1932

Abstract

Breaking waves modulate the transfer of energy, momentum, and mass between the ocean and atmosphere, controlling processes critical to the climate system, from gas exchange of carbon dioxide and oxygen to the generation of sea spray aerosols that can be transported in the atmosphere and serve as cloud condensation nuclei. The smallest components, i.e., drops and bubbles generated by breaking waves, play an outsize role. This fascinating problem is characterized by a wide range of length scales, from wind forcing the wave field at scales of (1 km–0.1 m) to the dynamics of wave breaking at (10–0.1 m); air bubble entrainment, dynamics, and dissolution in the water column at (1 m–10 μm); and bubbles bursting at (10 mm–1 μm), generating sea spray droplets at (0.5 mm–0.5 μm) that are ejected into atmospheric turbulent boundary layers. I discuss recent progress to bridge these length scales, identifying the controlling processes and proposing a path toward mechanistic parameterizations of air–sea mass exchange that naturally accounts for sea state effects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030121-014132
2022-01-05
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-030121-014132.html?itemId=/content/journals/10.1146/annurev-fluid-030121-014132&mimeType=html&fmt=ahah

Literature Cited

  1. Aliseda A, Lasheras J 2011. Preferential concentration and rise velocity reduction of bubbles immersed in a homogeneous and isotropic turbulent flow. Phys. Fluids 23:9093301
    [Google Scholar]
  2. Ardhuin F, Rogers E, Babanin AV, Filipot JF, Magne R et al. 2010. Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. J. Phys. Oceanogr. 40:91917–41
    [Google Scholar]
  3. Atamanchuk D, Koelling J, Send U, Wallace D. 2020. Rapid transfer of oxygen to the deep ocean mediated by bubbles. Nat. Geosci. 13:3232–37
    [Google Scholar]
  4. Banner M, Peirson WL. 2007. Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech. 585:193–115
    [Google Scholar]
  5. Banner M, Zappa C, Gemmrich J. 2014. A note on the Phillips spectral framework for ocean whitecaps. J. Phys. Oceanogr. 44:71727–34
    [Google Scholar]
  6. Bell TG, Landwehr S, Miller SD, Bruyn WJ, Callaghan AH et al. 2017. Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds. Atmos. Chem. Phys. 17:149019–33
    [Google Scholar]
  7. Berny A, Deike L, Séon T, Popinet S. 2020. Role of all jet drops in mass transfer from bursting bubbles. Phys. Rev. Fluids 5:3033605
    [Google Scholar]
  8. Berny A, Seon T, Popinet S, Deike L 2021. Statistics of jet drop production. Geophys. Res. Lett. 48:e2021GL092919
    [Google Scholar]
  9. Bertram TH, Cochran RE, Grassian VH, Stone EA. 2018. Sea spray aerosol chemical composition: elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions. Chem. Soc. Rev. 47:72374–400
    [Google Scholar]
  10. Blanchard DC. 1963. The electrification of the atmosphere by particles from bubbles in the sea. Progr. Oceanogr. 1:73–202
    [Google Scholar]
  11. Blanchard DC, Syzdek LD. 1988. Film drop production as a function of bubble size. J. Geophys. Res. Oceans 93:C43649–54
    [Google Scholar]
  12. Blanco-Rodríguez FJ, Gordillo J. 2020. On the sea spray aerosol originated from bubble bursting jets. J. Fluid Mech. 886:R2
    [Google Scholar]
  13. Blenkinsopp CE, Chaplin JR. 2010. Bubble size measurements in breaking waves using optical fiber phase detection probes. IEEE J. Ocean. Eng. 35:2388–401
    [Google Scholar]
  14. Bowyer PA. 2001. Video measurements of near-surface bubble spectra. J. Geophys. Res. Oceans 106:C714179–90
    [Google Scholar]
  15. Brasz CF, Bartlett CT, Walls PLL, Flynn EG, Yu YE, Bird JC 2018. Minimum size for the top jet drop from a bursting bubble. Phys. Rev. Fluids 3:7074001
    [Google Scholar]
  16. Brumer S, Zappa C, Blomquist B, Fairall C, Cifuentes-Lorenzen A et al. 2017a. Wave-related Reynolds number parameterizations of CO2 and DMS transfer velocities. Geophys. Res. Lett. 44:199865–75
    [Google Scholar]
  17. Brumer SE, Zappa CJ, Brooks IM, Tamura H, Brown SM et al. 2017b. Whitecap coverage dependence on wind and wave statistics as observed during SO GasEx and HiWinGS. J. Phys. Oceanogr. 47:92211–35
    [Google Scholar]
  18. Callaghan AH, de Leeuw G, Cohen L, O'Dowd CD. 2008. Relationship of oceanic whitecap coverage to wind speed and wind history. Geophys. Res. Lett. 35:23L23609
    [Google Scholar]
  19. Callaghan AH, Deane GB, Stokes MDM 2013. Two regimes of laboratory whitecap foam decay: bubble-plume controlled and surfactant stabilized. J. Phys. Oceanogr. 43:61114–26
    [Google Scholar]
  20. Callaghan AH, Deane GB, Stokes MD 2017. On the imprint of surfactant-driven stabilization of laboratory breaking wave foam with comparison to oceanic whitecaps. J. Geophys. Res. Oceans 122:86110–28
    [Google Scholar]
  21. Cavaleri L, Fox-Kemper B, Hemer M. 2012. Wind waves in the coupled climate system. Bull. Am. Meteorol. Soc. 93:111651–61
    [Google Scholar]
  22. Chan WHR, Johnson PL, Moin P, Urzay J 2020. The turbulent bubble break-up cascade. Part 2. Numerical simulations of breaking waves. arXiv:2009.04804 [physics.flu-dyn]
  23. Chen G, Kharif C, Zaleski S, Li J. 1999. Two dimensional Navier–Stokes simulation of breaking waves. Phys. Fluids 11:121–33
    [Google Scholar]
  24. Cipriano RJ, Blanchard DC. 1981. Bubble and aerosol spectra produced by a laboratory breaking wave. J. Geophys. Res. Oceans 86:C98085–92
    [Google Scholar]
  25. Cochran RE, Ryder OS, Grassian VH, Prather KA. 2017. Sea spray aerosol: the chemical link between the oceans, atmosphere, and climate. Acc. Chem. Res. 50:3599–604
    [Google Scholar]
  26. de Leeuw G, Andreas EL, Anguelova MD, Fairall CW, Lewis ER et al. 2011. Production flux of sea spray aerosol. Rev. Geophys. 49:2RG2001
    [Google Scholar]
  27. De Vita F, Verzicco R, Iafrati A 2018. Breaking of modulated wave groups: kinematics and energy dissipation processes. J. Fluid Mech. 855:267–98
    [Google Scholar]
  28. Deane GB, Stokes MD. 2002. Scale dependence of bubble creation mechanisms in breaking waves. Nature 418:6900839–44
    [Google Scholar]
  29. Deike L, Ghabache E, Liger-Belair G, Das AK, Zaleski S et al. 2018. The dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids 3:013603
    [Google Scholar]
  30. Deike L, Lenain L, Melville WK. 2017a. Air entrainment by breaking waves. Geophys. Res. Lett. 44:83779–87
    [Google Scholar]
  31. Deike L, Melville WK. 2018. Gas transfer by breaking waves. Geophys. Res. Lett. 45:191048292
    [Google Scholar]
  32. Deike L, Melville WK, Popinet S. 2016. Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801:91–129
    [Google Scholar]
  33. Deike L, Pizzo N, Melville WK. 2017b. Lagrangian mass transport by surface breaking waves. J. Fluid Mech. 829:364–91
    [Google Scholar]
  34. Deike L, Popinet S, Melville WK 2015. Capillary effects on wave breaking. J. Fluid Mech. 769:541–69
    [Google Scholar]
  35. Derakhti M, Kirby JT. 2016. Breaking-onset, energy and momentum flux in unsteady focused wave packets. J. Fluid Mech. 790:553–81
    [Google Scholar]
  36. Derakhti M, Kirby JT, Banner ML, Grilli ST, Thomson J. 2020. A unified breaking onset criterion for surface gravity water waves in arbitrary depth. J. Geophys. Res. Oceans 125:7e2019JC015886
    [Google Scholar]
  37. Dommermuth DG, Yue DK, Lin W, Rapp R, Chan E, Melville WK 1988. Deep-water plunging breakers: a comparison between potential theory and experiments. J. Fluid Mech. 189:423–42
    [Google Scholar]
  38. Drazen DA, Melville WK, Lenain L. 2008. Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech. 611:1307–32
    [Google Scholar]
  39. Duchemin L, Popinet S, Josserand C, Zaleski S 2002. Jet formation in bubbles bursting at a free surface. Phys. Fluids 14:93000–8
    [Google Scholar]
  40. Duncan JH. 1981. An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. R. Soc. Lond. A 377:1770331–48
    [Google Scholar]
  41. Duncan JH. 2001. Spilling breakers. Annu. Rev. Fluid Mech. 33:519–47
    [Google Scholar]
  42. Edson J, Fairall C, Bariteau L, Zappa CJ, Cifuentes-Lorenzen A et al. 2011. Direct covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange Experiment: wind speed dependency. J. Geophys. Res. Oceans 116:C00F10
    [Google Scholar]
  43. Eggers J, Villermaux E. 2008. Physics of liquid jets. Rep. Prog. Phys. 71:3036601
    [Google Scholar]
  44. Emerson S, Bushinsky S 2016. The role of bubbles during air-sea gas exchange. J. Geophys. Res. Oceans 121:64360–76
    [Google Scholar]
  45. Emerson S, Yang B, White M, Cronin M 2019. Air-sea gas transfer: determining bubble fluxes with in situ N2 observations. J. Geophys. Res. Oceans 124:42716–27
    [Google Scholar]
  46. Erinin MA, Wang SD, Liu R, Towle D, Liu X, Duncan JH. 2019. Spray generation by a plunging breaker. Geophys. Res. Lett. 46:148244–51
    [Google Scholar]
  47. Esters L, Landwehr S, Sutherland G, Bell TG, Christensen KH et al. 2017. Parameterizing air-sea gas transfer velocity with dissipation. J. Geophys. Res. Oceans 122:43041–56
    [Google Scholar]
  48. Fairall C, Bradley EF, Hare J, Grachev A, Edson J 2003. Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. J. Climate 16:4571–91
    [Google Scholar]
  49. Farsoiya PK, Popinet S, Deike L 2021. Bubble-mediated transfer of dilute gas in turbulence. J. Fluid Mech. 920:A34
    [Google Scholar]
  50. Fitzgerald JW. 1975. Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity. J. Appl. Meteorol. Climatol. 14:61044–49
    [Google Scholar]
  51. Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J et al. 2020. Global carbon budget 2020. Earth Syst. Sci. Data 12:43269–340
    [Google Scholar]
  52. Frossard AA, Long MS, Keene WC, Duplessis P, Kinsey JD et al. 2019. Marine aerosol production via detrainment of bubble plumes generated in natural seawater with a forced-air Venturi. J. Geophys. Res. Atmos. 124:2010931–50
    [Google Scholar]
  53. Gañán-Calvo AM. 2017. Revision of bubble bursting: universal scaling laws of top jet drop size and speed. Phys. Rev. Lett. 119:20204502
    [Google Scholar]
  54. Garbe CS, Rutgersson A, Boutin J, de Leeuw G, Delille B et al. 2014. Transfer across the air-sea interface. Ocean-Atmosphere Interactions of Gases and Particles PS Liss, MT Johnson 55–112 Berlin: Springer-Verlag
    [Google Scholar]
  55. Garrett C, Li M, Farmer D 2000. The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 30:92163–71
    [Google Scholar]
  56. Gemmrich JR, Banner ML, Garrett C. 2008. Spectrally resolved energy dissipation rate and momentum flux of breaking waves. J. Phys. Oceanogr. 38:61296–312
    [Google Scholar]
  57. Ghabache E. 2015. Surface libre hors équilibre: de l'effondrement de cavité aux jets étirés [Free surface out of equilibrium: from cavity collapse to stretched jets] PhD Thesis, Univ. Pierre Marie Curie Paris (In French:)
  58. Ghabache E, Antkowiak A, Josserand C, Séon T. 2014. On the physics of fizziness: how bubble bursting controls droplets ejection. Phys. Fluids 26:121701
    [Google Scholar]
  59. Ghabache E, Séon T 2016. Size of the top jet drop produced by bubble bursting. Phys. Rev. Fluids 1:051901(R)
    [Google Scholar]
  60. Gordillo J, Rodríguez-Rodríguez J. 2019. Capillary waves control the ejection of bubble bursting jets. J. Fluid Mech. 867:556–71
    [Google Scholar]
  61. Grare L, Peirson WL, Branger H, Walker JW, Giovanangeli JP, Makin V. 2013. Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech. 722:5–50
    [Google Scholar]
  62. Hasselmann K. 1962. On the non-linear energy transfer in a gravity-wave spectrum. J. Fluid Mech. 12:15481–500
    [Google Scholar]
  63. Hasselmann K, Barnett TP, Bouws E, Carlson H, Cartwright DE et al. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) Eng. Rep., Ergänzungsh. 8-12 Dtsch. Hydrogr. Inst., Hambg. Ger:.
  64. Hinze JO. 1955. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1:3289–95
    [Google Scholar]
  65. Ho DT, Law CS, Smith MJ, Schlosser P, Harvey M, Hill P 2006. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys. Res. Lett. 33:16L16611
    [Google Scholar]
  66. Ho DT, Wanninkhof R, Schlosser P, Ullman DS, Hebert D, Sullivan KF 2011. Toward a universal relationship between wind speed and gas exchange: gas transfer velocities measured with 3He/SF6 during the Southern Ocean Gas Exchange Experiment. J. Geophys. Res. Oceans 116:C00F04
    [Google Scholar]
  67. Iafrati A. 2009. Numerical study of the effects of the breaking intensity on wave breaking flows. J. Fluid Mech. 622:371–411
    [Google Scholar]
  68. Keeling RF. 1993. On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean. J. Mar. Res. 51:2237–71
    [Google Scholar]
  69. Kleiss JM, Melville WK. 2010. Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr. 40:122575–604
    [Google Scholar]
  70. Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen P 1996. Dynamics and Modelling of Ocean Waves Cambridge, UK: Cambridge Univ. Press
  71. Lai CY, Eggers J, Deike L. 2018. Bubble bursting: universal cavity and jet profiles. Phys. Rev. Lett. 121:14144501
    [Google Scholar]
  72. Lamarre E, Melville W. 1991. Air entrainment and dissipation in breaking waves. Nature 351:469–72
    [Google Scholar]
  73. Langevin D, Rio E 2015. Foams and emulsions: coalescence. Encyclopedia of Surface and Colloid Science P Somasundaran, N Deo, R Farinato, V Grassian, M Lu et al.2837–51 Boca Raton, FL: CRC. , 3rd ed..
    [Google Scholar]
  74. Leighton TG, Coles DG, Srokosz M, White PR, Woolf DK. 2018. Asymmetric transfer of CO2 across a broken sea surface. Sci. Rep. 8:8301
    [Google Scholar]
  75. Lenain L, Melville WK. 2017a. Evidence of sea-state dependence of aerosol concentration in the marine atmospheric boundary layer. J. Phys. Oceanogr. 47:69–84
    [Google Scholar]
  76. Lenain L, Melville WK. 2017b. Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves. J. Phys. Oceanogr. 47:82123–38
    [Google Scholar]
  77. Lenain L, Pizzo N. 2020. The contribution of high-frequency wind-generated surface waves to the Stokes drift. J. Phys. Oceanogr. 50:123455–65
    [Google Scholar]
  78. Levich VG. 1962. Physicochemical Hydrodynamics Englewood Cliffs, NJ: Prentice-Hall
  79. Lewis ER, Schwartz SE. 2004. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models Washington, DC: Am. Geophys. Union
  80. Lhuissier H, Villermaux E. 2012. Bursting bubble aerosols. J. Fluid Mech. 696:5–44
    [Google Scholar]
  81. Liang J-H, Emerson SR, D'Asaro EA, McNeil CL, Harcourt RR et al. 2017. On the role of sea-state in bubble-mediated air-sea gas flux during a winter storm. J. Geophys. Res. Oceans 122:42671–85
    [Google Scholar]
  82. Liang J-H, McWilliams JC, Sullivan PP, Baschek B. 2011. Modeling bubbles and dissolved gases in the ocean. J. Geophys. Res. 116:C03015
    [Google Scholar]
  83. Liang J-H, McWilliams JC, Sullivan PP, Baschek B. 2012. Large eddy simulation of the bubbly ocean: new insights on subsurface bubble distribution and bubble-mediated gas transfer. J. Geophys. Res. 117:C04002
    [Google Scholar]
  84. Liss PS, Merlivat L. 1986. Air-sea gas exchange rates: introduction and synthesis. The Role of Air-Sea Exchange in Geochemical Cycling P Buat-Ménard 113–27 Dordrecht, Neth: Springer
    [Google Scholar]
  85. Loewen MR, O'Dor MA, Skafel MG. 1996. Bubbles entrained by mechanically generated breaking waves. J. Geophys. Res. 101:C920759–69
    [Google Scholar]
  86. Longuet-Higgins MS. 1957. The statistical analysis of a random, moving surface. Philos. Trans. R. Soc. A 249:966321–87
    [Google Scholar]
  87. Longuet-Higgins MS, Dommermuth DG. 1997. Crest instabilities of gravity waves. Part 3. Nonlinear development and breaking. J. Fluid Mech. 336:33–50
    [Google Scholar]
  88. Lubin P, Glockner S. 2015. Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments. J. Fluid Mech. 767:364–93
    [Google Scholar]
  89. Mårtensson E, Nilsson E, de Leeuw G, Cohen L, Hansson HC 2003. Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res. Atmos. 108:D94297
    [Google Scholar]
  90. Martinez-Bazan C, Montanes J, Lasheras J 1999. On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 401:157–82
    [Google Scholar]
  91. Melville WK. 1982. The instability and breaking of deep-water waves. J. Fluid Mech. 115:165–85
    [Google Scholar]
  92. Melville WK. 1994. Energy dissipation by breaking waves. J. Phys. Oceanogr. 24:2041–49
    [Google Scholar]
  93. Melville WK. 1996. The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech. 28:279–321
    [Google Scholar]
  94. Melville WK, Fedorov AV. 2015. The equilibrium dynamics and statistics of gravity–capillary waves. J. Fluid Mech. 767:449–66
    [Google Scholar]
  95. Melville WK, Veron F, White CJ. 2002. The velocity field under breaking waves: coherent structure and turbulence. J. Fluid Mech. 454:203–33
    [Google Scholar]
  96. Miles JW. 1957. On the generation of surface waves by shear flows. J. Fluid Mech. 3:2185–204
    [Google Scholar]
  97. Miller S, Marandino C, De Bruyn W, Saltzman E. 2009. Air-sea gas exchange of CO2 and DMS in the North Atlantic by eddy covariance. Geophys. Res. Lett. 36:L15816
    [Google Scholar]
  98. Modini R, Russell L, Deane G, Stokes M 2013. Effect of soluble surfactant on bubble persistence and bubble-produced aerosol particles. J. Geophys. Res. Atmos. 118:31388–400
    [Google Scholar]
  99. Monahan EC, Muircheartaigh I. 1980. Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr. 10:122094–99
    [Google Scholar]
  100. Mostert W, Popinet S, Deike L 2021. High-resolution direct simulation of deep water breaking waves: transition to turbulence, bubbles and droplets production. arXiv:2103.05851 [physics.flu-dyn]
  101. Mueller J, Veron F. 2009. A sea state-dependent spume generation function. J. Phys. Oceanogr. 39:92363–72
    [Google Scholar]
  102. Néel B, Deike L. 2021. Collective bursting of free-surface bubbles, and the role of surface contamination. J. Fluid Mech. 917:A46
    [Google Scholar]
  103. Néel B, Villermaux E. 2018. The spontaneous puncture of thick liquid films. J. Fluid Mech. 838:192–21
    [Google Scholar]
  104. Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS et al. 2000. In situ evaluation of air-sea gas exchange parameterization using novel conservative and volatile tracers. Glob. Biogeochem. Cycles 14:373–87
    [Google Scholar]
  105. Ortiz-Suslow DG, Haus BK, Mehta S, Laxague NJ. 2016. Sea spray generation in very high winds. J. Atmos. Sci. 73:103975–95
    [Google Scholar]
  106. Perlin M, Choi W, Tian Z. 2013. Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech. 45:115–45
    [Google Scholar]
  107. Perrard S, Rivière A, Mostert W, Deike L. 2021. Bubble deformation by a turbulent flow. J. Fluid Mech. 920:A15
    [Google Scholar]
  108. Phillips O. 1985. Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156:505–31
    [Google Scholar]
  109. Pizzo N, Deike L, Melville WK. 2016. Current generation by deep-water breaking waves. J. Fluid Mech. 803:275–91
    [Google Scholar]
  110. Pizzo N, Melville WK. 2013. Vortex generation by deep-water breaking waves. J. Fluid Mech. 734:198–218
    [Google Scholar]
  111. Pizzo N, Melville WK, Deike L. 2019. Lagrangian transport by nonbreaking and breaking deep-water waves at the ocean surface. J. Phys. Oceanogr. 49:4983–92
    [Google Scholar]
  112. Plant WJ. 1982. A relationship between wind stress and wave slope. J. Geophys. Res. Oceans 87:C31961–67
    [Google Scholar]
  113. Poorte RE, Biesheuvel A. 2002. Experiments on the motion of gas bubbles in turbulence generated by an active grid. J. Fluid Mech. 461:127–54
    [Google Scholar]
  114. Poulain S, Villermaux E, Bourouiba L. 2018. Ageing and burst of surface bubbles. J. Fluid Mech. 851:636–71
    [Google Scholar]
  115. Prather KA, Bertram TH, Grassian VH, Deane GB, Stokes MD et al. 2013. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. PNAS 110:197550–55
    [Google Scholar]
  116. Quinn PK, Collins DB, Grassian VH, Prather KA, Bates TS. 2015. Chemistry and related properties of freshly emitted sea spray aerosol. Chem. Rev. 115:104383–99
    [Google Scholar]
  117. Rapp R, Melville W. 1990. Laboratory measurements of deep-water breaking waves. Philos. Trans. R. Soc. A 331:735–800
    [Google Scholar]
  118. Reichl BG, Deike L. 2020. Contribution of sea-state dependent bubbles to air-sea carbon dioxide fluxes. Geophys. Res. Lett. 47:9e2020GL087267
    [Google Scholar]
  119. Resch F, Afeti G. 1991. Film drop distributions from bubbles bursting in seawater. J. Geophys. Res. Oceans 96:C610681–88
    [Google Scholar]
  120. Richter DH, Dempsey AE, Sullivan PP. 2019. Turbulent transport of spray droplets in the vicinity of moving surface waves. J. Phys. Oceanogr. 49:71789–807
    [Google Scholar]
  121. Rivière A, Mostert W, Perrard S, Deike L 2021. Sub-Hinze scale bubble production in turbulent bubble break-up. J. Fluid Mech. 917:A40
    [Google Scholar]
  122. Rojas G, Loewen M. 2007. Fiber-optic probe measurements of void fraction and bubble size distributions beneath breaking waves. Exp. Fluids 43:6895–906
    [Google Scholar]
  123. Romero L. 2019. Distribution of surface wave breaking fronts. Geophys. Res. Lett. 46:17–1810463–74
    [Google Scholar]
  124. Romero L, Melville WK. 2010. Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr. 40:3441–65
    [Google Scholar]
  125. Romero L, Melville WK. 2011. Spatial statistics of the sea surface in fetch-limited conditions. J. Phys. Oceanogr. 41:101821–41
    [Google Scholar]
  126. Romero L, Melville WK, Kleiss JM. 2012. Spectral energy dissipation due to surface wave breaking. J. Phys. Oceanogr. 42:1421–41
    [Google Scholar]
  127. Ruth DJ, Vernet M, Perrard S, Deike L 2021. The effect of nonlinear drag on the rise velocity of bubbles in turbulence. J. Fluid Mech. 924:A2
    [Google Scholar]
  128. Saket A, Peirson WL, Banner ML, Barthelemy X, Allis MJ. 2017. On the threshold for wave breaking of two-dimensional deep water wave groups in the absence and presence of wind. J. Fluid Mech. 811:642–58
    [Google Scholar]
  129. Salibindla AK, Masuk AUM, Tan S, Ni R 2020. Lift and drag coefficients of deformable bubbles in intense turbulence determined from bubble rise velocity. J. Fluid Mech. 894:A20
    [Google Scholar]
  130. Schwendeman M, Thomson J. 2015. Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation. J. Geophys. Res. Oceans 120:128346–63
    [Google Scholar]
  131. Schwendeman M, Thomson J, Gemmrich JR. 2014. Wave breaking dissipation in a young wind sea. J. Phys. Oceanogr. 44:1104–27
    [Google Scholar]
  132. Sellegri K, O'Dowd C, Yoon Y, Jennings S, de Leeuw G. 2006. Surfactants and submicron sea spray generation. J. Geophys. Res. Atmos. 111:D22215
    [Google Scholar]
  133. Shaw D, Deike L. 2021. Surface bubble coalescence. J. Fluid Mech. 915:A105
    [Google Scholar]
  134. Soligo G, Roccon A, Soldati A 2019. Breakage, coalescence and size distribution of surfactant-laden droplets in turbulent flow. J. Fluid Mech. 881:244–82
    [Google Scholar]
  135. Spiel DE. 1994. The number and size of jet drops produced by air bubbles bursting on a fresh water surface. J. Geophys. Res. 99:C510289–96
    [Google Scholar]
  136. Spiel DE. 1997. More on the births of jet drops from bubbles bursting on seawater surfaces. J. Geophys. Res. 102:C35815–21
    [Google Scholar]
  137. Stanley RH, Jenkins WJ, Lott DE 3rd, Doney SC. 2009. Noble gas constraints on air-sea gas exchange and bubble fluxes. J. Geophys. Res. Oceans 114:C11020
    [Google Scholar]
  138. Sullivan PP, McWilliams JC. 2010. Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42:19–42
    [Google Scholar]
  139. Sutherland P, Melville WK 2013. Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett. 40:123074–79
    [Google Scholar]
  140. Sutherland P, Melville WK 2015. Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr. 45:4943–65
    [Google Scholar]
  141. Thomson J, Gemmrich JR, Jessup AT. 2009. Energy dissipation and the spectral distribution of whitecaps. Geophys. Res. Lett. 36:L11601
    [Google Scholar]
  142. Tian Z, Perlin M, Choi W. 2010. Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model. J. Fluid Mech. 655:217–57
    [Google Scholar]
  143. Toba Y. 1972. Local balance in the air-sea boundary processes. J. Oceanogr. 28:3109–20
    [Google Scholar]
  144. Troitskaya Y, Kandaurov A, Ermakova O, Kozlov D, Sergeev D, Zilitinkevich S. 2018. The “bag breakup” spume droplet generation mechanism at high winds. Part I: spray generation function. J. Phys. Oceanogr. 48:92167–88
    [Google Scholar]
  145. Tsai WT, Hung L. 2007. Three-dimensionnal modeling of small-scale processes in the upper boundary layer bounded by a dynamic ocean surface. J. Geophys. Res. 112:C02019
    [Google Scholar]
  146. Veron F. 2015. Ocean spray. Annu. Rev. Fluid Mech. 47:507–38
    [Google Scholar]
  147. Veron F, Hopkins C, Harrison E, Mueller J 2012. Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett. 39:L16602
    [Google Scholar]
  148. Villermaux E. 2020. Fragmentation versus cohesion. J. Fluid Mech. 898:P1
    [Google Scholar]
  149. Walls P, Henaux L, Bird JC 2015. Jet drops from bursting bubbles: how gravity and viscosity couple to inhibit droplet production. Phys. Rev. E 92:2021002
    [Google Scholar]
  150. Wang X, Deane GB, Moore KA, Ryder OS, Stokes MD et al. 2017. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles. PNAS 114:276978–83
    [Google Scholar]
  151. Wang Z, Yang J, Stern F 2016. High-fidelity simulations of bubble, droplet and spray formation in breaking waves. J. Fluid Mech. 792:307–27
    [Google Scholar]
  152. Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. Oceans 97:7373–82
    [Google Scholar]
  153. Wanninkhof R. 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12:6351–62
    [Google Scholar]
  154. Wanninkhof R, Asher W, Ho D, Sweeney C, McGillis W. 2009. Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1:213–44
    [Google Scholar]
  155. Wanninkhof R, McGillis WR. 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophys. Res. Lett. 26:1889–92
    [Google Scholar]
  156. Woolf DK. 2005. Parametrization of gas transfer velocities and sea-state-dependent wave breaking. Tellus B 57:287–94
    [Google Scholar]
  157. Woolf DK, Bowyer PA, Monahan EC. 1987. Discriminating between the film drops and jet drops produced by a simulated whitecap. J. Geophys. Res. Oceans 92:C55142–50
    [Google Scholar]
  158. Woolf DK, Shutler JD, Goddijn-Murphy L, Watson A, Chapron B et al. 2019. Key uncertainties in the recent air-sea flux of CO2. Glob. Biogeochem. Cycles 33:121548–63
    [Google Scholar]
  159. Woolf DK, Thorpe S. 1991. Bubbles and the air-sea exchange of gases in near-saturation conditions. J. Mar. Res. 49:3435–66
    [Google Scholar]
  160. Wurl O, Wurl E, Miller L, Johnson K, Vagle S 2011. Formation and global distribution of sea-surface microlayers. Biogeosciences 8:1121–35
    [Google Scholar]
  161. Yang Z, Deng BQ, Shen L. 2018. Direct numerical simulation of wind turbulence over breaking waves. J. Fluid Mech. 850:120–55
    [Google Scholar]
  162. Zakharov VE, Badulin SI, Hwang PA, Caulliez G. 2015. Universality of sea wave growth and its physical roots. J. Fluid Mech. 780:503–35
    [Google Scholar]
  163. Zakharov VE, L'vov VS, Falkovich G 2012. Kolmogorov Spectra of Turbulence I: Wave Turbulence Berlin: Springer-Verlag
  164. Zappa CJ, Asher WE, Jessup AT. 2001. Microscale wave breaking and air-water gas transfer. J. Geophys. Res. Oceans 106:C59385–91
    [Google Scholar]
  165. Zappa CJ, Banner M, Schultz H, Gemmrich J, Morison R et al. 2012. An overview of sea state conditions and air-sea fluxes during RaDyO. J. Geophys. Res. Oceans 117:C00H19
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-030121-014132
Loading
/content/journals/10.1146/annurev-fluid-030121-014132
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error