1932

Abstract

Genetic manipulations with a robust and predictable outcome are critical to investigate gene function, as well as for therapeutic genome engineering. For many years, knockdown approaches and reagents including RNA interference and antisense oligonucleotides dominated functional studies; however, with the advent of precise genome editing technologies, CRISPR-based knockout systems have become the state-of-the-art tools for such studies. These technologies have helped decipher the role of thousands of genes in development and disease. Their use has also revealed how limited our understanding of genotype–phenotype relationships is. The recent discovery that certain mutations can trigger the transcriptional modulation of other genes, a phenomenon called transcriptional adaptation, has provided an additional explanation for the contradicting phenotypes observed in knockdown versus knockout models and increased awareness about the use of each of these approaches. In this review, we first cover the strengths and limitations of different gene perturbation strategies. Then we highlight the diverse ways in which the genotype–phenotype relationship can be discordant between these different strategies. Finally, we review the genetic robustness mechanisms that can lead to such discrepancies, paying special attention to the recently discovered phenomenon of transcriptional adaptation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071719-020342
2021-11-23
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-071719-020342.html?itemId=/content/journals/10.1146/annurev-genet-071719-020342&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aagaard L, Rossi JJ. 2007. RNAi therapeutics: principles, prospects and challenges. Adv. Drug Deliv. Rev. 59:75–86
    [Google Scholar]
  2. 2. 
    Aguti S, Marrosu E, Muntoni F, Zhou H. 2020. Gapmer antisense oligonucleotides to selectively suppress the mutant allele in COL6A genes in dominant Ullrich congenital muscular dystrophy. Methods Mol. Biol. 2176:221–30
    [Google Scholar]
  3. 3. 
    Akay A, Jordan D, Navarro IC, Wrzesinski T, Ponting CP et al. 2019. Identification of functional long non-coding RNAs in C. elegans. BMC Biol 17:14
    [Google Scholar]
  4. 4. 
    Anderson EM, Haupt A, Schiel JA, Chou E, Machado HB et al. 2015. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity. J. Biotechnol. 211:56–65
    [Google Scholar]
  5. 5. 
    Badano JL, Katsanis N. 2002. Beyond Mendel: an evolving view of human genetic disease transmission. Nat. Rev. Genet. 3:779–89
    [Google Scholar]
  6. 6. 
    Bhuvanagiri M, Schlitter AM, Hentze MW, Kulozik AE. 2010. NMD: RNA biology meets human genetic medicine. Biochem. J. 430:365–77
    [Google Scholar]
  7. 7. 
    Bibikova M, Golic M, Golic KG, Carroll D 2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–75
    [Google Scholar]
  8. 8. 
    Birling M-C, Schaeffer L, André P, Lindner L, Maréchal D et al. 2017. Efficient and rapid generation of large genomic variants in rats and mice using CRISMERE. Sci. Rep 7:43331
    [Google Scholar]
  9. 9. 
    Blomen VA, Májek P, Jae LT, Bigenzahn JW, Nieuwenhuis J et al. 2015. Gene essentiality and synthetic lethality in haploid human cells. Science 350:1092–96
    [Google Scholar]
  10. 10. 
    Boehm V, Gehring NH. 2016. Exon junction complexes: supervising the gene expression assembly line. Trends Genet 32:724–35
    [Google Scholar]
  11. 11. 
    Boer EF, Jette CA, Stewart RA. 2016. Neural crest migration and survival are susceptible to morpholino-induced artifacts. PLOS ONE 11:e0167278
    [Google Scholar]
  12. 12. 
    Boroviak K, Doe B, Banerjee R, Yang F, Bradley A 2016. Chromosome engineering in zygotes with CRISPR/Cas9. Genesis 54:78–85
    [Google Scholar]
  13. 13. 
    Boroviak K, Fu B, Yang F, Doe B, Bradley A. 2017. Revealing hidden complexities of genomic rearrangements generated with Cas9. Sci. Rep. 7:12867
    [Google Scholar]
  14. 14. 
    Boskovic A, Rando OJ. 2018. Transgenerational epigenetic inheritance. Annu. Rev. Genet. 52:21–41
    [Google Scholar]
  15. 15. 
    Brockdorff N, Turner BM. 2015. Dosage compensation in mammals. Cold Spring Harb. Perspect. Biol. 7:a019406
    [Google Scholar]
  16. 16. 
    Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–64
    [Google Scholar]
  17. 17. 
    Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C et al. 2012. Efficient TALEN-mediated gene knockout in livestock. PNAS 109:17382–87
    [Google Scholar]
  18. 18. 
    Carthew RW, Sontheimer EJ. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–55
    [Google Scholar]
  19. 19. 
    Chang HHY, Pannunzio NR, Adachi N, Lieber MR. 2017. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18:495–506
    [Google Scholar]
  20. 20. 
    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–61
    [Google Scholar]
  21. 21. 
    Corey DR, Abrams JM. 2001. Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol 2:reviews1015.13
    [Google Scholar]
  22. 22. 
    Csörgő B, León LM, Chau-Ly IJ, Vasquez-Rifo A, Berry JD et al. 2020. A compact Cascade–Cas3 system for targeted genome engineering. Nat. Methods 17:1183–90
    [Google Scholar]
  23. 23. 
    Daniel B, Nagy G, Nagy L. 2014. The intriguing complexities of mammalian gene regulation: how to link enhancers to regulated genes. Are we there yet?. FEBS Lett 588:2379–91
    [Google Scholar]
  24. 24. 
    De Souza AT, Dai X, Spencer AG, Reppen T, Menzie A et al. 2006. Transcriptional and phenotypic comparisons of Ppara knockout and siRNA knockdown mice. Nucleic Acids Res 34:4486–94
    [Google Scholar]
  25. 25. 
    Deng X, Berletch JB, Ma W, Nguyen DK, Hiatt JB et al. 2013. Mammalian X upregulation is associated with enhanced transcription initiation, RNA half-life, and MOF-mediated H4K16 acetylation. Dev. Cell 25:55–68
    [Google Scholar]
  26. 26. 
    Deng X, Hiatt JB, Nguyen DK, Ercan S, Sturgill D et al. 2011. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nat. Genet. 43:1179–85
    [Google Scholar]
  27. 27. 
    Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y et al. 2007. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–56
    [Google Scholar]
  28. 28. 
    Doman JL, Raguram A, Newby GA, Liu DR. 2020. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38:620–28
    [Google Scholar]
  29. 29. 
    Dooley CM, Wali N, Sealy IM, White RJ, Stemple DL et al. 2019. The gene regulatory basis of genetic compensation during neural crest induction. PLOS Genet 15:e1008213
    [Google Scholar]
  30. 30. 
    Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
    [Google Scholar]
  31. 31. 
    Edwards JS, Palsson BO. 1999. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274:17410–16
    [Google Scholar]
  32. 32. 
    Eisen JS, Smith JC. 2008. Controlling morpholino experiments: Don't stop making antisense. Development 135:1735–43
    [Google Scholar]
  33. 33. 
    El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Gunther S et al. 2019. Genetic compensation triggered by mutant mRNA degradation. Nature 568:193–97
    [Google Scholar]
  34. 34. 
    El-Brolosy MA, Stainier DYR. 2017. Genetic compensation: a phenomenon in search of mechanisms. PLOS Genet 13:e1006780
    [Google Scholar]
  35. 35. 
    Elena SF, Sanjuán R. 2008. The effect of genetic robustness on evolvability in digital organisms. BMC Evol. Biol. 8:284
    [Google Scholar]
  36. 36. 
    Evers B, Jastrzebski K, Heijmans JPM, Grernrum W, Beijersbergen RL, Bernards R. 2016. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat. Biotechnol. 34:631–33
    [Google Scholar]
  37. 37. 
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–11
    [Google Scholar]
  38. 38. 
    Firnhaber C, Hammarlund M. 2013. Neuron-specific feeding RNAi in C. elegans and its use in a screen for essential genes required for GABA neuron function. PLOS Genet 9:e1003921
    [Google Scholar]
  39. 39. 
    First in vivo human genome editing trial; 2018. Nat. Biotechnol. 36:5
    [Google Scholar]
  40. 40. 
    Flønes I, Sztromwasser P, Haugarvoll K, Dölle C, Lykouri M et al. 2016. Novel SLC19A3 promoter deletion and allelic silencing in biotin-thiamine-responsive basal ganglia encephalopathy. PLOS ONE 11:e0149055
    [Google Scholar]
  41. 41. 
    Fugger K, West SC. 2016. Keeping homologous recombination in check. Cell Res 26:397–98
    [Google Scholar]
  42. 42. 
    Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y 2015. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. PNAS 112:2275–80
    [Google Scholar]
  43. 43. 
    Gasiunas G, Barrangou R, Horvath P, Siksnys V 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579–86
    [Google Scholar]
  44. 44. 
    Gelbart ME, Kuroda MI. 2009. Drosophila dosage compensation: a complex voyage to the X chromosome. Development 136:1399–410
    [Google Scholar]
  45. 45. 
    Gerety SS, Wilkinson DG. 2011. Morpholino artifacts provide pitfalls and reveal a novel role for pro-apoptotic genes in hindbrain boundary development. Dev. Biol. 350:279–89
    [Google Scholar]
  46. 46. 
    Gibson TJ, Spring J. 1998. Genetic redundancy in vertebrates: polyploidy and persistence of genes encoding multidomain proteins. Trends Genet 14:46–49; discussion 49–50
    [Google Scholar]
  47. 47. 
    Grishok A, Tabara H, Mello CC. 2000. Genetic requirements for inheritance of RNAi in C. elegans. Science 287:2494–97
    [Google Scholar]
  48. 48. 
    Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH. 2003. Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66
    [Google Scholar]
  49. 49. 
    Hatkevich T, Miller DE, Turcotte CA, Miller MC, Sekelsky J. 2021. A pathway for error-free non-homologous end joining of resected meiotic double-strand breaks. Nucleic Acids Res 49:879–90
    [Google Scholar]
  50. 50. 
    Hietpas RT, Jensen JD, Bolon DN 2011. Experimental illumination of a fitness landscape. PNAS 108:7896–901
    [Google Scholar]
  51. 51. 
    Hong SW, Jiang Y, Kim S, Li CJ, Lee DK. 2014. Target gene abundance contributes to the efficiency of siRNA-mediated gene silencing. Nucleic Acid Ther 24:192–98
    [Google Scholar]
  52. 52. 
    Housden BE, Muhar M, Gemberling M, Gersbach CA, Stainier DYR et al. 2017. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat. Rev. Genet. 18:24–40
    [Google Scholar]
  53. 53. 
    Hsiao TL, Vitkup D. 2008. Role of duplicate genes in robustness against deleterious human mutations. PLOS Genet 4:e1000014
    [Google Scholar]
  54. 54. 
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:827–32
    [Google Scholar]
  55. 55. 
    Hu X, Hipolito S, Lynn R, Abraham V, Ramos S, Wong-Staal F. 2004. Relative gene-silencing efficiencies of small interfering RNAs targeting sense and antisense transcripts from the same genetic locus. Nucleic Acids Res 32:4609–17
    [Google Scholar]
  56. 56. 
    Huang PY, Kandyba E, Jabouille A, Sjolund J, Kumar A et al. 2017. Lgr6 is a stem cell marker in mouse skin squamous cell carcinoma. Nat. Genet. 49:1624–32
    [Google Scholar]
  57. 57. 
    Ideue T, Hino K, Kitao S, Yokoi T, Hirose T. 2009. Efficient oligonucleotide-mediated degradation of nuclear noncoding RNAs in mammalian cultured cells. RNA 15:1578–87
    [Google Scholar]
  58. 58. 
    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169:5429–33
    [Google Scholar]
  59. 59. 
    Jackson AL, Linsley PS. 2010. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 9:57–67
    [Google Scholar]
  60. 60. 
    Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31:233–39
    [Google Scholar]
  61. 61. 
    Jiang Z, Carlantoni C, Allanki S, Ebersberger I, Stainier DYR. 2020. Tek (Tie2) is not required for cardiovascular development in zebrafish. Development 147:dev193029
    [Google Scholar]
  62. 62. 
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  63. 63. 
    Johnson RD, Jasin M. 2000. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19:3398–407
    [Google Scholar]
  64. 64. 
    Kamachi Y, Okuda Y, Kondoh H. 2008. Quantitative assessment of the knockdown efficiency of morpholino antisense oligonucleotides in zebrafish embryos using a luciferase assay. Genesis 46:1–7
    [Google Scholar]
  65. 65. 
    Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R et al. 2003. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–37
    [Google Scholar]
  66. 66. 
    Kemble H, Nghe P, Tenaillon O. 2019. Recent insights into the genotype–phenotype relationship from massively parallel genetic assays. Evol. Appl. 12:1721–42
    [Google Scholar]
  67. 67. 
    Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS. 2009. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat. Biotechnol. 27:549–55
    [Google Scholar]
  68. 68. 
    Kitano H. 2007. Towards a theory of biological robustness. Mol. Syst. Biol. 3:137
    [Google Scholar]
  69. 69. 
    Klattenhoff C, Theurkauf W. 2008. Biogenesis and germline functions of piRNAs. Development 135:3–9
    [Google Scholar]
  70. 70. 
    Kok FO, Shin M, Ni C-W, Gupta A, Grosse AS et al. 2015. Reverse genetic screening reveals poor correlation between Morpholino-induced and mutant phenotypes in zebrafish. Dev. Cell 32:97–108
    [Google Scholar]
  71. 71. 
    Kontarakis Z, Stainier DYR. 2020. Genetics in light of transcriptional adaptation. Trends Genet 36:926–35
    [Google Scholar]
  72. 72. 
    Kurosaki T, Maquat LE. 2016. Nonsense-mediated mRNA decay in humans at a glance. J. Cell Sci. 129:461–67
    [Google Scholar]
  73. 73. 
    Kushawah G, Hernandez-Huertas L, Abugattas-Nuñez Del Prado J, Martinez-Morales JR, DeVore ML et al. 2020. CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos. Dev. Cell 54:805–17.e7
    [Google Scholar]
  74. 74. 
    Lai JKH, Gagalova KK, Kuenne C, El-Brolosy MA, Stainier DYR. 2019. Induction of interferon-stimulated genes and cellular stress pathways by morpholinos in zebrafish. Dev. Biol. 454:21–28
    [Google Scholar]
  75. 75. 
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
    [Google Scholar]
  76. 76. 
    Larsson E, Sander C, Marks D. 2010. mRNA turnover rate limits siRNA and microRNA efficacy. Mol. Syst. Biol. 6:433
    [Google Scholar]
  77. 77. 
    Law SH, Sargent TD. 2014. The serine-threonine protein kinase PAK4 is dispensable in zebrafish: identification of a morpholino-generated pseudophenotype. PLOS ONE 9:e100268
    [Google Scholar]
  78. 78. 
    Le Hir H, Andersen GR 2008. Structural insights into the exon junction complex. Curr. Opin. Struct. Biol. 18:112–19
    [Google Scholar]
  79. 79. 
    Lee JS, Yu Q, Shin JT, Sebzda E, Bertozzi C et al. 2006. Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev. Cell 11:845–57
    [Google Scholar]
  80. 80. 
    Lee RC, Feinbaum RL, Ambros V 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–54
    [Google Scholar]
  81. 81. 
    Lehner B. 2011. Molecular mechanisms of epistasis within and between genes. Trends Genet 27:323–31
    [Google Scholar]
  82. 82. 
    Li J, Yue Y, Dong X, Jia W, Li K et al. 2015. Zebrafish foxc1a plays a crucial role in early somitogenesis by restricting the expression of aldh1a2 directly. J. Biol. Chem. 290:10216–28
    [Google Scholar]
  83. 83. 
    Li LC, Okino ST, Zhao H, Pookot D, Place RF et al. 2006. Small dsRNAs induce transcriptional activation in human cells. PNAS 103:17337–42
    [Google Scholar]
  84. 84. 
    Li W, Chen J, Deng M, Jing Q. 2014. The zebrafish Tie2 signaling controls tip cell behaviors and acts synergistically with Vegf pathway in developmental angiogenesis. Acta Biochim. Biophys. Sin. 46:641–46
    [Google Scholar]
  85. 85. 
    Lindahl T. 1974. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. PNAS 71:3649–53
    [Google Scholar]
  86. 86. 
    Livesey BJ, Marsh JA. 2020. Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations. Mol. Syst. Biol. 16:e9380
    [Google Scholar]
  87. 87. 
    Longman D, Johnstone IL, Caceres JF. 2000. Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO J 19:1625–37
    [Google Scholar]
  88. 88. 
    López-Perrote A, Castaño R, Melero R, Zamarro T, Kurosawa H et al. 2016. Human nonsense-mediated mRNA decay factor UPF2 interacts directly with eRF3 and the SURF complex. Nucleic Acids Res 44:1909–23
    [Google Scholar]
  89. 89. 
    Lu AL, Clark S, Modrich P 1983. Methyl-directed repair of DNA base-pair mismatches in vitro. PNAS 80:4639–43
    [Google Scholar]
  90. 90. 
    Lu J, Deutsch C. 2008. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol. 384:73–86
    [Google Scholar]
  91. 91. 
    Lykke-Andersen S, Jensen TH. 2015. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat. Rev. Mol. Cell Biol. 16:665–77
    [Google Scholar]
  92. 92. 
    Ma Z, Zhu P, Shi H, Guo L, Zhang Q et al. 2019. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 568:259–63
    [Google Scholar]
  93. 93. 
    Macneil LT, Walhout AJ. 2011. Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res 21:645–57
    [Google Scholar]
  94. 94. 
    Majithia AR, Tsuda B, Agostini M, Gnanapradeepan K, Rice R et al. 2016. Prospective functional classification of all possible missense variants in PPARG. Nat. Genet. 48:1570–75
    [Google Scholar]
  95. 95. 
    Makarova KS, Aravind L, Wolf YI, Koonin EV. 2011. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct 6:38
    [Google Scholar]
  96. 96. 
    Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. 2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1:7
    [Google Scholar]
  97. 97. 
    Maquat LE, Tarn WY, Isken O. 2010. The pioneer round of translation: features and functions. Cell 142:368–74
    [Google Scholar]
  98. 98. 
    Masel J, Siegal ML. 2009. Robustness: mechanisms and consequences. Trends Genet 25:395–403
    [Google Scholar]
  99. 99. 
    Masel J, Trotter MV. 2010. Robustness and evolvability. Trends Genet 26:406–14
    [Google Scholar]
  100. 100. 
    Meyer BJ. 2005. X-Chromosome dosage compensation. WormBook. https://doi.org/10.1895/wormbook.1.8.1
    [Crossref] [Google Scholar]
  101. 101. 
    Miladi M, Raden M, Diederichs S, Backofen R. 2020. MutaRNA: analysis and visualization of mutation-induced changes in RNA structure. Nucleic Acids Res 48:W287–91
    [Google Scholar]
  102. 102. 
    Miller SM, Wang T, Randolph PB, Arbab M, Shen MW et al. 2020. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38:471–81
    [Google Scholar]
  103. 103. 
    Mohr SE, Smith JA, Shamu CE, Neumuller RA, Perrimon N. 2014. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 15:591–600
    [Google Scholar]
  104. 104. 
    Moraes F, Góes A. 2016. A decade of human genome project conclusion: scientific diffusion about our genome knowledge. Biochem. Mol. Biol. Educ. 44:215–23
    [Google Scholar]
  105. 105. 
    Moresco EM, Li X, Beutler B. 2013. Going forward with genetics: recent technological advances and forward genetics in mice. Am. J. Pathol. 182:1462–73
    [Google Scholar]
  106. 106. 
    Morgens DW, Deans RM, Li A, Bassik MC 2016. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat. Biotechnol. 34:634–36
    [Google Scholar]
  107. 107. 
    Morris JA. 2015. The genomic load of deleterious mutations: relevance to death in infancy and childhood. Front. Immunol. 6:105
    [Google Scholar]
  108. 108. 
    Navickas A, Chamois S, Saint-Fort R, Henri J, Torchet C, Benard L 2020. No-Go Decay mRNA cleavage in the ribosome exit tunnel produces 5′-OH ends phosphorylated by Trl1. Nat. Commun. 11:122
    [Google Scholar]
  109. 109. 
    Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND. 2010. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464:1196–200
    [Google Scholar]
  110. 110. 
    Novodvorsky P, Watson O, Gray C, Wilkinson RN, Reeve S et al. 2015. klf2ash317 mutant zebrafish do not recapitulate morpholino-induced vascular and haematopoietic phenotypes. PLOS ONE 10:e0141611
    [Google Scholar]
  111. 111. 
    Nowak MA, Boerlijst MC, Cooke J, Smith JM. 1997. Evolution of genetic redundancy. Nature 388:167–71
    [Google Scholar]
  112. 112. 
    O'Leary MN, Schreiber KH, Zhang Y, Duc AC, Rao S et al. 2013. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1. PLOS Genet 9:e1003708
    [Google Scholar]
  113. 113. 
    Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. 2019. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20:89–108
    [Google Scholar]
  114. 114. 
    Parker LH, Schmidt M, Jin S-W, Gray AM, Beis D et al. 2004. The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 428:754–58
    [Google Scholar]
  115. 115. 
    Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31:839–43
    [Google Scholar]
  116. 116. 
    Pauli A, Montague TG, Lennox KA, Behlke MA, Schier AF. 2015. Antisense oligonucleotide-mediated transcript knockdown in zebrafish. PLOS ONE 10:e0139504
    [Google Scholar]
  117. 117. 
    Payne JL, Wagner A. 2019. The causes of evolvability and their evolution. Nat. Rev. Genet. 20:24–38
    [Google Scholar]
  118. 118. 
    Pena IA, Roussel Y, Daniel K, Mongeon K, Johnstone D et al. 2017. Pyridoxine-dependent epilepsy in zebrafish caused by Aldh7a1 deficiency. Genetics 207:1501–18
    [Google Scholar]
  119. 119. 
    Peng W, Song R, Acar M. 2016. Noise reduction facilitated by dosage compensation in gene networks. Nat. Commun. 7:12959
    [Google Scholar]
  120. 120. 
    Qiu S, Adema CM, Lane T. 2005. A computational study of off-target effects of RNA interference. Nucleic Acids Res 33:1834–47
    [Google Scholar]
  121. 121. 
    Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C et al. 2007. p53 activation by knockdown technologies. PLOS Genet 3:e78
    [Google Scholar]
  122. 122. 
    Rose J, Kraft T, Brenner B, Montag J. 2020. Hypertrophic cardiomyopathy MYH7 mutation R723G alters mRNA secondary structure. Physiol. Genom. 52:15–19
    [Google Scholar]
  123. 123. 
    Rossi A, Gauvrit S, Marass M, Pan L, Moens CB, Stainier DYR. 2016. Regulation of Vegf signaling by natural and synthetic ligands. Blood 128:2359–66
    [Google Scholar]
  124. 124. 
    Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S et al. 2015. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230–33
    [Google Scholar]
  125. 125. 
    Sancar A, Rupp WD. 1983. A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell 33:249–60
    [Google Scholar]
  126. 126. 
    Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. 2011. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–82
    [Google Scholar]
  127. 127. 
    Saredi G, Huang H, Hammond CM, Alabert C, Bekker-Jensen S et al. 2016. H4K20me0 marks post-replicative chromatin and recruits the TONSL-MMS22L DNA repair complex. Nature 534:714–18
    [Google Scholar]
  128. 128. 
    Schneeberger K. 2014. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat. Rev. Genet. 15:662–76
    [Google Scholar]
  129. 129. 
    Schulte-Merker S, Stainier DYR. 2014. Out with the old, in with the new: reassessing morpholino knockdowns in light of genome editing technology. Development 141:3103–4
    [Google Scholar]
  130. 130. 
    Seok H, Lee H, Jang ES, Chi SW. 2018. Evaluation and control of miRNA-like off-target repression for RNA interference. Cell Mol. Life Sci. 75:797–814
    [Google Scholar]
  131. 131. 
    Serobyan V, Kontarakis Z, El-Brolosy MA, Welker JM, Tolstenkov O et al. 2020. Transcriptional adaptation in Caenorhabditis elegans. eLife 9:e50014
    [Google Scholar]
  132. 132. 
    Setten RL, Rossi JJ, Han SP. 2019. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18:421–46
    [Google Scholar]
  133. 133. 
    Shabalina SA, Koonin EV. 2008. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 23:578–87
    [Google Scholar]
  134. 134. 
    Shoemaker CJ, Green R. 2012. Translation drives mRNA quality control. Nat. Struct. Mol. Biol. 19:594–601
    [Google Scholar]
  135. 135. 
    Shum EY, Jones SH, Shao A, Dumdie J, Krause MD et al. 2016. The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell 165:382–95
    [Google Scholar]
  136. 136. 
    Snead NM, Rossi JJ. 2010. Biogenesis and function of endogenous and exogenous siRNAs. WIREs RNA 1:117–31
    [Google Scholar]
  137. 137. 
    Snow AK, Tuohy TM, Sargent NR, Smith LJ, Burt RW, Neklason DW. 2015. APC promoter 1B deletion in seven American families with familial adenomatous polyposis. Clin. Genet. 88:360–65
    [Google Scholar]
  138. 138. 
    Stainier DYR, Raz E, Lawson ND, Ekker SC, Burdine RD et al. 2017. Guidelines for morpholino use in zebrafish. PLOS Genet 13:e1007000
    [Google Scholar]
  139. 139. 
    Stoeger T, Gerlach M, Morimoto RI, Nunes Amaral LA 2018. Large-scale investigation of the reasons why potentially important genes are ignored. PLOS Biol 16:e2006643
    [Google Scholar]
  140. 140. 
    Sztal TE, McKaige EA, Williams C, Ruparelia AA, Bryson-Richardson RJ. 2018. Genetic compensation triggered by actin mutation prevents the muscle damage caused by loss of actin protein. PLOS Genet 14:e1007212
    [Google Scholar]
  141. 141. 
    Sztal TE, Stainier DYR. 2020. Transcriptional adaptation: a mechanism underlying genetic robustness. Development 147:15dev186452
    [Google Scholar]
  142. 142. 
    Theodosiou M, Widmaier M, Bottcher RT, Rognoni E, Veelders M et al. 2016. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. eLife 5:e10130
    [Google Scholar]
  143. 143. 
    Topczewska JM, Topczewski J, Shostak A, Kume T, Solnica-Krezel L, Hogan BLM. 2001. The winged helix transcription factor Foxc1a is essential for somitogenesis in zebrafish. Genes Dev 15:2483–93
    [Google Scholar]
  144. 144. 
    Vítor AC, Huertas P, Legube G, de Almeida SF. 2020. Studying DNA double-strand break repair: an ever-growing toolbox. Front. Mol. Biosci. 7:24
    [Google Scholar]
  145. 145. 
    Wagner A. 2000. Robustness against mutations in genetic networks of yeast. Nat. Genet. 24:355–61
    [Google Scholar]
  146. 146. 
    Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y et al. 2015. Identification and characterization of essential genes in the human genome. Science 350:1096–101
    [Google Scholar]
  147. 147. 
    Wen JD, Lancaster L, Hodges C, Zeri AC, Yoshimura SH et al. 2008. Following translation by single ribosomes one codon at a time. Nature 452:598–603
    [Google Scholar]
  148. 148. 
    White JK, Gerdin AK, Karp NA, Ryder E, Buljan M et al. 2013. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154:452–64
    [Google Scholar]
  149. 149. 
    Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH 2003. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat. Genet. 35:217–18
    [Google Scholar]
  150. 150. 
    Wilkinson MF. 2019. Genetic paradox explained by nonsense. Nature 568:179–80
    [Google Scholar]
  151. 151. 
    Wilson RC, Doudna JA. 2013. Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 42:217–39
    [Google Scholar]
  152. 152. 
    Wood V, Lock A, Harris MA, Rutherford K, Bähler J, Oliver SG. 2019. Hidden in plain sight: What remains to be discovered in the eukaryotic proteome?. Open Biol 9:180241
    [Google Scholar]
  153. 153. 
    Yamamoto S, Jaiswal M, Charng WL, Gambin T, Karaca E et al. 2014. A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 159:200–14
    [Google Scholar]
  154. 154. 
    Ye D, Wang X, Wei C, He M, Wang H et al. 2019. Marcksb plays a key role in the secretory pathway of zebrafish Bmp2b. PLOS Genet 15:e1008306
    [Google Scholar]
  155. 155. 
    Zabinsky RA, Mason GA, Queitsch C, Jarosz DF. 2019. It's not magic—Hsp90 and its effects on genetic and epigenetic variation. Semin. Cell Dev. Biol. 88:21–35
    [Google Scholar]
  156. 156. 
    Zhao X-F, Fjose A, Larsen N, Helvik JV, Drivenes O. 2008. Treatment with small interfering RNA affects the microRNA pathway and causes unspecific defects in zebrafish embryos. FEBS J 275:2177–84
    [Google Scholar]
  157. 157. 
    Zimmer AM, Pan YK, Chandrapalan T, Kwong RWM, Perry SF. 2019. Loss-of-function approaches in comparative physiology: Is there a future for knockdown experiments in the era of genome editing?. J. Exp. Biol. 222:jeb175737
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071719-020342
Loading
/content/journals/10.1146/annurev-genet-071719-020342
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error