1932

Abstract

Human milk is a unique and complex fluid that provides infant nutrition and delivers an array of bioactive molecules that serve various functions. Glycans, abundant in milk, can be found as free oligosaccharides or as glycoconjugates. Milk glycans are increasingly linked to beneficial outcomes in neonates through protection from pathogens and modulation of the immune system. Indeed, these glycans influence the development of the infant and the infant-gut microbiota. species commonly are enriched in breastfed infants and are among a limited group of bacteria that readily consume human milk oligosaccharides (HMOs) and milk glycoconjugates. Given the importance of bifidobacteria in infant health, numerous studies have examined the molecular mechanisms they employ to consume HMOs and milk glycans, thus providing insight into this unique enrichment and shedding light on a range of translational opportunities to benefit at-risk infants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-030216-030207
2018-03-25
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/food/9/1/annurev-food-030216-030207.html?itemId=/content/journals/10.1146/annurev-food-030216-030207&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerman DL, Craft KM, Townsend SD. 2017. Infant food applications of complex carbohydrates: structure, synthesis, and function. Carbohydr. Res. 437:16–27 [Google Scholar]
  2. Adlerberth I, Wold AE. 2009. Establishment of the gut microbiota in Western infants. Acta Paediatr 98:229–38 [Google Scholar]
  3. Albrecht S, Lane JA, Marino K, Al Busadah KA, Carrington SD. et al. 2014. A comparative study of free oligosaccharides in the milk of domestic animals. Br. J. Nutr. 111:1313–28 [Google Scholar]
  4. Aldredge DL, Geronimo MR, Hua S, Nwosu CC, Lebrilla CB, Barile D. 2013. Annotation and structural elucidation of bovine milk oligosaccharides and determination of novel fucosylated structures. Glycobiology 23:664–76 [Google Scholar]
  5. Alhaj OA, Taufik E, Handa Y, Fukuda K, Saito T, Urashima T. 2013. Chemical characterisation of oligosaccharides in commercially pasteurised dromedary camel (Camelus dromedarius) milk. Int. Dairy J. 28:70–75 [Google Scholar]
  6. Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T. et al. 2011. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J. Biol. Chem. 286:34583–92 [Google Scholar]
  7. Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E. et al. 2009. Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 19:1010–17 [Google Scholar]
  8. Atochina O, Daly-Engel T, Piskorska D, McGuire E, Harn DA. 2001. A schistosome-expressed immunomodulatory glycoconjugate expands peritoneal Gr1+ macrophages that suppress naive CD4+ T cell proliferation via an IFN-γ and nitric oxide-dependent mechanism. J. Immunol. 167:4293–302 [Google Scholar]
  9. Azuma N, Yamauchi K, Mitsuoka T. 1984. Bifidus growth-promoting activity of a glycomacropeptide derived from human K-casein. Agric. Biol. Chem. 48:2159–62 [Google Scholar]
  10. Backhed F, Roswall J, Peng Y, Feng Q, Jia H. et al. 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703 [Google Scholar]
  11. Baker EN, Baker HM. 2005. Molecular structure, binding properties and dynamics of lactoferrin. Cell. Mol. Life Sci. 62:2531–39 [Google Scholar]
  12. Barboza M, Pinzon J, Wickramasinghe S, Froehlich JW, Moeller I. et al. 2012. Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria-host interactions. Mol. Cell. Proteom. 11:M111. 015248 [Google Scholar]
  13. Barile D, Marotta M, Chu C, Mehra R, Grimm R. et al. 2010. Neutral and acidic oligosaccharides in Holstein-Friesian colostrum during the first 3 days of lactation measured by high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. J. Dairy Sci. 93:3940–99 [Google Scholar]
  14. Barile D, Tao N, Lebrilla CB, Coisson JD, Arlorio M, German JB. 2009. Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. Int. Dairy J. 19:524–30 [Google Scholar]
  15. Bode L. 2006. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J. Nutr. 136:2127–30 [Google Scholar]
  16. Bode L. 2012. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22:1147–62 [Google Scholar]
  17. Bode L, Contractor N, Barile D, Pohl N, Prudden AR. et al. 2016. Overcoming the limited availability of human milk oligosaccharides: challenges and opportunities for research and application. Nutr. Rev. 74:635–44 [Google Scholar]
  18. Bode L, Jantscher-Krenn E. 2012. Structure-function relationships of human milk oligosaccharides. Adv. Nutr. 3:383S–91 [Google Scholar]
  19. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M. et al. 2016. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8:343ra82 [Google Scholar]
  20. Bottacini F, O'Connell Motherway M, Kuczynski J, O'Connell KJ, Serafini F. et al. 2014. Comparative genomics of the Bifidobacterium breve taxon. BMC Genom 15:170 [Google Scholar]
  21. Boudry G, Hamilton MK, Chichlowski M, Wickramasinghe S, Barile D. et al. 2017. Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice. J. Dairy Sci. 100:2471–81 [Google Scholar]
  22. Bunesova V, Lacroix C, Schwab C. 2016. Fucosyllactose and l-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. BMC Microbiol 16:248 [Google Scholar]
  23. Byers HL, Tarelli E, Homer KA, Beighton D. 1999. Sequential deglycosylation and utilization of the N-linked, complex-type glycans of human α1-acid glycoprotein mediates growth of Streptococcus oralis. Glycobiology 9:469–79 [Google Scholar]
  24. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. 2012. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96:544–51 [Google Scholar]
  25. Charbonneau MR, Blanton LV, DiGiulio DB, Relman DA, Lebrilla CB. et al. 2016.a A microbial perspective of human developmental biology. Nature 535:48–55 [Google Scholar]
  26. Charbonneau MR, O'Donnell D, Blanton LV, Totten SM, Davis JC. et al. 2016.b Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164:859–71 [Google Scholar]
  27. Chaturvedi P, Sharma CB. 1988. Goat milk oligosaccharides: purification and characterization by HPLC and high-field 1H-NMR spectroscopy. Biochim. Biophys. Acta 967:115–21 [Google Scholar]
  28. Cohen JL, Barile D, Liu Y, de Moura Bell JMLN. 2017. Role of pH in the recovery of bovine milk oligosaccharides from colostrum whey permeate by nanofiltration. Int. Dairy J. 66:68–75 [Google Scholar]
  29. Collin M, Fischetti VA. 2004. A novel secreted endoglycosidase from Enterococcus faecalis with activity on human immunoglobulin G and ribonuclease B. J. Biol. Chem. 279:22558–70 [Google Scholar]
  30. Crociani F, Alessandrini A, Mucci MM, Biavati B. 1994. Degradation of complex carbohydrates by Bifidobacterium spp. Int. J. Food Microbiol. 24:199–210 [Google Scholar]
  31. Dallas DC, Weinborn V, de Moura Bell JM, Wang M, Parker EA. et al. 2014. Comprehensive peptidomic and glycomic evaluation reveals that sweet whey permeate from colostrum is a source of milk protein–derived peptides and oligosaccharides. Food Res. Int. 63:203–9 [Google Scholar]
  32. Davis JC, Totten SM, Huang JO, Nagshbandi S, Kirmiz N. et al. 2016. Identification of oligosaccharides in feces of breast-fed infants and their correlation with the gut microbial community. Mol. Cell. Proteom. 15:92987–3002 [Google Scholar]
  33. Debbabi H, Dubarry M, Rautureau M, Tome D. 1998. Bovine lactoferrin induces both mucosal and systemic immune response in mice. J. Dairy Res. 65:283–93 [Google Scholar]
  34. De Leoz ML, Kalanetra KM, Bokulich NA, Strum JS, Underwood MA. et al. 2014. Human milk glycomics and gut microbial genomics in infant feces show a correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study. J. Proteome Res. 14:491–502 [Google Scholar]
  35. de Moura Bell JM, Aquino LF, Liu Y, Cohen JL, Lee H. et al. 2016. Modeling lactose hydrolysis for efficiency and selectivity: toward the preservation of sialyloligosaccharides in bovine colostrum whey permeate. J. Dairy Sci. 99:6157–63 [Google Scholar]
  36. Donovan SM, Comstock SS. 2016. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann. Nutr. Metabol. 69:Suppl. 242–51 [Google Scholar]
  37. Douellou T, Montel MC, Thevenot Sergentet D. 2017. Invited review: anti-adhesive properties of bovine oligosaccharides and bovine milk fat globule membrane-associated glycoconjugates against bacterial food enteropathogens. J. Dairy Sci. 100:3348–59 [Google Scholar]
  38. Duijts L, Jaddoe VW, Hofman A, Moll HA. 2010. Prolonged and exclusive breastfeeding reduces the risk of infectious diseases in infancy. Pediatrics 126:e18–25 [Google Scholar]
  39. Duranti S, Milani C, Lugli GA, Turroni F, Mancabelli L. et al. 2015. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ. Microbiol. 17:2515–31 [Google Scholar]
  40. Egan M, Motherway MO, Kilcoyne M, Kane M, Joshi L. et al. 2014.a Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol 14:282 [Google Scholar]
  41. Egan M, Motherway MO, Ventura M, van Sinderen D. 2014.b Metabolism of sialic acid by Bifidobacterium breve UCC2003. Appl. Environ. Microbiol. 80:4414–26 [Google Scholar]
  42. Eiwegger T, Stahl B, Schmitt J, Boehm G, Gerstmayr M. et al. 2004. Human milk–derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr. Res. 56:536–40 [Google Scholar]
  43. Fong B, Ma K, McJarrow P. 2011. Quantification of bovine milk oligosaccharides using liquid chromatography-selected reaction monitoring-mass spectrometry. J. Agric. Food Chem. 59:9788–95 [Google Scholar]
  44. Frese SA, Parker K, Calvert CC, Mills DA. 2015. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3:28 [Google Scholar]
  45. Froehlich JW, Dodds ED, Barboza M, McJimpsey EL, Seipert RR. et al. 2010. Glycoprotein expression in human milk during lactation. J. Agric. Food Chem. 58:6440–48 [Google Scholar]
  46. Fukuda K, Yamamoto A, Ganzorig K, Khuukhenbaatar J, Senda A. et al. 2010. Chemical characterization of the oligosaccharides in Bactrian camel (Camelus bactrianus) milk and colostrum. J. Dairy Sci. 93:5572–87 [Google Scholar]
  47. Garrido D, Barile D, Mills DA. 2012.a A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv. Nutr. 3:415S–21 [Google Scholar]
  48. Garrido D, Dallas DC, Mills DA. 2013. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications. Microbiology 159:649–64 [Google Scholar]
  49. Garrido D, Kim JH, German JB, Raybould HE, Mills DA. 2011. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLOS ONE 6:e17315 [Google Scholar]
  50. Garrido D, Nwosu C, Ruiz-Moyano S, Aldredge D, German JB. et al. 2012.b Endo-β-N-acetylglucosaminidases from infant gut-associated bifidobacteria release complex N-glycans from human milk glycoproteins. Mol. Cell. Proteom. 11:775–85 [Google Scholar]
  51. Garrido D, Ruiz-Moyano S, Kirmiz N, Davis JC, Totten SM. et al. 2016. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci. Rep. 6:35045 [Google Scholar]
  52. Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA. 2015. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci. Rep. 5:13517 [Google Scholar]
  53. Garrido D, Ruiz-Moyano S, Mills DA. 2012.c Release and utilization of N-acetyl-d-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis. Anaerobe 18:430–35 [Google Scholar]
  54. Goehring KC, Marriage BJ, Oliver JS, Wilder JA, Barrett EG, Buck RH. 2016. Similar to those who are breastfed, infants fed a formula containing 2′-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial. J. Nutr. 146:2559–66 [Google Scholar]
  55. Good M, Sodhi CP, Yamaguchi Y, Jia H, Lu P. et al. 2016. The human milk oligosaccharide 2′-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. Br. J. Nutr. 116:1175–87 [Google Scholar]
  56. Haarman M, Knol J. 2005. Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 71:2318–24 [Google Scholar]
  57. Hamilton MK, Ronveaux CC, Rust BM, Newman JW, Hawley M. et al. 2017. Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice. Am. J. Physiol. Gastrointest. Liver Physiol. 312:G474–87 [Google Scholar]
  58. He Y, Liu S, Kling DE, Leone S, Lawlor NT. et al. 2016. The human milk oligosaccharide 2′-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 65:33–46 [Google Scholar]
  59. Hernell O. 2011. Human milk vs. cow's milk and the evolution of infant formulas. Nestle Nutr. Workshop Ser. Pediatr. Progr. 67:17–28 [Google Scholar]
  60. Hong Q, Ruhaak LR, Totten SM, Smilowitz JT, German JB, Lebrilla CB. 2014. Label-free absolute quantitation of oligosaccharides using multiple reaction monitoring. Anal. Chem. 86:2640–47 [Google Scholar]
  61. Huang YL, Chassard C, Hausmann M, von Itzstein M, Hennet T. 2015. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat. Commun. 6:8141 [Google Scholar]
  62. Hunt KM, Preuss J, Nissan C, Davlin CA, Williams JE. et al. 2012. Human milk oligosaccharides promote the growth of staphylococci. Appl. Environ. Microbiol. 78:4763–70 [Google Scholar]
  63. James K, Motherway MO, Bottacini F, van Sinderen D. 2016. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways. Sci. Rep. 6:38560 [Google Scholar]
  64. Jiang X, Huang P, Zhong W, Tan M, Farkas T. et al. 2004. Human milk contains elements that block binding of noroviruses to human histo-blood group antigens in saliva. J. Infect. Dis. 190:1850–59 [Google Scholar]
  65. Karav S, Le Parc A, de Moura Bell JMLN, Frese SA, Kirmiz N. et al. 2016. Oligosaccharides released from milk glycoproteins are selective growth substrates for infant-associated bifidobacteria. Appl. Environ. Microbiol. 82:3622–30 [Google Scholar]
  66. Katayama T, Sakuma A, Kimura T, Makimura Y, Hiratake J. et al. 2004. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-β-l-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J. Bacteriol. 186:4885–93 [Google Scholar]
  67. Kim WS, Ohashi M, Tanaka T, Kumura H, Kim GY. et al. 2004. Growth-promoting effects of lactoferrin on L. acidophilus and Bifidobacterium spp. BioMetals 17:279–83 [Google Scholar]
  68. Kitaoka M. 2012. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Adv. Nutr. 3:422S–29 [Google Scholar]
  69. Kiyohara M, Nakatomi T, Kurihara S, Fushinobu S, Suzuki H. et al. 2012. α-N-Acetylgalactosaminidase from infant-associated bifidobacteria belonging to novel glycoside hydrolase family 129 is implicated in alternative mucin degradation pathway. J. Biol. Chem. 287:693–700 [Google Scholar]
  70. Kiyohara M, Tanigawa K, Chaiwangsri T, Katayama T, Ashida H, Yamamoto K. 2011. An exo-α-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology 21:437–47 [Google Scholar]
  71. Knol J, Scholtens P, Kafka C, Steenbakkers J, Gro S. et al. 2005. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J. Pediatr. Gastroenterol. Nutr. 40:36–42 [Google Scholar]
  72. Kobata A, Ginsburg V. 1972. Oligosaccharides of human milk. IV. Isolation and characterization of a new hexasaccharide, lacto-N-neohexaose. Arch. Biochem. Biophys. 150:273–81 [Google Scholar]
  73. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J. et al. 2011. Succession of microbial consortia in the developing infant gut microbiome. PNAS 108:Suppl. 14578–85 [Google Scholar]
  74. Kuntz S, Kunz C, Rudloff S. 2009. Oligosaccharides from human milk induce growth arrest via G2/M by influencing growth-related cell cycle genes in intestinal epithelial cells. Br. J. Nutr. 101:1306–15 [Google Scholar]
  75. Kuntz S, Rudloff S, Kunz C. 2008. Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br. J. Nutr. 99:462–71 [Google Scholar]
  76. Kunz C, Rudloff S, Baier W, Klein N, Strobel S. 2000. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu. Rev. Nutr. 20:699–722 [Google Scholar]
  77. Kwak MJ, Kwon SK, Yoon JK, Song JY, Seo JG. et al. 2016. Evolutionary architecture of the infant-adapted group of Bifidobacterium species associated with the probiotic function. Syst. Appl. Microbiol. 39:429–39 [Google Scholar]
  78. Lee H, An HJ, Lerno LA, German JB, Lebrilla CB. 2011. Rapid profiling of bovine and human milk gangliosides by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 305:138–50 [Google Scholar]
  79. Lee H, Garrido D, Mills DA, Barile D. 2014. Hydrolysis of milk gangliosides by infant-gut associated bifidobacteria determined by microfluidic chips and high-resolution mass spectrometry. Electrophoresis 35:1742–50 [Google Scholar]
  80. Lewis ZT, Mills DA. 2017. Differential establishment of bifidobacteria in the breastfed infant gut. Nestle Nutr. Inst. Workshop Ser. 88:149–59 [Google Scholar]
  81. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E. et al. 2015. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3:13 [Google Scholar]
  82. Li X, Lindquist S, Lowe M, Noppa L, Hernell O. 2007. Bile salt–stimulated lipase and pancreatic lipase–related protein 2 are the dominating lipases in neonatal fat digestion in mice and rats. Pediatr. Res. 62:537–41 [Google Scholar]
  83. Lin AE, Autran CA, Espanola SD, Bode L, Nizet V. 2014. Human milk oligosaccharides protect bladder epithelial cells against uropathogenic Escherichia coli invasion and cytotoxicity. J. Infect. Dis. 209:389–98 [Google Scholar]
  84. Liu B, Newburg DS. 2013. Human milk glycoproteins protect infants against human pathogens. Breastfeed. Med. 8:354–62 [Google Scholar]
  85. Locascio R, Ninonuevo M, Kronewitter S, Freeman S, German J. et al. 2009. A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb. Biotechnol. 2:333–42 [Google Scholar]
  86. Lonnerdal B. 2013. Bioactive proteins in breast milk. J. Paediatr. Child Health 49:Suppl. 11–7 [Google Scholar]
  87. Lonnerdal B. 2014. Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas. Am. J. Clin. Nutr. 99:712S–17 [Google Scholar]
  88. Ma L, Liu X, MacGibbon AK, Rowan A, McJarrow P, Fong BY. 2015. Lactational changes in concentration and distribution of ganglioside molecular species in human breast milk from Chinese mothers. Lipids 50:1145–54 [Google Scholar]
  89. Maldonado-Gomez MX, Lee H, Barile D, Lu M, Hutkins RW. 2015. Adherence inhibition of enteric pathogens to epithelial cells by bovine colostrum fractions. Int. Dairy J. 40:24–32 [Google Scholar]
  90. Marcobal A, Barboza M, Froehlich JW, Block DE, German JB. et al. 2010. Consumption of human milk oligosaccharides by gut-related microbes. J. Agric. Food Chem. 58:5334–40 [Google Scholar]
  91. Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC. et al. 2011. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10:507–14 [Google Scholar]
  92. Martens EC, Roth R, Heuser JE, Gordon JI. 2009. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J. Biol. Chem. 284:18445–57 [Google Scholar]
  93. Martin-Ortiz A, Salcedo J, Barile D, Bunyatratchata A, Moreno FJ. et al. 2016. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry. J. Chromatogr. A 1428:143–53 [Google Scholar]
  94. Martin-Sosa S, Martin MJ, Garcia-Pardo LA, Hueso P. 2003. Sialyloligosaccharides in human and bovine milk and in infant formulas: variations with the progression of lactation. J. Dairy Sci. 86:52–59 [Google Scholar]
  95. Martinez-Ferez A, Rudloff S, Guadix A, Henkel CA, Pohlentz G. et al. 2006. Goats’ milk as a natural source of lactose-derived oligosaccharides: isolation by membrane technology. Int. Dairy J. 16:173–81 [Google Scholar]
  96. Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T. et al. 2016. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat. Commun. 7:11939 [Google Scholar]
  97. McGuire MK, Meehan CL, McGuire MA, Williams JE. 2017. What's normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am. J. Clin. Nutr. 105:1086–100 [Google Scholar]
  98. McJarrow P, van Amelsfort-Schoonbeek J. 2004. Bovine sialyl oligosaccharides: seasonal variations in their concentrations in milk, and a comparison of the colostrums of Jersey and Friesian cows. Int. Dairy J. 14:571–79 [Google Scholar]
  99. Meli F, Puccio G, Cajozzo C, Ricottone GL, Pecquet S. et al. 2014. Growth and safety evaluation of infant formulae containing oligosaccharides derived from bovine milk: a randomized, double-blind, noninferiority trial. BMC Pediatr 14:306 [Google Scholar]
  100. Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F. et al. 2014. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl. Environ. Microbiol. 80:6290–302 [Google Scholar]
  101. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L. et al. 2015.a Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci. Rep. 5:15782 [Google Scholar]
  102. Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L. et al. 2015.b Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl. Environ. Microbiol. 82:980–91 [Google Scholar]
  103. Moremen KW, Tiemeyer M, Nairn AV. 2012. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 13:448–62 [Google Scholar]
  104. Morrow AL, Ruiz-Palacios GM, Altaye M, Jiang X, Guerrero ML. et al. 2004. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatr. 145:297–303 [Google Scholar]
  105. Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS. 2005. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J. Nutr. 135:1304–7 [Google Scholar]
  106. Mudd AT, Salcedo J, Alexander LS, Johnson SK, Getty CM. et al. 2016. Porcine milk oligosaccharides and sialic acid concentrations vary throughout lactation. Front. Nutr. 3:39 [Google Scholar]
  107. Muramatsu H, Tachikui H, Ushida H, Song X, Qiu Y. et al. 2001. Molecular cloning and expression of endo-β-N-acetylglucosaminidase D, which acts on the core structure of complex type asparagine-linked oligosaccharides. J. Biochem. 129:923–28 [Google Scholar]
  108. Nakamura T, Amikawa S, Harada T, Saito T, Arai I, Urashima T. 2001. Occurrence of an unusual phospho-rylated N-acetyllactosamine in horse colostrum. Biochim. Biophys. Acta 1525:13–18 [Google Scholar]
  109. Nakamura T, Kawase H, Kimura K, Watanabe Y, Ohtani M. et al. 2003. Concentrations of sialyloligosaccharides in bovine colostrum and milk during the prepartum and early lactation. J. Dairy Sci. 86:1315–20 [Google Scholar]
  110. Sharma R, Rajput YS, Mann B. Neelima 2013. Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: a review. Dairy Sci. Technol. 93:21–43 [Google Scholar]
  111. Newburg DS. 2009. Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. J. Anim. Sci. 87:26–34 [Google Scholar]
  112. Newburg DS. 2013. Glycobiology of human milk. Biochemistry 78:771–85 [Google Scholar]
  113. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC. et al. 2013. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:96–99 [Google Scholar]
  114. Ninonuevo MR, Park Y, Yin H, Zhang J, Ward RE. et al. 2006. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54:7471–80 [Google Scholar]
  115. Nwosu CC, Aldredge DL, Lee H, Lerno LA, Zivkovic AM. et al. 2012. Comparison of the human and bovine milk N-glycome via high-performance microfluidic chip liquid chromatography and tandem mass spectrometry. J. Proteome Res. 11:2912–24 [Google Scholar]
  116. O'Callaghan A, Bottacini F, Motherway MO, van Sinderen D. 2015. Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genom 16:832 [Google Scholar]
  117. Oda H, Wakabayashi H, Yamauchi K, Sato T, Xiao JZ. et al. 2013. Isolation of a bifidogenic peptide from the pepsin hydrolysate of bovine lactoferrin. Appl. Environ. Microbiol. 79:1843–49 [Google Scholar]
  118. O'Riordan N, Kane M, Joshi L, Hickey RM. 2014. Structural and functional characteristics of bovine milk protein glycosylation. Glycobiology 24:220–36 [Google Scholar]
  119. Pacheco AR, Barile D, Underwood MA, Mills DA. 2015. The impact of the milk glycobiome on the neonate gut microbiota. Annu. Rev. Anim. Biosci. 3:419–45 [Google Scholar]
  120. Pan XL, Izumi T. 2000. Variation of the ganglioside compositions of human milk, cow's milk and infant formulas. Early Hum. Dev. 57:25–31 [Google Scholar]
  121. Petherick A. 2010. Development: mother's milk: a rich opportunity. Nature 468:S5–7 [Google Scholar]
  122. Rahman MM, Kim WS, Ito T, Kumura H, Shimazaki K. 2009. Growth promotion and cell binding ability of bovine lactoferrin to Bifidobacterium longum. Anaerobe 15:133–37 [Google Scholar]
  123. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. 2009. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 101:541–50 [Google Scholar]
  124. Ray K. 2016. Gut microbiota: first steps in the infant gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 13:437 [Google Scholar]
  125. Renzi F, Manfredi P, Mally M, Moes S, Jeno P, Cornelis GR. 2011. The N-glycan glycoprotein deglycosylation complex (Gpd) from Capnocytophaga canimorsus deglycosylates human IgG. PLOS Pathog 7:e1002118 [Google Scholar]
  126. Ruas-Madiedo P, Gueimonde M, Fernandez-Garcia M, de los Reyes-Gavilan CG, Margolles A. 2008. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl. Environ. Microbiol. 74:1936–40 [Google Scholar]
  127. Ruhaak LR, Lebrilla CB. 2012. Analysis and role of oligosaccharides in milk. BMB Rep 45:442–51 [Google Scholar]
  128. Ruiz-Moyano S, Totten SM, Garrido DA, Smilowitz JT, German JB. et al. 2013. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl. Environ. Microbiol. 79:6040–49 [Google Scholar]
  129. Ruiz-Palacios GM, Calva JJ, Pickering LK, Lopez-Vidal Y, Volkow P. et al. 1990. Protection of breast-fed infants against Campylobacter diarrhea by antibodies in human milk. J. Pediatr. 116:707–13 [Google Scholar]
  130. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. 2003. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278:14112–20 [Google Scholar]
  131. Ruvoen-Clouet N, Mas E, Marionneau S, Guillon P, Lombardo D, Le Pendu J. 2006. Bile-salt-stimulated lipase and mucins from milk of “secretor” mothers inhibit the binding of Norwalk virus capsids to their carbohydrate ligands. Biochem. J. 393:627–34 [Google Scholar]
  132. Salcedo J, Frese SA, Mills DA, Barile D. 2016. Characterization of porcine milk oligosaccharides during early lactation and their relation to the fecal microbiome. J. Dairy Sci. 99:7733–43 [Google Scholar]
  133. Scholtens PA, Oozeer R, Martin R, Amor KB, Knol J. 2012. The early settlers: intestinal microbiology in early life. Annu. Rev. Food Sci. Technol. 3:425–47 [Google Scholar]
  134. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F. et al. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. PNAS 105:18964–69 [Google Scholar]
  135. Sela DA, Garrido D, Lerno L, Wu S, Tan K. et al. 2012. Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides. Appl. Environ. Microbiol 78:795–803 [Google Scholar]
  136. Sela DA, Li Y, Lerno L, Wu S, Marcobal AM. et al. 2011. An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J. Biol. Chem. 286:11909–18 [Google Scholar]
  137. Sela DA, Mills DA. 2010. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 18:298–307 [Google Scholar]
  138. Shin NR, Whon TW, Bae JW. 2015. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33:496–503 [Google Scholar]
  139. Simeoni U, Berger B, Junick J, Blaut M, Pecquet S. et al. 2016. Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and Bifidobacterium animalis subsp. lactis CNCM I-3446. Environ. Microbiol. 18:2185–95 [Google Scholar]
  140. Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. 2014. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu. Rev. Nutr. 34:143–69 [Google Scholar]
  141. Smilowitz JT, Lemay DG, Kalanetra KM, Chin EL, Zivkovic AM. et al. 2017. Tolerability and safety of the intake of bovine milk oligosaccharides extracted from cheese whey in healthy human adults. J. Nutr. Sci. 6:e6 [Google Scholar]
  142. Steenhout P, Sperisen P, Martin F-P, Sprenger N, Wernimont S. et al. 2016. Term infant formula supplemented with human milk oligosaccharides (2′fucosyllactose and lacto-N-neotetraose) shifts stool microbiota and metabolic signatures closer to that of breastfed infants. FASEB J 30:275.7 [Google Scholar]
  143. Stromqvist M, Falk P, Bergstrom S, Hansson L, Lonnerdal B. et al. 1995. Human milk kappa-casein and inhibition of Helicobacter pylori adhesion to human gastric mucosa. J. Pediatr. Gastroenterol. Nutr. 21:288–96 [Google Scholar]
  144. Tao N, DePeters EJ, Freeman S, German JB, Grimm R, Lebrilla CB. 2008. Bovine milk glycome. J. Dairy Sci. 91:3768–78 [Google Scholar]
  145. Tao N, DePeters EJ, German JB, Grimm R, Lebrilla CB. 2009. Variations in bovine milk oligosaccharides during early and middle lactation stages analyzed by high-performance liquid chromatography-chip/mass spectrometry. J. Dairy Sci. 92:2991–3001 [Google Scholar]
  146. Tao N, Ochonicky KL, German JB, Donovan SM, Lebrilla CB. 2010. Structural determination and daily variations of porcine milk oligosaccharides. J. Agric. Food Chem. 58:4653–59 [Google Scholar]
  147. Terrazas LI, Walsh KL, Piskorska D, McGuire E, Harn DA Jr. 2001. The schistosome oligosaccharide lacto-N-neotetraose expands Gr1+ cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4+ cells: a potential mechanism for immune polarization in helminth infections. J. Immunol. 167:5294–303 [Google Scholar]
  148. Thum C, Cookson A, McNabb WC, Roy NC, Otter D. 2015. Composition and enrichment of caprine milk oligosaccharides from New Zealand Saanen goat cheese whey. J. Food Compos. Anal. 42:30–37 [Google Scholar]
  149. Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH. et al. 2010. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. PNAS 107:19514–19 [Google Scholar]
  150. Turroni F, Ozcan E, Milani C, Mancabelli L, Viappiani A. et al. 2015. Glycan cross-feeding activities between bifidobacteria under in vitro conditions. Front. Microbiol. 6:1030 [Google Scholar]
  151. Underwood MA, Gaerlan S, De Leoz ML, Dimapasoc L, Kalanetra KM. et al. 2015. Human milk oligosaccharides in premature infants: absorption, excretion, and influence on the intestinal microbiota. Pediatr. Res. 78:670–77 [Google Scholar]
  152. Urashima T, Saito T, Kimura T. 1991. Chemical structures of three neutral oligosaccharides obtained from horse (thoroughbred) colostrum. Comp. Biochem. Physiol. B 100:177–83 [Google Scholar]
  153. van Berkel PH, Geerts ME, van Veen HA, Kooiman PM, Pieper FR. et al. 1995. Glycosylated and unglycosylated human lactoferrins both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis. Biochem. J. 312:Pt. 1107–14 [Google Scholar]
  154. Vazquez E, Barranco A, Ramirez M, Gruart A, Delgado-Garcia JM. et al. 2015. Effects of a human milk oligosaccharide, 2′-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. J. Nutr. Biochem. 26:455–65 [Google Scholar]
  155. Wada J, Ando T, Kiyohara M, Ashida H, Kitaoka M. et al. 2008. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl. Environ. Microbiol. 74:3996–4004 [Google Scholar]
  156. Wang B, Yu B, Karim M, Hu H, Sun Y. et al. 2007. Dietary sialic acid supplementation improves learning and memory in piglets. Am. J. Clin. Nutr. 85:561–69 [Google Scholar]
  157. Wang M, Li M, Wu S, Lebrilla CB, Chapkin RS. et al. 2015. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J. Pediatr. Gastroenterol. Nutr. 60:825–33 [Google Scholar]
  158. Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB. 2006. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl. Environ. Microbiol. 72:4497–99 [Google Scholar]
  159. Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB. 2007. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol. Nutr. Food Res. 51:1398–405 [Google Scholar]
  160. Weichert S, Jennewein S, Hufner E, Weiss C, Borkowski J. et al. 2013. Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr. Res. 33:831–38 [Google Scholar]
  161. White BA, Lamed R, Bayer EA, Flint HJ. 2014. Biomass utilization by gut microbiomes. Annu. Rev. Microbiol. 68:279–96 [Google Scholar]
  162. Wu S, Grimm R, German JB, Lebrilla CB. 2011. Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome Res. 10:856–68 [Google Scholar]
  163. Wu S, Tao N, German JB, Grimm R, Lebrilla CB. 2010. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 9:4138–51 [Google Scholar]
  164. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG. et al. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–27 [Google Scholar]
  165. Yew WS, Fedorov AA, Fedorov EV, Rakus JF, Pierce RW. et al. 2006. Evolution of enzymatic activities in the enolase superfamily: l-fuconate dehydratase from Xanthomonas campestris. Biochemistry 45:14582–97 [Google Scholar]
  166. Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M. et al. 2012. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology 22:361–68 [Google Scholar]
  167. Yu ZT, Chen C, Newburg DS. 2013. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23:1281–92 [Google Scholar]
  168. Zivkovic AM, Barile D. 2011. Bovine milk as a source of functional oligosaccharides for improving human health. Adv. Nutr. 2:284–89 [Google Scholar]
/content/journals/10.1146/annurev-food-030216-030207
Loading
/content/journals/10.1146/annurev-food-030216-030207
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error