92 [Google Scholar]
  62. Lin BB, Perfecto I, Vandermeer J. 62.  2008. Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. BioScience 58:847–54 [Google Scholar]
  63. Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM. 63.  et al. 2014. Food security and food production systems. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK/New York: Cambridge Univ. Press [Google Scholar]
  64. Schulz K, Siriwardane R. 64.  2015. Depoliticised and technocratic? Normativity and the politics of transformative adaptation Earth Syst. Gov. Proj. Work. Pap. No. 33 Lund/Amsterdam.:
  65. Mimura N, Pulwarty RS, Duc DM, Elshinnawy I, Redsteer MH. 65.  et al. 2014. Adaptation planning and implementation. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea et al.869–98 Cambridge, UK/New York: Cambridge Univ. Press [Google Scholar]
  66. Eakin HC, Lemos MC, Nelson DR. 66.  2014. Differentiating capacities as a means to sustainable climate change adaptation. Glob. Environ. Change 27:1–8 [Google Scholar]
  67. Howden SM, Soussana JF, Tubiello FN, Chhetri N, Dunlop M, Meinke H. 67.  2007. Adapting agriculture to climate change. PNAS 104:19691–96 [Google Scholar]
  68. Wheeler T, von Braun J. 68.  2013. Climate change impacts on global food security. Science 341:508–13 [Google Scholar]
  69. Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A. 69.  et al. 2014. Climate-smart agriculture for food security. Nat. Clim. Change 4:1068–72 [Google Scholar]
  70. Steenwerth KL, Hodson AK, Bloom AJ, Carter MR, Cattaneo A. 70.  et al. 2014. Climate-smart agriculture global research agenda: scientific basis for action. Agric. Food Secur. 3:11 [Google Scholar]
  71. Bradshaw B, Dolan H, Smit B. 71.  2004. Farm-level adaptation to climatic variability and change: crop diversification in the Canadian prairies. Clim. Change 67:119–41 [Google Scholar]
  72. Salazar-Espinoza C, Jones S, Tarp F. 72.  2015. Weather shocks and cropland decisions in rural Mozambique. Food Policy 53:9–21 [Google Scholar]
  73. Gebrehiwot T, van der Veen A. 73.  2013. Farm level adaptation to climate change: the case of farmer's in the Ethiopian highlands. Environ. Manag. 52:29–44 [Google Scholar]
  74. Huang J-K, Jiang J, Wang J-X, Hou L-L. 74.  2014. Crop diversification in coping with extreme weather events in China. J. Integr. Agric. 13:677–86 [Google Scholar]
  75. Lybbert TJ, Sumner TA. 75.  2012. Agricultural technologies for climate change in developing countries: policy options for innovation and technology diffusion. Food Policy 37:114–23 [Google Scholar]
  76. Trærup S, Stephan J. 76.  2015. Technologies for adaptation to climate change. Examples from the agricultural and water sectors in Lebanon. Clim. Change 131:435–49 [Google Scholar]
  77. Christiansen L, Olhoff A, Traerup SLM. 77.  2011. Technologies for Adaptation—Perspectives and Practical Experiences Roskilde, Denmark.: UNEP Risø Cent.
  78. Milder J, Majanen T, Scherr S. 78.  2011. Performance and potential of conservation agriculture for climate change adaptation and mitigation in sub-Saharan Africa. Ecoagric. Discuss. Pap. No. 6, Ecoagric. Partn., Washington, DC
  79. Vermeulen SJ, Aggarwal PK, Ainslie A, Angelone C, Campbell BM. 79.  et al. 2012. Options for support to agriculture and food security under climate change. Environ. Sci. Policy 15:136–44 [Google Scholar]
  80. Pingali PL. 80.  2012. Green revolution: impacts, limits, and the path ahead. PNAS 109:12302–8 [Google Scholar]
  81. Barnett BJ, Barrett CB, Skees JR. 81.  2008. Poverty traps and index-based risk transfer products. World Dev 36:1766–85 [Google Scholar]
  82. Fafchamps M, Lund S. 82.  2003. Risk-sharing networks in rural Philippines. J. Dev. Econ. 71:261–87 [Google Scholar]
  83. Vermeulen SJ, Aggarwal PK, Ainslie A, Angelone C, Campbell BM. 83.  et al. 2012. Options for support to agriculture and food security under climate change. Environ. Sci. Policy 15:136–44 [Google Scholar]
  84. Weinberger K, Lumpkin TA. 84.  2007. Diversification into horticulture and poverty reduction: a research agenda. World Dev 35:1464–80 [Google Scholar]
  85. Ellis F. 85.  1998. Household strategies and rural livelihood diversification. J. Dev. Stud. 35:1–38 [Google Scholar]
  86. Hassan R, Nhemachena C. 86.  2008. Determinants of African farmers’ strategies for adapting to climate change: multinomial choice analysis. Afr. J. Agric. Resour. Econ. 2:83–104 [Google Scholar]
  87. McLeman R, Smit B. 87.  2006. Migration as an adaptation to climate change. Clim. Change 76:31–53 [Google Scholar]
  88. Tacoli C. 88.  2009. Crisis or adaptation? Migration and climate change in a context of high mobility. Environ. Urban. 21:513–25 [Google Scholar]
  89. Rufino MC, Thornton PK, Mutie I, Jones PG, van Wijk MT, Herrero M. 89.  2013. Transitions in agro-pastoralist systems of East Africa: impacts on food security and poverty. Agric. Ecosyst. Environ. 179:215–30 [Google Scholar]
  90. Black R, Bennett SR, Thomas SM, Beddington JR. 90.  2011. Climate change: migration as adaptation. Nature 478:447–49 [Google Scholar]
  91. Carleton TA, Hsiang SM. 91.  2016. Social and economic impacts of climate. Science 353:aad9837 [Google Scholar]
  92. Hidalgo FD, Naidu S, Nichter S, Richardson N. 92.  2010. Economic determinants of land invasions. Rev. Econ. Stat. 92:505–23 [Google Scholar]
  93. Gray CL. 93.  2009. Environment, land, and rural out-migration in the southern Ecuadorian Andes. World Dev 37:457–68 [Google Scholar]
  94. Colmer J. 94.  2016. Essays on the economic consequences of weather and climate change PhD Thesis Lond. Sch. Econ. Poli. Sci.
  95. Henderson JV, Storeygard A, Deichmann U. 95.  2015. Has climate change driven urbanization in Africa. J. Dev. Econ. 124:60–82 [Google Scholar]
  96. Rogers EM. 96.  1995. Diffusion of Innovations New York: Free Press
  97. Smit B, Skinner MW. 97.  2002. Adaptation options in agriculture to climate change: a typology. Mitig. Adapt. Strateg. Glob. Change 7:85–114 [Google Scholar]
  98. Foster A, Rosenzweig M. 98.  2010. Microeconomics of technology adoption. Annu. Rev. Econ. 2:395–424 [Google Scholar]
  99. Lemos MC, Kirchhoff CJ, Ramprasad V. 99.  2012. Narrowing the climate information usability gap. Nat. Clim. Change 2:789–94 [Google Scholar]
  100. Zilberman D, Zhao J, Heiman A. 100.  2012. Adoption versus adaptation, with emphasis on climate change. Annu. Rev. Resour. Econ. 4:27–53 [Google Scholar]
  101. Clark N. 101.  2002. Innovation systems, institutional change and the new knowledge market: implications for Third World agricultural development. Econ. Innov. New Techn. 11:353–68 [Google Scholar]
  102. Vermeulen SJ, Challinor AJ, Thornton PK, Campbell BM, Eriyagama N. 102.  et al. 2013. Addressing uncertainty in adaptation planning for agriculture. PNAS 110:8357–62 [Google Scholar]
  103. Fuss S, Havlík P, Szolgayová J, Schmid E, Reuter WH. 103.  et al. 2015. Global food security & adaptation under crop yield volatility. Technol. Forecast. Soc. Change 98:223–33 [Google Scholar]
  104. Rudel TK, Defries R, Asner GP, Laurance WF. 104.  2009. Changing drivers of deforestation and new opportunities for conservation. Conserv. Biol. 23:1396–405 [Google Scholar]
  105. van Vliet N, Adams C, Vieira ICG, Mertz O. 105.  2013. “Slash and burn” and “shifting” cultivation systems in forest agriculture frontiers from the Brazilian Amazon. Soc. Nat. Resour. 26:1454–67 [Google Scholar]
  106. Smith P, Martino D, Cai Z, Gwary D, Janzen H. 106.  et al. 2008. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 363:789–813 [Google Scholar]
  107. Harvey CA, Chacon M, Donatti CI, Garen E, Hannah L. 107.  et al. 2014. Climate‐smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv. Lett. 7:77–90 [Google Scholar]
  108. Zimmerer KS. 108.  2013. The compatibility of agricultural intensification in a global hotspot of smallholder agrobiodiversity (Bolivia). PNAS 110:2769–74 [Google Scholar]
  109. Megevand C, Mosnier A, Hourticq J, Sanders K, Doetinchem N, Streck C. 109.  2013. Deforestation Trends in the Congo Basin: Reconciling Economic Growth and Forest Protection Washington, DC: World Bank
  110. Barbier EB. 110.  2004. Explaining agricultural land expansion and deforestation in developing countries. Am. J. Agric. Econ. 86:1347–53 [Google Scholar]
  111. Barbier EB. 111.  2012. Scarcity, frontiers and development. Geogr. J. 178:110–22 [Google Scholar]
  112. Meyfroidt P, Vu TP, Hoang VA. 112.  2013. Trajectories of deforestation, coffee expansion and displacement of shifting cultivation in the Central Highlands of Vietnam. Glob. Environ. Change 23:1187–98 [Google Scholar]
  113. Godar J, Gardner TA, Tizado EJ, Pacheco P. 113.  2014. Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. PNAS 111:15591–96 [Google Scholar]
  114. Henders S, Persson UM, Kastner T. 114.  2015. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10:125012 [Google Scholar]
  115. Clough Y, Krishna VV, Corre MD, Darras K, Denmead LH. 115.  et al. 2016. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7:13137 [Google Scholar]
  116. Gockowski J, Sonwa D. 116.  2011. Cocoa intensification scenarios and their predicted impact on CO2 emissions, biodiversity conservation, and rural livelihoods in the Guinea rain forest of West Africa. Environ. Manag. 48:307–21 [Google Scholar]
  117. Walker NF, Patel SA, Kalif KA. 117.  2013. From Amazon pasture to the high street: deforestation and the Brazilian cattle product supply chain. Trop. Conserv. Sci. 6:446–67 [Google Scholar]
  118. Naughton-Treves L, Holland MB, Brandon K. 118.  2005. The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annu. Rev. Environ. Resour. 30:219–52 [Google Scholar]
  119. Nolte C, Agrawal A, Silvius KM, Soares-Filho BS. 119.  2013. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. PNAS 110:4956–61 [Google Scholar]
  120. Ruiz-Pérez M, Almeida M, Dewi S, Lozano Costa EM, Pantoja MC. 120.  et al. 2005. Conservation and development in Amazonian extractive reserves: the case of Alto Juruá. AMBIO: A J. Hum. Environ. 34:218–23 [Google Scholar]
  121. Börner J, Wunder S, Wertz-Kanounnikoff S, Tito MR, Pereira L, Nascimento N. 121.  2010. Direct conservation payments in the Brazilian Amazon: scope and equity implications. Ecol. Econ. 69:1272–82 [Google Scholar]
  122. DeFries R, Rosenzweig C. 122.  2010. Toward a whole-landscape approach for sustainable land use in the tropics. PNAS 107:19627–32 [Google Scholar]
  123. Sunderlin WD, Larson AM, Duchelle AE, Resosudarmo IAP, Huynh TB. 123.  et al. 2014. How are REDD+ proponents addressing tenure problems? Evidence from Brazil, Cameroon, Tanzania, Indonesia, and Vietnam. World Dev 55:37–52 [Google Scholar]
  124. Fox J, Castella J-C, Ziegler AD. 124.  2014. Swidden, rubber and carbon: can REDD+ work for people and the environment in Montane Mainland Southeast Asia?. Glob. Environ. Change 29:318–26 [Google Scholar]
  125. Pinto LFG, Gardner T, McDermott CL, Ayub KOL. 125.  2014. Group certification supports an increase in the diversity of sustainable agriculture network–rainforest alliance certified coffee producers in Brazil. Ecol. Econ. 107:59–64 [Google Scholar]
  126. Ripple WJ, Smith P, Haberl H, Montzka SA, McAlpine C, Boucher DH. 126.  2014. Ruminants, climate change and climate policy. Nat. Clim. Change 4:2–5 [Google Scholar]
  127. Herrero M, Havlík P, Valin H, Notenbaert A, Rufino MC. 127.  et al. 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. PNAS 110:20888–93 [Google Scholar]
  128. Clark M, Tilman D. 128.  2017. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12:6064016 [Google Scholar]
  129. Havlík P, Valin H, Herrero M, Obersteiner M, Schmid E. 129.  et al. 2014. Climate change mitigation through livestock system transitions. PNAS 111:3709–14 [Google Scholar]
  130. Herrero M, Thornton PK, Notenbaert AM, Wood S, Msangi S. 130.  et al. 2010. Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science 327:822–5 [Google Scholar]
  131. Giller KE, Corbeels M, Nyamangara J, Triomphe B, Affholder F. 131.  et al. 2011. A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Res 124:468–72 [Google Scholar]
  132. Baudron F, Jaleta M, Okitoi O, Tegegn A. 132.  2014. Conservation agriculture in African mixed crop-livestock systems: Expanding the niche. Agric. Ecosyst. Environ. 187:171–82 [Google Scholar]
  133. Bonjour S, Adair-Rohani H, Wolf J, Bruce NG, Mehta S. 133.  et al. 2013. Solid fuel use for household cooking: country and regional estimates for 1980–2010. Environ. Health Perspect. (Online) 121:784 [Google Scholar]
  134. Maes WH, Verbist B. 134.  2012. Increasing the sustainability of household cooking in developing countries: policy implications. Renew. Sustain. Energy Rev. 16:4204–21 [Google Scholar]
  135. Bailis R, Ezzati M, Kammen DM. 135.  2005. Mortality and greenhouse gas impacts of biomass and petroleum energy futures in Africa. Science 308:98–103 [Google Scholar]
  136. Jetter J, Zhao Y, Smith KR, Khan B, Yelverton T. 136.  et al. 2012. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ. Sci. Technol. 46:10827–34 [Google Scholar]
  137. Anenberg SC, Balakrishnan K, Jetter J, Masera O, Mehta S. 137.  et al. 2013. Cleaner cooking solutions to achieve health, climate, and economic cobenefits. Environ. Sci. Technol. 47:3944–52 [Google Scholar]
  138. Ruiz-Mercado I, Masera O, Zamora H, Smith KR. 138.  2011. Adoption and sustained use of improved cookstoves. Energy Policy 39:7557–66 [Google Scholar]
  139. Mobarak AM, Dwivedi P, Bailis R, Hildemann L, Miller G. 139.  2012. Low demand for nontraditional cookstove technologies. PNAS 109:10815–20 [Google Scholar]
  140. Wicke B, Verweij P, van Meijl H, van Vuuren DP, Faaij AP. 140.  2012. Indirect land use change: review of existing models and strategies for mitigation. Biofuels 3:87–100 [Google Scholar]
  141. Lapola DM, Schaldach R, Alcamo J, Bondeau A, Koch J. 141.  et al. 2010. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. PNAS 107:3388–93 [Google Scholar]
  142. Wunder S. 142.  2008. How should we deal with leakage?. Moving ahead with REDD: issues, options and implications A Angelsen 65–76 Bogor, Ind.: Cent. Int. For. Res http://www.cifor.org/publications/pdf_files/Books/BAngelsen0801.pdf [Google Scholar]
  143. Henders S, Ostwald M. 143.  2012. Forest carbon leakage quantification methods and their suitability for assessing leakage in REDD. Forests 3:33–58 [Google Scholar]
  144. Brown S, Hall M, Andrasko K, Ruiz F, Marzoli W. 144.  et al. 2007. Baselines for land-use change in the tropics: application to avoided deforestation projects. Mitig. Adapt. Strateg. Glob. Change 12:1001–26 [Google Scholar]
  145. Caplow S, Jagger P, Lawlor K, Sills E. 145.  2011. Evaluating land use and livelihood impacts of early forest carbon projects: lessons for learning about REDD+. Environ. Sci. Policy 14:152–67 [Google Scholar]
  146. Hertel TW, Lobell DB. 146.  2014. Agricultural adaptation to climate change in rich and poor countries: current modeling practice and potential for empirical contributions. Energy Econ 46:562–75 [Google Scholar]
  147. Chapuis-Lardy L, Metay A, Martinet M, Rabenarivo M, Toucet J. 147.  et al. 2009. Nitrous oxide fluxes from Malagasy agricultural soils. Geoderma 148:421–27 [Google Scholar]
  148. Berry N, Ryan C. 148.  2013. Overcoming the risk of inaction from emissions uncertainty in smallholder agriculture. Environ. Res. Lett. 8:011003 [Google Scholar]
  149. Carter M, de Janvry A, Sadoulet E, Sarris A. 149.  2014. Index-based weather insurance for developing countries: a review of evidence and a set of propositions for up-scaling Work. Pap. 111, Dev. Policies, Fondation pour les Études et Recherches sur le Développement International Clermont-Ferrand, Fr: http://www.ferdi.fr/sites/www.ferdi.fr/files/publication/fichiers/wp111_index_insurance_web_0.pdf
  150. Cárdenas J-C, Janssen MA, Ale M, Bastakoti R, Bernal A. 150.  et al. 2017. Fragility of the provision of local public goods to private and collective risks. Proc. Natl. Acad. Sci. 114:921–25 [Google Scholar]
  151. Takahashi K, Barrett CB, Ikegami M. 151.  2017. Does Index Insurance Crowd In or Crowd Out Informal Risk Sharing? Evidence from Rural Ethiopia Work. Pap., Dyson Sch. Appl. Econ. Manag. Cornell Univ http://barrett.dyson.cornell.edu/files/papers/Takahashi%20et%20al%20March%2010_cbb.pdf
  152. Persson UM, Henders S, Cederberg C. 152.  2014. A method for calculating a land‐use change carbon footprint (LUC‐CFP) for agricultural commodities–applications to Brazilian beef and soy, Indonesian palm oil. Glob. Change Biol. 20:3482–91 [Google Scholar]
  153. Wollenberg E, Richards M, Smith P, Havlík P, Obersteiner M. 153.  et al. 2016. Reducing emissions from agriculture to meet the 2°C target. Glob. Change Biol. 22:3859–64 [Google Scholar]
  154. 154. UN Food and Agric. Org. (FAO). 2013. Climate-Smart Agriculture Sourcebook Rome: FAO
  155. Costinot A, Donaldson D, Smith CB. 155.  2016. Evolving comparative advantage and the impact of climate change in agricultural markets: evidence from 1.7 million fields around the world. J. Poli. Economy 124:205–48 [Google Scholar]
/content/journals/10.1146/annurev-environ-102016-060946
Loading
/content/journals/10.1146/annurev-environ-102016-060946
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error