1932

Abstract

The current generation of axial turbomachines is the culmination of decades of experience, and detailed understanding of the underlying flow physics has been a key factor for achieving high efficiency and reliability. Driven by advances in numerical methods and relentless growth in computing power, computational fluid dynamics has increasingly provided insights into the rich fluid dynamics involved and how it relates to loss generation. This article presents some of the complex flow phenomena occurring in bladed components of gas turbines and illustrates how simulations have contributed to their understanding and the challenges they pose for modeling. The interaction of key aerodynamic features with deterministic unsteadiness, caused by multiple blade rows, and stochastic unsteadiness, i.e., turbulence, is discussed. High-fidelity simulations of increasingly realistic configurations and models improved with help of machine learning promise to further grow turbomachinery performance and reliability and, thus, help fluid mechanics research have a greater industrial impact.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-031221-105530
2022-01-05
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-031221-105530.html?itemId=/content/journals/10.1146/annurev-fluid-031221-105530&mimeType=html&fmt=ahah

Literature Cited

  1. Abu-Ghannam B, Shaw R. 1980. Natural transition of boundary layers—the effects of turbulence, pressure gradient, and flow history. J. Mech. Eng. Sci. 22:213–28
    [Google Scholar]
  2. Akolekar H, Sandberg R, Hutchins N, Michelassi V, Laskowski G 2019. Machine-learnt turbulence closures for low-pressure turbines with unsteady inflow conditions. J. Turbomach. 141:101009
    [Google Scholar]
  3. Akolekar H, Weatheritt J, Hutchins N, Sandberg RD, Laskowski G, Michelassi V 2018. Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in LPTs. Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition Pap. GT2018-75447 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  4. Arnone A, Pacciani R. 1996. Rotor-stator interaction analysis using the Navier–Stokes equations and a multigrid method. J. Turbomach. 118:679–89
    [Google Scholar]
  5. Bhaskaran R, Jia F, Laskowski G, Wang Z, Paliath U 2017. Towards high-order large eddy simulation of aero-thermal flows for turbomachinery applications. Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition Pap. GT2017-63358 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  6. Bhaskaran R, Lele SK. 2010. Large eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade. J. Turbulence 11:N6
    [Google Scholar]
  7. Bode C, Aufderheide T, Kožulović D, Friedrichs J 2014. The effects of turbulence length scale on turbulence and transition prediction in turbomachinery flows. Proceedings of ASME Turbo Expo 2014: Turbomachinery Technical Conference and Exposition Pap. GT2014-27026 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  8. Bose ST, Park GI. 2018. Wall-modeled large-eddy simulation for complex turbulent flows. Annu. Rev. Fluid Mech. 50:535–61
    [Google Scholar]
  9. Brandt L. 2014. The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. 47:80–96
    [Google Scholar]
  10. Brunton SL, Noack BR, Koumoutsakos P. 2020. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52:477–508
    [Google Scholar]
  11. Choi H, Moin P. 2012. Grid-point requirements for large eddy simulation: Chapman's estimates revisited. Phys. Fluids 24:011702
    [Google Scholar]
  12. Clemens NT, Narayanaswamy V. 2014. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46:469–92
    [Google Scholar]
  13. Coull J, Hodson HP. 2011. Unsteady boundary-layer transition in low-pressure turbines. J. Fluid Mech. 681:370–410
    [Google Scholar]
  14. Cozzi L, Rubechini F, Arnone A, Schneider A, Astrua P. 2020. Improving steady computational fluid dynamics to capture the effects of radial mixing in axial compressors. J. Turbomach. 142:091005
    [Google Scholar]
  15. Cumpsty NA, Horlock JH. 2006. Averaging nonuniform flow for a purpose. J. Turbomach. 128:120–28Fundamental thermodynamics of averaging complex flow properties.
    [Google Scholar]
  16. Delery JM. 1985. Shock wave/turbulent boundary layer interaction and its control. Prog. Aerosp. Sci. 22:209–80
    [Google Scholar]
  17. Denton JD. 1978. Throughflow calculations for transonic axial flow turbines. J. Eng. Gas Turbines Power 100:212–18
    [Google Scholar]
  18. Denton JD. 1993. The 1993 IGTI Scholar Lecture: loss mechanics in turbomachines. J. Turbomach. 115:621–56Comprehensive overview of turbomachinery design aspects and physics.
    [Google Scholar]
  19. Denton JD. 2010. Some limitations of turbomachinery CFD. Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air735–45 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  20. Denton JD, Singh U. 1979. Time marching methods for turbomachinery flow calculation: application of numerical methods to flow calculations in turbomachichines Paper presented at Von Karman Inst. Fluid Dyn., Apr. 23–27 Sint-Genesius-Rode, Belg:.
  21. Dick E, Kubacki S 2017. Transition models for turbomachinery boundary layer flows: a review. Int. J. Turbomach. Propuls. Power 2:4
    [Google Scholar]
  22. Dolling DS. 2001. Fifty years of shock-wave/boundary-layer interaction research: What next?. AIAA J. 39:1517–31
    [Google Scholar]
  23. Duchaine F, Dombard J, Gicquel L, Koupper C 2017. On the importance of inlet boundary conditions for aerothermal predictions of turbine stages with large eddy simulation. Comput. Fluids 154:60–73
    [Google Scholar]
  24. Dupuy D, Gicquel L, Odier N, Duchaine F, Arts T. 2020. Analysis of the effect of intermittency in a high-pressure turbine blade. Phys. Fluids 32:095101
    [Google Scholar]
  25. Duraisamy K. 2021. Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence. Phys. Rev. Fluids 6:5050504
    [Google Scholar]
  26. Duraisamy K, Iaccarino G, Xiao H. 2019. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51:357–77
    [Google Scholar]
  27. Durbin PA. 1995. Separated flow computations with the model. AIAA J. 33:659–64
    [Google Scholar]
  28. Durbin PA. 1996. On the stagnation point anomaly. Int. J. Heat Fluid Flow 17:9–90
    [Google Scholar]
  29. Durbin PA. 2018. Some recent developments in turbulence closure modeling. Annu. Rev. Fluid Mech. 50:77–103
    [Google Scholar]
  30. Durbin P, Wu X. 2007. Transition beneath vortical disturbances. Annu. Rev. Fluid Mech. 39:107–28Comprehensive summary of transition mechanisms relevant to blade boundary layers.
    [Google Scholar]
  31. Egorov Y, Menter F, Lechnerm R, Cokljat D 2010. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: application to complex flows. Flow Turbul. Combust. 85:139–65
    [Google Scholar]
  32. Ekici K, Hall KC. 2007. Nonlinear analysis of unsteady flows in multistage turbomachines using harmonic balance. AIAA J. 45:1047–57
    [Google Scholar]
  33. Ferreira C. 2001. Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst. 13:87–129
    [Google Scholar]
  34. Ferrero A, Iollo A, Larocca F. 2020. Field inversion for data-augmented RANS modelling in turbomachinery flows. Comput. Fluids 201:104474
    [Google Scholar]
  35. Fröhlich J, Von Terzi D. 2008. Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44:349–77
    [Google Scholar]
  36. Garai A, Diosady LT, Murman SM, Madavan NK. 2018. Scale-resolving simulations of bypass transition in a high-pressure turbine cascade using a spectral element discontinuous Galerkin method. J. Turbomach. 140:031004
    [Google Scholar]
  37. Gövert S, Ferraro F, Krumme A, Buske C, Tegeler M et al. 2019. Investigation of combustor-turbine-interaction in a rotating cooled transonic high-pressure turbine test rig: part 2—numerical modelling and simulation. Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition Pap. GT2019-90736 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  38. Hall KC, Thomas JP, Clark WS 2002. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J. 40:879–86
    [Google Scholar]
  39. Hammer F, Sandham N, Sandberg RD. 2018. Large eddy simulations of a low-pressure turbine—roughness modeling and the effects on boundary layer transition and losses. Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition Pap. GT2018-75796 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  40. Han JC, Dutta S, Ekkad S. 2012. Gas Turbine Heat Transfer and Cooling Technology Boca Raton, FL: CRC
  41. Hatman A, Wang T. 1999. A prediction model for separated-flow transition. J. Turbomach. 121:594–602
    [Google Scholar]
  42. He L. 2010. Fourier methods for turbomachinery applications. Prog. Aerosp. Sci. 46:329–41
    [Google Scholar]
  43. Hergt A, Klinner J, Wellner J, Willert C, Grund S et al. 2019. The present challenge of transonic compressor blade design. J. Turbomach. 141:091004
    [Google Scholar]
  44. Hodson H, Howell R. 2005. Bladerow interactions, transition, and high-lift aerofoils in low-pressure turbines. Annu. Rev. Fluid Mech. 37:71–98Insightful analysis of unsteady boundary layers in low-pressure turbines.
    [Google Scholar]
  45. Hultgren LS, Gustavsson LH. 1981. Algebraic growth of disturbances in a laminar boundary layer. Phys. Fluids 24:1000–4
    [Google Scholar]
  46. Jacobs RG, Durbin PA. 1998. Shear sheltering and the continuous spectrum of the Orr–Sommerfeld equation. Phys. Fluids 10:2006–11
    [Google Scholar]
  47. Jacobs RG, Durbin P. 2001. Simulations of bypass transition. J. Fluid Mech. 428:185–212
    [Google Scholar]
  48. Johnstone R, Chen L, Sandberg RD 2015. A sliding characteristic interface condition for direct numerical simulations. Comput. Fluids 107:165–77
    [Google Scholar]
  49. Jones L, Sandberg R, Sandham N. 2008. Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602:175–207
    [Google Scholar]
  50. Jones W, Launder BE. 1972. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15:301–14
    [Google Scholar]
  51. Jones W, Launder BE. 1973. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transf. 16:1119–30
    [Google Scholar]
  52. Kalitzin G, Wu X, Durbin P. 2003. DNS of fully turbulent flow in a LPT passage. Int. J. Heat Fluid Flow 24:636–44
    [Google Scholar]
  53. Langtry RB, Menter FR. 2009. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47:2894–906
    [Google Scholar]
  54. Laskowski G, Kopriva J, Michelassi V, Shankaran S, Paliath U et al. 2016. Future directions of high fidelity CFD for aerothermal turbomachinery analysis and design Paper presented at AIAA Fluid Dynamics Conference, 46th Washington, DC: AIAA Pap. 2016-3322
  55. Lav C, Philip J, Sandberg RD 2020. Compressible plane turbulent wakes under pressure gradients evolving in a constant area section. J. Fluid Mech. 892:A35
    [Google Scholar]
  56. Lav C, Sandberg RD, Philip J. 2019. A framework to develop data-driven turbulence models for flows with organised unsteadiness. J. Comput. Phys. 383:148–65
    [Google Scholar]
  57. Lee B. 2001. Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aerosp. Sci. 37:147–96
    [Google Scholar]
  58. Leggett J, Priebe S, Shabbir A, Michelassi V, Sandberg R, Richardson E. 2018. LES loss prediction in an axial compressor cascade at off-design incidences with free stream disturbances. J. Turbomach. 7:071005
    [Google Scholar]
  59. Leggett J, Richardson E, Priebe S, Shabbir A, Michelassi V, Sandberg R. 2020. Loss analysis of unsteady turbomachinery flows based on the mechanical work potential. J. Turbomach. 142:111009
    [Google Scholar]
  60. Leggett J, Zhao Y, Richardson E, Sandberg RD 2021. Turbomachinery loss analysis: the relationship between mechanical work potential and entropy analyses. Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition Pap. GT2021-59436 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  61. Lengani D, Simoni D, Pichler R, Sandberg RD, Michelassi V, Bertini F 2018. Identification and quantification of losses in a LPT cascade by POD applied to LES data. Int. J. Heat Fluid Flow 70:28–40
    [Google Scholar]
  62. Ling J, Kurzawski A, Templeton J 2016. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807:155–66
    [Google Scholar]
  63. Lopez M, Walters DK. 2016. Prediction of transitional and fully turbulent flow using an alternative to the laminar kinetic energy approach. J. Turbul. 17:253–73
    [Google Scholar]
  64. Lumley J. 1970. Toward a turbulent constitutive relation. J. Fluid Mech. 41:413–34
    [Google Scholar]
  65. Mayle R. 1991. The 1991 IGTI Scholar Lecture: the role of laminar-turbulent transition in gas turbine engines. J. Turbomach. 113:509–36
    [Google Scholar]
  66. McQuilling MW. 2007. Design and validation of a high-lift low-pressure turbine blade PhD Thesis Wright State Univ. Dayton, OH:
  67. Meneveau C, Katz J. 2000. Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32:1–32
    [Google Scholar]
  68. Menter F, Egorov Y 2006. SAS turbulence modelling of technical flows. Direct and Large-Eddy Simulation VI E Lamballais, R Friedrich, BJ Geurts, O Métais 687–94 Dordrecht, Neth: Springer
    [Google Scholar]
  69. Michelassi V, Chen L, Pichler R, Sandberg RD, Bhaskaran R. 2016. High-fidelity simulations of low-pressure turbines: effect of flow coefficient and reduced frequency on losses. J. Turbomach. 138:111006
    [Google Scholar]
  70. Michelassi V, Pichler R, Chen L, Sandberg RD 2015. Compressible direct numerical simulation of low-pressure turbines: part II—effect of inflow disturbances. J. Turbomach. 137:071005First application of DNS for low-pressure turbine design space investigation.
    [Google Scholar]
  71. Michelassi V, Shih T. 1991. Low Reynolds number two-equation modeling of turbulent flows Tech. Memo. 104368 Inst. Comput. Mech. Propuls., Lewis Res. Cent. Cleveland, OH:
  72. Michelassi V, Wissink J. 2015. Turbulent kinetic energy production in the vane of a low-pressure linear turbine cascade with incoming wakes. Int. J. Rotating Mach. 2015:650783
    [Google Scholar]
  73. Michelassi V, Wissink J, Fröhlich J, Rodi W 2003a. Large-eddy simulation of flow around low-pressure turbine blade with incoming wakes. AIAA J. 41:2143–56
    [Google Scholar]
  74. Michelassi V, Wissink J, Rodi W 2002. Analysis of DNS and LES of flow in a low pressure turbine cascade with incoming wakes and comparison with experiments. Flow Turbul. Combust. 69:295–329
    [Google Scholar]
  75. Michelassi V, Wissink J, Rodi W 2003b. Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier–Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: a comparison. Proc. Inst. Mech. Eng. A 217:403–11
    [Google Scholar]
  76. Milani PM, Ling J, Eaton JK 2019. Physical interpretation of machine learning models applied to film cooling flows. J. Turbomach. 141:011004
    [Google Scholar]
  77. Miller RJ. 2013. Mechanical work potential. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition Pap. GT2013-95488 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  78. Moin P, Mahesh K. 1998. Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30:539–78
    [Google Scholar]
  79. Morgan B, Duraisamy K, Nguyen N, Kawai S, Lele S 2013. Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction. J. Fluid Mech. 729:231–84
    [Google Scholar]
  80. Nagarajan S, Lele S, Ferziger J 2007. Leading-edge effects in bypass transition. J. Fluid Mech. 572:471–504
    [Google Scholar]
  81. Pacciani R, Marconcini M, Arnone A, Bertini F. 2014. Predicting high-lift low-pressure turbine cascades flow using transition-sensitive turbulence closures. J. Turbomach. 136:051007
    [Google Scholar]
  82. Parish E, Duraisamy K. 2016. A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 305:758–74
    [Google Scholar]
  83. Parneix S, Laurence D, Durbin P 1998. A procedure for using DNS databases. J. Fluids Eng. 120:40–47
    [Google Scholar]
  84. Pichler R, Michelassi V, Sandberg RD, Ong J. 2017a. Highly resolved LES study of gap size effect on low-pressure turbine stage. J. Turbomach. 140:021003
    [Google Scholar]
  85. Pichler R, Sandberg RD, Laskowski G, Michelassi V. 2017b. High-fidelity simulations of a linear HPT vane cascade subject to varying inlet turbulence. Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition Pap. GT2017-63079 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  86. Pichler R, Sandberg RD, Michelassi V, Bhaskaran R 2015. Investigation of the accuracy of RANS models to predict the flow through a low pressure turbine. Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Pap. GT2015-43446 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  87. Piomelli U. 1999. Large-eddy simulation: achievements and challenges. Prog. Aerosp. Sci. 35:335–62
    [Google Scholar]
  88. Piomelli U, Yuan J. 2013. Numerical simulations of spatially developing, accelerating boundary layers. Phys. Fluids 25:101304
    [Google Scholar]
  89. Pope S. 1975. A more general effective-viscosity hypothesis. J. Fluid Mech. 72:331–40
    [Google Scholar]
  90. Praisner T, Clark J, Nash T, Rice M, Grover E 2006. Performance impacts due to wake mixing in axial-flow turbomachinery. Proceedings of ASME Turbo Expo 2006: Turbomachinery Technical Conference and Exposition Pap. GT2006-90666 New York: Am. Soc. Mech. Eng.A designer's view of unsteady wake losses in compressors and turbines.
    [Google Scholar]
  91. Reissmann M, Hasslberger J, Sandberg RD, Klein M. 2020. Application of gene expression programming to a-posteriori LES modeling of a Taylor Green vortex. J. Comput. Phys. 424:109859
    [Google Scholar]
  92. Rotta J. 1951. Statistische Theorie nichthomogener Turbulenz. Z. Phys. 129:547–72
    [Google Scholar]
  93. Sagaut P. 2006. Large Eddy Simulation for Incompressible Flows: An Introduction Berlin: Springer-Verlag
  94. Sagaut P. 2013. Multiscale and Multiresolution Approaches in Turbulence: LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines London: Imp. Coll. Press. , 2nd ed..
  95. Sandberg RD, Michelassi V. 2019. The current state of high-fidelity simulations for main gas path turbomachinery components and their industrial impact. Flow Turbul. Combust. 102:797–848
    [Google Scholar]
  96. Sandberg RD, Pichler R, Chen L, Johnstone R, Michelassi V 2015. Compressible direct numerical simulation of low-pressure turbines: part I—methodology. J. Turbomach. 137:051011
    [Google Scholar]
  97. Scarano F. 2012. Tomographic PIV: principles and practice. Meas. Sci. Technol. 24:012001
    [Google Scholar]
  98. Schlichting H, Gersten K. 2017. Boundary-Layer Theory, transl. K Mayes Berlin: Springer-Verlag. , 9th ed..
    [Google Scholar]
  99. Schmid PJ. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656:5–28
    [Google Scholar]
  100. Schubauer GB, Klebanoff PS. 1956. Contributions on the mechanics of boundary-layer transition Tech. Rep. 1289 Natl. Advis. Comm. Aeronaut. Washington, DC:
  101. Sieverding C, Manna M. 2020. A review on turbine trailing edge flow. Int. J. Turbomach. Propuls. Power 5:10
    [Google Scholar]
  102. Smagorinsky J. 1963. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91:99–164
    [Google Scholar]
  103. Smith LH Jr. 1966. Wake dispersion in turbomachines. J. Basic Eng. 88:688–90Early proof of unsteady wake losses by experiments and theory.
    [Google Scholar]
  104. Spalart PR. 2009. Detached-eddy simulation. Annu. Rev. Fluid Mech. 41:181–202
    [Google Scholar]
  105. Spalart PR, Allmaras SR. 1992. A one-equation turbulence model for aerodynamic flows Paper presented at AIAA Aerospace Sciences Meeting and Exhibit, 30th, Reno, NV, AIAA Pap 1992–0439
  106. Sreenivasan KR. 1982. Laminarescent, relaminarizing and retransitional flows. Acta Mech. 44:1–48
    [Google Scholar]
  107. Stieger RD, Hodson H. 2003. The transition mechanism of highly-loaded LP turbine blades. Proceedings of ASME Turbo Expo 2003: Power for Land, Sea, and Air779–88 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  108. Stieger RD, Hodson H. 2005. The unsteady development of a turbulent wake through a downstream low-pressure turbine blade passage. J. Turbomach. 127:388–94
    [Google Scholar]
  109. Touber E, Sandham ND. 2009. Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid. Dyn. 23:79–107
    [Google Scholar]
  110. Touber E, Sandham ND. 2011. Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671:417–65
    [Google Scholar]
  111. Tucker P. 2011. Computation of unsteady turbomachinery flows: part 1–progress and challenges. Prog. Aerosp. Sci. 47:522–45
    [Google Scholar]
  112. Tyacke J, Tucker P. 2015. Future use of large eddy simulation in aero-engines. J. Turbomach. 137:081005
    [Google Scholar]
  113. van de Wall AG, Kadambi JR, Adamczyk JJ. 2000. A transport model for the deterministic stresses associated with turbomachinery blade row interactions. J. Turbomach. 122:593–603
    [Google Scholar]
  114. Verma I, Zori L, Basani J, Rida S. 2019. Modeling of combustor and turbine vane interaction. Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition Pap. GT2019-90325 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  115. Weatheritt J, Sandberg RD. 2016. A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship. J. Comput. Phys. 325:22–37
    [Google Scholar]
  116. Weatheritt J, Zhao Y, Sandberg RD, Mizukami S, Tanimoto K 2020. Data-driven scalar-flux model development with application to jet in cross flow. Int. J. Heat Mass Transf. 147:118931
    [Google Scholar]
  117. Wheeler AP, Sandberg RD, Sandham N, Pichler R, Michelassi V, Laskowski G 2016. Direct numerical simulations of a high-pressure turbine vane. J. Turbomach. 138:071003
    [Google Scholar]
  118. Wheeler AP, Sofia A, Miller RJ 2009. The effect of leading-edge geometry on wake interactions in compressors. J. Turbomach. 131:041013
    [Google Scholar]
  119. Wilcox DC. 1998. Turbulence Modeling for CFD La Cañada, CA: DCW Indust. , 2nd ed..
  120. Wissink J. 2003. DNS of separating, low Reynolds number flow in a turbine cascade with incoming wakes. Int. J. Heat Fluid Flow 24:626–35
    [Google Scholar]
  121. Wissink J, Michelassi V, Rodi W 2004. Heat transfer in a laminar separation bubble affected by oscillating external flow. Int. J. Heat Fluid Flow 25:729–40
    [Google Scholar]
  122. Wu J, Xiao H, Sun R, Wang Q 2019. Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned. J. Fluid Mech. 869:553–86
    [Google Scholar]
  123. Wu X, Durbin P. 2001. Evidence of longitudinal vortices evolved from distorted wakes in a turbine passage. J. Fluid Mech. 446:199–228
    [Google Scholar]
  124. Xia G, Kalitzin G, Lee J, Medic G, Sharma O 2020. Hybrid RANS/LES simulation of combustor/turbine interactions. Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition Pap. GT2020-14873 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  125. Yang X, Zafar S, Wang JX, Xiao H 2019. Predictive large-eddy-simulation wall modeling via physics-informed neural networks. Phys. Rev. Fluids 4:034602
    [Google Scholar]
  126. Zaki TA, Wissink JG, Durbin P, Rodi W. 2009. Direct computations of boundary layers distorted by migrating wakes in a linear compressor cascade. Flow Turbul. Combust. 83:307–22
    [Google Scholar]
  127. Zaki TA, Wissink JG, Rodi W, Durbin PA 2010. Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence. J. Fluid Mech. 665:57–98
    [Google Scholar]
  128. Zhao Y, Akolekar HD, Weatheritt J, Michelassi V, Sandberg RD. 2020. RANS turbulence model development using CFD-driven machine learning. J. Comput. Phys. 411:109413Machine-learned two-equation model applicable to a realistic design space.
    [Google Scholar]
  129. Zhao Y, Sandberg RD. 2020a. Bypass transition in boundary layers subject to strong pressure gradient and curvature effects. J. Fluid Mech. 888:A4
    [Google Scholar]
  130. Zhao Y, Sandberg RD. 2020b. High-fidelity simulations of a high-pressure turbine vane subject to large disturbances: effect of exit Mach number on losses. Proceedings of ASME Turbo Expo 2020 Pap. GT2020-14445 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  131. Zhao Y, Sandberg RD. 2020c. Using a new entropy loss analysis to assess the accuracy of RANS predictions of an high-pressure turbine vane. J. Turbomach. 142:081008
    [Google Scholar]
  132. Zhao Y, Sandberg RD. 2021a. High-fidelity simulations of a high-pressure turbine stage: effects of Reynolds number and inlet turbulence. Proceedings of ASME Turbo Expo: Turbomachinery Technical Conference and Exposition Pap. GT2021-58995 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  133. Zhao Y, Sandberg RD. 2021b. High-fidelity simulations of a high-pressure turbine vane with end walls: impact of secondary structures and spanwise temperature profiles on losses. Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition Pap. GT2021-58816 New York: Am. Soc. Mech. Eng.
/content/journals/10.1146/annurev-fluid-031221-105530
Loading
/content/journals/10.1146/annurev-fluid-031221-105530
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error