1932

Abstract

Fire whirls present a powerful intensification of combustion, long studied in the fire research community because of the dangers they present during large urban and wildland fires. However, their destructive power has hidden many features of their formation, growth, and propagation. Therefore, most of what is known about fire whirls comes from scale modeling experiments in the laboratory. Both the methods of formation, which are dominated by wind and geometry, and the inner structure of the whirl, including velocity and temperature fields, have been studied at this scale. Quasi-steady fire whirls directly over a fuel source form the bulk of current experimental knowledge, although many other cases exist in nature. The structure of fire whirls has yet to be reliably measured at large scales; however, scaling laws have been relatively successful in modeling the conditions for formation from small to large scales. This review surveys the state of knowledge concerning the fluid dynamics of fire whirls, including the conditions for their formation, their structure, and the mechanisms that control their unique state. We highlight recent discoveries and survey potential avenues for future research, including using the properties of fire whirls for efficient remediation and energy generation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122316-045209
2018-01-05
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/fluid/50/1/annurev-fluid-122316-045209.html?itemId=/content/journals/10.1146/annurev-fluid-122316-045209&mimeType=html&fmt=ahah

Literature Cited

  1. Akhmetov DG, Gavrilov NV, Nikulin VV. 2007. Flow structure in a fire tornado-like vortex. Dokl. Phys. 52:592–95 [Google Scholar]
  2. Albini FA. 1984. Wildland fires: Predicting the behavior of wildland fires—among nature's most potent forces—can save lives, money, and natural resources. Am. Sci. 72:590–97 [Google Scholar]
  3. Batchelor GK. 1953. The Theory of Homogeneous Turbulence Cambridge, UK: Cambridge Univ. Press
  4. Batchelor GK. 2000. An Introduction to Fluid Dynamics Cambridge, UK: Cambridge Univ. Press
  5. Battaglia F, McGrattan KB, Rehm RG, Baum HR. 2000a. Simulating fire whirls. Combust. Theory Model. 4:123–38 [Google Scholar]
  6. Battaglia F, Rehm RG, Baum HR. 2000b. The fluid mechanics of fire whirls: an inviscid model. Phys. Fluids 12:2859–67 [Google Scholar]
  7. Beér JM, Chigier NA. 1972. Combustion Aerodynamics London: Appl. Sci.
  8. Beér JM, Chigier NA, Davies TW, Bassindale K. 1971. Laminarization of turbulent flames in rotating environments. Combust. Flame 16:139–45 [Google Scholar]
  9. Bergman T, Incropera F, DeWitt D, Lavine A. 2011. Fundamentals of Heat and Mass Transfer Hoboken, NJ: Wiley, 7th ed..
  10. Bödewadt U. 1940. Die Drehströmung über festem Grunde. Z. Angew. Math. Mech. 20:241–53 [Google Scholar]
  11. Burgers JM. 1948. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1:171–99 [Google Scholar]
  12. Byram GM, Martin RE. 1962. Fire whirlwinds in the laboratory. Fire Control Notes 23:13–17 [Google Scholar]
  13. Byram GM, Martin RE. 1970. The modeling of fire whirlwinds. Forest Sci 16:386–99 [Google Scholar]
  14. Chigier N, Beér J, Grecov D, Bassindale K. 1970. Jet flames in rotating flow fields. Combust. Flame 14:171–79 [Google Scholar]
  15. Chow WK, He Z, Gao Y. 2010. Internal fire whirls in a vertical shaft. J. Fire Sci. 29:71–92 [Google Scholar]
  16. Christodoulou G. 1986. Interfacial mixing in stratified flows. J. Hydraul. Res. 24:77–92 [Google Scholar]
  17. Chuah KH, Kushida G. 2007. The prediction of flame heights and flame shapes of small fire whirls. Proc. Combust. Inst. 31:2599–606 [Google Scholar]
  18. Chuah KH, Kuwana K, Saito K. 2009. Modeling a fire whirl generated over a 5-cm-diameter methanol pool fire. Combust. Flame 156:1828–33 [Google Scholar]
  19. Chuah KH, Kuwana K, Saito K, Williams FA. 2011. Inclined fire whirls. Proc. Combust. Inst. 33:2417–24 [Google Scholar]
  20. Church CR, Snow JT, Dessens J. 1980. Intense atmospheric vortices associated with a 1000 MW fire. Bull. Am. Meteorol. Soc. 61:682–94 [Google Scholar]
  21. Countryman CM. 1971. Fire whirls…why, when, and where Tech. Rep., USDA For. Serv Washington, DC:
  22. Dessens J. 1962. Man-made tornadoes. Nature 193:13–14 [Google Scholar]
  23. Dobashi R, Okura T, Nagaoka R, Hayashi Y, Mogi T. 2015. Experimental study on flame height and radiant heat of fire whirls. Fire Technol 52:1069–80 [Google Scholar]
  24. Donaltson CP, Sullivan R. 1960. Behavior of solutions of the Navier–Stokes equations for a complete class of three-dimensional viscous vortices. Proc. Heat Transf. Fluid Mech. Inst., Stanford Univ., 15–17 June DM Mason, WC Reynolds, WG Vincenti 16–30 Stanford, CA: Stanford Univ. Press [Google Scholar]
  25. Ellison T, Turner J. 1959. Turbulent entrainment in stratified flows. J. Fluid Mech. 6:423–48 [Google Scholar]
  26. Emmons HW, Ying SJ. 1967. The fire whirl. Proc. Combust. Inst. 11:475–88 [Google Scholar]
  27. Emori RI, Saito K. 1982. Model experiment of hazardous forest fire whirl. Fire Technol 18:319–27 [Google Scholar]
  28. Fineman SJ. 1962. Some analytical considerations of the hybrid rocket combustion problem MScEng Thesis, Princeton Univ.
  29. Forthofer JM, Goodrick SL. 2011. Review of vortices in wildland fire. J. Combust. 2011:984363 [Google Scholar]
  30. Glassman I, Yetter R, Glumac N. 2014. Combustion Amsterdam, Neth: Elsevier Sci.
  31. Grishin AM. 2007. Effect of the interaction between fire tornadoes on their propagation. Dokl. Phys. 52:521–22 [Google Scholar]
  32. Grishin AM, Golovanov AN, Kolesnikov AA, Strokatov AA, Tsvyk RS. 2005. Experimental study of thermal and fire tornadoes. Dokl. Phys. 50:66–68 [Google Scholar]
  33. Hamins A, Kashiwagi T, Buch RR. 1996. Characteristics of pool fire burning. Proc. Fire Resist. Ind. Fluids, Indianapolis, Indiana, 20 June 1995 GE Totten, J Reichel15–41 West Conshohocken, PA: Am. Soc. Test. Mater. [Google Scholar]
  34. Hartl KA. 2016. Experimental investigation of laboratory fire whirls PhD Thesis, Princeton Univ.
  35. Hartl KA, Smits AJ. 2016. Scaling of a small scale burner fire whirl. Combust. Flame 163:202–8 [Google Scholar]
  36. Hassan MI, Kuwana K, Saito K, Wang F. 2005. Flow structure of a fixed-frame type fire whirl. Fire Saf. Sci. 8:951–62 [Google Scholar]
  37. Hayashi Y, Kuwana K, Dobashi R. 2011. Influence of vortex structure on fire whirl behavior. Fire Saf. Sci. 10:671–79 [Google Scholar]
  38. Hunt G, Kaye NG. 2001. Virtual origin correction for lazy turbulent plumes. J. Fluid Mech. 435:377–96 [Google Scholar]
  39. Klimenko A. 2014. Strong swirl approximation and intensive vortices in the atmosphere. J. Fluid Mech. 738:268–98 [Google Scholar]
  40. Klimenko A, Williams F. 2013. On the flame length in firewhirls with strong vorticity. Combust. Flame 160:335–39 [Google Scholar]
  41. Kundu PK, Cohen IM, Hu HH. 2004. Fluid Mechanics San Diego, CA: Elsevier Acad, 3rd ed..
  42. Kuwana K, Morishita S, Dobashi R, Chuah KH, Saito K. 2011. The burning rate's effect on the flame length of weak fire whirls. Proc. Combust. Inst. 33:2425–32 [Google Scholar]
  43. Kuwana K, Sekimoto K, Minami T, Tashiro T, Saito K. 2013. Scale-model experiments of moving fire whirl over a line fire. Proc. Combust. Inst. 34:2625–31 [Google Scholar]
  44. Kuwana K, Sekimoto K, Saito K, Williams FA. 2008. Scaling fire whirls. Fire Saf. J. 43:252–57 [Google Scholar]
  45. Kuwana K, Sekimoto K, Saito K, Williams FA, Hayashi Y, Masuda H. 2007. Can we predict the occurrence of extreme fire whirls?. AIAA J 45:16–19 [Google Scholar]
  46. Lee JHW, Chu V. 2012. Turbulent Jets and Plumes: A Lagrangian Approach New York: Springer Sci. Bus. Media
  47. Lee SL, Garris CA. 1969. Formation of multiple fire whirls. Symp. Int. Combust. 12:265–73 [Google Scholar]
  48. Lei J, Liu N. 2016. Flame precession of fire whirls: a further experimental study. Fire Saf. J. 79:1–9 [Google Scholar]
  49. Lei J, Liu N, Lozano JS, Zhang L, Deng Z, Satoh K. 2013. Experimental research on flame revolution and precession of fire whirls. Proc. Combust. Inst. 34:2607–15 [Google Scholar]
  50. Lei J, Liu N, Satoh K. 2015a. Buoyant pool fires under imposed circulations before the formation of fire whirls. Proc. Combust. Inst. 35:2503–10 [Google Scholar]
  51. Lei J, Liu N, Zhang L, Chen H, Shu L. et al. 2011. Experimental research on combustion dynamics of medium-scale fire whirl. Proc. Combust. Inst. 33:2407–15 [Google Scholar]
  52. Lei J, Liu N, Zhang L, Deng Z, Akafuah NK. et al. 2012. Burning rates of liquid fuels in fire whirls. Combust. Flame 159:2104–14 [Google Scholar]
  53. Lei J, Liu N, Zhang L, Satoh K. 2015b. Temperature, velocity and air entrainment of fire whirl plume: a comprehensive experimental investigation. Combust. Flame 162:745–58 [Google Scholar]
  54. Lin KC, Faeth GM. 1996a. Effects of hydrodynamics on soot formation in laminar opposed-jet diffusion flames. J. Propul. Power 12:691–98 [Google Scholar]
  55. Lin KC, Faeth GM. 1996b. Hydrodynamic suppression of soot emissions in laminar diffusion flames. J. Propul. Power 12:10–17 [Google Scholar]
  56. Liu N, Liu Q, Deng Z, Kohyu S, Zhu J. 2007. Burn-out time data analysis on interaction effects among multiple fires in fire arrays. Proc. Combust. Inst. 31:2589–97 [Google Scholar]
  57. Martin RE, Pendleton DW, Burgess W. 1976. Effect of fire whirlwind formation on solid fuel burning rates. Fire Technol 12:33–40 [Google Scholar]
  58. Matsuyama K, Tanaka F, Ishikawa N, Tanaka S, Ohmiya Y, Hayashi Y. 2004. Experimental and numerical studies on fire whirls. Fire Saf. Sci. 6:2–13 [Google Scholar]
  59. McCaffrey BJ. 1979. Purely buoyant diffusion flames: some experimental results Natl. Bur. Stand. Inform. Rep. 79-1910, Natl. Bur. Stand Washington, DC:
  60. McRae RH, Sharples JJ, Wilkes SR, Walker A. 2013. An Australian pyro-tornadogenesis event. Nat. Hazards 65:1801–11 [Google Scholar]
  61. Morton B. 1970. The physics of fire whirls. Fire Res. Abstr. Rev. 12:1–19 [Google Scholar]
  62. Morton B, Taylor G, Turner J. 1956. Turbulent gravitational convection from maintained and instantaneous sources. Philos. Trans. R. Soc. A 234:1–23 [Google Scholar]
  63. Mullen JB, Maxworthy T. 1977. A laboratory model of dust devil vortices. Dyn. Atmos. Oceans 1:181–214 [Google Scholar]
  64. Muraszew A, Fedele J, Kuby W. 1979. The fire whirl phenomenon. Combust. Flame 34:29–45 [Google Scholar]
  65. Nydahl JE. 1971. Heat transfer for the Bödewadt problem PhD Thesis, Colo. State Univ.
  66. Quintiere J. 2006. Fundamentals of Fire Phenomena Hoboken, NJ: Wiley
  67. Rotta JC. 1964. Temperaturverteilungen in der turbulenten Grenzschicht an der ebenen Platte. Int. J. Heat Mass Transf. 7:215–28 [Google Scholar]
  68. Satoh K, Yang KT. 1996. Experimental observations of swirling fires. Proc. Am. Soc. Mech. Eng. Heat Transf. Div.: Int. Mech. Eng. Congr. Expo., Atlanta, Ga., 17–22 Nov.393–400 New York: Am. Soc. Mech. Eng. [Google Scholar]
  69. Satoh K, Yang KT. 2000. A horizontal fire-whirl design scenario for engineering performance-based fire-code applications. Int. J. Eng. Perform.-Based Fire Codes 2:48–57 [Google Scholar]
  70. Satoh K, Yang KT, Dame N. 1997. Simulations of swirling fires controlled by channeled self-generated entrainment flows. Proc. Int. Symp. Fire Saf. Sci., 5th, Melbourne, Aust., 3–7 March Y Hasemi 201–12 London: Int. Assoc. Fire Saf. Sci. [Google Scholar]
  71. Sharples JJ, Kiss AE, Raposo J, Viegas DX, Simpson CC. 2015. Pyrogenic vorticity from windward and lee slope fires. Int. Congr. Model. Simul., Gold Coast, Aust. 29 Nov.–4 Dec T Weber, MJ McPhee, RS Anderson 291–97 Canberra, Aust.: Model. Simul. Soc. Aust. N.Z. [Google Scholar]
  72. Simpson C, Sharples JJ, Evans JP. 2016. Sensitivity of atypical lateral fire spread to wind and slope. Geophys. Res. Lett. 43:1744–51 [Google Scholar]
  73. Snegirev A, Marsden J, Francis J, Makhviladze G. 2004. Numerical studies and experimental observations of whirling flames. Int. J. Heat Mass Transf. 47:2523–39 [Google Scholar]
  74. Soma S, Saito K. 1991. Reconstruction of fire whirls using scale models. Combust. Flame 86:269–84 [Google Scholar]
  75. Stewartson K. 1953. On the flow between two rotating coaxial disks. Math. Proc. Camb. Philos. Soc. 49:333–41 [Google Scholar]
  76. Thomas P. 1963. The size of flames from natural fires. Symp. Int. Combust. 9:844–59 [Google Scholar]
  77. Tieszen SR. 2001. On the fluid mechanics of fires. Annu. Rev. Fluid Mech. 33:67–92 [Google Scholar]
  78. Tohidi A, Kaye NB. 2016. Highly buoyant bent-over plumes in a boundary layer. Atmos. Environ. 131:97–114 [Google Scholar]
  79. Turner JS. 1979. Buoyancy Effects in Fluids Cambridge, UK: Cambridge Univ. Press
  80. Wang P, Liu N, Hartl K, Smits A. 2016. Measurement of the flow field of fire whirl. Fire Technol 52:263–72 [Google Scholar]
  81. Wang P, Liu N, Zhang L, Bai Y, Satoh K. 2015. Fire whirl experimental facility with no enclosure of solid walls: design and validation. Fire Technol 51:951–69 [Google Scholar]
  82. Xiao H, Gollner MJ, Oran ES. 2016. From fire whirls to blue whirls and combustion with reduced pollution. PNAS 113:9457–62 [Google Scholar]
  83. Ying SJ, Chang C. 1970. Exploratory model study of tornado-like vortex dynamics. J. Atmos. Sci. 27:3–14 [Google Scholar]
  84. Zhou K, Liu N, Lozano JS, Shan Y, Yao B, Satoh K. 2013. Effect of flow circulation on combustion dynamics of fire whirl. Proc. Combust. Inst. 34:2617–24 [Google Scholar]
  85. Zhou K, Liu N, Satoh K. 2011. Experimental research on burning rate, vertical velocity and radiation of medium-scale fire whirls. Fire Saf. Sci. 10:681–91 [Google Scholar]
  86. Zhou K, Liu N, Yuan X. 2016. Effect of wind on fire whirl over a line fire. Fire Technol 52:865–75 [Google Scholar]
  87. Zhou K, Liu N, Zhang L, Satoh K. 2014. Thermal radiation from fire whirls: revised solid flame model. Fire Technol 50:1573–87 [Google Scholar]
  88. Zhou R, Wu ZN. 2007. Fire whirls due to surrounding flame sources and the influence of the rotation speed on the flame height. J. Fluid Mech. 583:313–45 [Google Scholar]
  89. Zukoski EE, Kubota T, Cetegen B. 1981. Entrainment in fire plumes. Fire Saf. J. 3:107–21 [Google Scholar]
/content/journals/10.1146/annurev-fluid-122316-045209
Loading
/content/journals/10.1146/annurev-fluid-122316-045209
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error