1932

Abstract

The advent of induced pluripotent stem (iPS) cells has opened up numerous avenues of opportunity for cell therapy, including the initiation in September 2014 of the first human clinical trial to treat dry age-related macular degeneration. In parallel, advances in genome-editing technologies by site-specific nucleases have dramatically improved our ability to edit endogenous genomic sequences at targeted sites of interest. In fact, clinical trials have already begun to implement this technology to control HIV infection. Genome editing in iPS cells is a powerful tool and enables researchers to investigate the intricacies of the human genome in a dish. In the near future, the groundwork laid by such an approach may expand the possibilities of gene therapy for treating congenital disorders. In this review, we summarize the exciting progress being made in the utilization of genomic editing technologies in pluripotent stem cells and discuss remaining challenges toward gene therapy applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112414-054926
2015-11-23
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/genet/49/1/annurev-genet-112414-054926.html?itemId=/content/journals/10.1146/annurev-genet-112414-054926&mimeType=html&fmt=ahah

Literature Cited

  1. Aizawa E, Hirabayashi Y, Iwanaga Y, Suzuki K, Sakurai K. 1.  et al. 2012. Efficient and accurate homologous recombination in hESCs and hiPSCs using helper-dependent adenoviral vectors. Mol. Ther. 20:424–31 [Google Scholar]
  2. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. 2.  2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17:126–40 [Google Scholar]
  3. Bae KH, Kwon YD, Shin HC, Hwang MS, Ryu EH. 3.  et al. 2003. Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat. Biotechnol. 21:275–80 [Google Scholar]
  4. Bae S, Kweon J, Kim HS, Kim JS. 4.  2014. Microhomology-based choice of Cas9 nuclease target sites. Nat. Methods 11:705–6 [Google Scholar]
  5. Batista PJ, Molinie B, Wang J, Qu K, Zhang J. 5.  et al. 2014. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15:707–19 [Google Scholar]
  6. Bhatia S, Pilquil C, Roth-Albin I, Draper JS. 6.  2013. Demarcation of stable subpopulations within the pluripotent hESC compartment. PLOS ONE 8:e57276 [Google Scholar]
  7. Bibikova M, Golic M, Golic KG, Carroll D. 7.  2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–75 [Google Scholar]
  8. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S. 8.  et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–12 [Google Scholar]
  9. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS. 9.  et al. 2005. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–56 [Google Scholar]
  10. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B. 10.  et al. 2007. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–95 [Google Scholar]
  11. Buecker C, Chen HH, Polo JM, Daheron L, Bu L. 11.  et al. 2010. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell 6:535–46 [Google Scholar]
  12. Byrne SM, Ortiz L, Mali P, Aach J, Church GM. 12.  2014. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res. 433e21
  13. Cai M, Yang Y. 13.  2014. Targeted genome editing tools for disease modeling and gene therapy. Curr. Gene Ther. 14:2–9 [Google Scholar]
  14. Capecchi MR. 14.  2005. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6:507–12 [Google Scholar]
  15. Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S. 15.  2005. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132:885–96 [Google Scholar]
  16. Chakraborty S, Ji H, Kabadi AM, Gersbach CA, Christoforou N, Leong KW. 16.  2014. A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep. 3:940–47 [Google Scholar]
  17. Chambers I, Colby D, Robertson M, Nichols J, Lee S. 17.  et al. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–55 [Google Scholar]
  18. Chames P, Epinat J-C, Guillier S, Patin A, Lacroix E, Pâques F. 18.  2005. In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination. Nucleic Acids Res. 33:e178 [Google Scholar]
  19. Chang C-J, Bouhassira EE. 19.  2012. Zinc-finger nuclease–mediated correction of α-thalassemia in iPS cells. Blood 120:3906–14 [Google Scholar]
  20. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K. 20.  et al. 2011. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8:753–55 [Google Scholar]
  21. Chen W, Liu J, Zhang L, Xu H, Guo X. 21.  et al. 2014. Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique. Sci. Rep. 4:5404 [Google Scholar]
  22. Cheng AW, Wang H, Yang H, Shi L, Katz Y. 22.  et al. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23:1163–71 [Google Scholar]
  23. Choi S, Kim Y, Shim J, Park J, Wang R. 23.  et al. 2013. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 57:2458–68 [Google Scholar]
  24. Choulika A, Perrin A, Dujon B, Nicolas JF. 24.  1995. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15:1968–73 [Google Scholar]
  25. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F. 25.  et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–61 [Google Scholar]
  26. Cong L, Ran FA, Cox D, Lin S, Barretto R. 26.  et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23 [Google Scholar]
  27. Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M. 27.  et al. 2008. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol. Ther. 16:352–58 [Google Scholar]
  28. Cowan CA, Atienza J, Melton DA, Eggan K. 28.  2005. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–73 [Google Scholar]
  29. Davis L, Maizels N. 28a.  2014. Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. PNAS 111:10E924–32 [Google Scholar]
  30. Davis RP, Ng ES, Costa M, Mossman AK, Sourris K. 29.  et al. 2008. Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111:1876–84 [Google Scholar]
  31. DeKelver R, Choi V, Moehle E, Paschon D, Hockemeyer D. 30.  et al. 2010. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease–driven transgenesis into a safe harbor locus in the human genome. Genome Res. 20:1133–42 [Google Scholar]
  32. Dianov GL, Hübscher U. 30a.  2013. Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res 41:63483–90 [Google Scholar]
  33. Ding Q, Lee Y-K, Schaefer EAK, Peters DT, Veres A. 31.  et al. 2013. A TALEN genome-editing system for generating human stem cell–based disease models. Cell Stem Cell 12:238–51 [Google Scholar]
  34. Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. 32.  2013. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12:393–94 [Google Scholar]
  35. Dreier B, Beerli RR, Segal DJ, Flippin JD, Barbas CF 3rd. 33.  2001. Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276:29466–78 [Google Scholar]
  36. Du Y, Wang J, Jia J, Song N, Xiang C. 34.  et al. 2014. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell 14:394–403 [Google Scholar]
  37. Epinat J-C, Arnould S, Chames P, Rochaix P, Desfontaines D. 35.  et al. 2003. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 31:2952–62 [Google Scholar]
  38. Evans MJ, Kaufman MH. 36.  1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–56 [Google Scholar]
  39. Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. 37.  2010. 20 years of gene therapy for SCID. Nat. Immunol. 11:457–60 [Google Scholar]
  40. Folger KR, Wong EA, Wahl G, Capecchi MR. 38.  1982. Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol. Cell. Biol. 2:1372–87 [Google Scholar]
  41. Fong H, Wang C, Knoferle J, Walker D, Balestra ME. 39.  et al. 2013. Genetic correction of tauopathy phenotypes in neurons derived from human induced pluripotent stem cells. Stem Cell Rep. 1:226–34 [Google Scholar]
  42. Forster R, Chiba K, Schaeffer L, Regalado SG, Lai CS. 40.  et al. 2014. Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells. Stem Cell Rep. 2:838–52 [Google Scholar]
  43. Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. 41.  2014. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33:179–86 [Google Scholar]
  44. Fu Y, Foden J, Khayter C, Maeder M, Reyon D. 42.  et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822–26 [Google Scholar]
  45. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E. 43.  et al. 2013. Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282–86 [Google Scholar]
  46. Gaj T, Gersbach CA, Barbas CF 3rd. 44.  2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:397–405 [Google Scholar]
  47. Garate Z, Davis BR, Quintana-Bustamante O, Segovia JC. 45.  2013. New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells. Hum. Gene Ther. 24:571–83 [Google Scholar]
  48. Garçon L, Ge J, Manjunath SH, Mills JA, Apicella M. 46.  et al. 2013. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients. Blood 122:912–21 [Google Scholar]
  49. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA. 47.  et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–51 [Google Scholar]
  50. Gonzalez F, Zhu Z, Shi ZD, Lelli K, Verma N. 48.  et al. 2014. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15:215–26 [Google Scholar]
  51. Grizot S, Epinat J-C, Thomas S, Duclert A, Rolland S. 49.  et al. 2010. Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds. Nucleic Acids Res. 38:2006–18 [Google Scholar]
  52. Gurdon JB, Elsdale TR, Fischberg M. 50.  1958. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:64–65 [Google Scholar]
  53. Hasty P, Rivera-Pérez J, Bradley A. 50a.  1991. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11:115586–91 [Google Scholar]
  54. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A. 51.  et al. 2007. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–23 [Google Scholar]
  55. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M. 52.  et al. 2009. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 27:851–57 [Google Scholar]
  56. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q. 53.  et al. 2011. Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29:731–34 [Google Scholar]
  57. Holt N, Wang J, Kim K, Friedman G, Wang X. 54.  et al. 2010. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat. Biotechnol. 28:839–47 [Google Scholar]
  58. Horii T, Tamura D, Morita S, Kimura M, Hatada I. 55.  2013. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system. Int. J. Mol. Sci. 14:19774–81 [Google Scholar]
  59. Hotta A, Cheung AY, Farra N, Vijayaragavan K, Seguin CA. 56.  et al. 2009. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat. Methods 6:370–76 [Google Scholar]
  60. Hsu PD, Lander ES, Zhang F. 57.  2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78 [Google Scholar]
  61. Hsu PD, Scott D, Weinstein J, Ran F, Konermann S. 58.  et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:827–32 [Google Scholar]
  62. Inoue H, Nagata N, Kurokawa H, Yamanaka S. 59.  2014. iPS cells: a game changer for future medicine. EMBO J. 33:409–17 [Google Scholar]
  63. Isalan M, Klug A, Choo Y. 60.  1998. Comprehensive DNA recognition through concerted interactions from adjacent zinc fingers. Biochemistry 37:12026–33 [Google Scholar]
  64. Jiang J, Jing Y, Cost G, Chiang J, Kolpa H. 61.  et al. 2013. Translating dosage compensation to trisomy 21. Nature 500:296–300 [Google Scholar]
  65. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 62.  2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31:233–39 [Google Scholar]
  66. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 63.  2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21 [Google Scholar]
  67. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. 64.  2013. RNA-programmed genome editing in human cells. eLife 2:e00471 [Google Scholar]
  68. Kamao H, Mandai M, Okamoto S, Sakai N, Suga A. 65.  et al. 2014. Characterization of human induced pluripotent stem cell–derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep. 2:205–18 [Google Scholar]
  69. Khan IF, Hirata RK, Wang PR, Li Y, Kho J. 66.  et al. 2010. Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol. Ther. 18:1192–99 [Google Scholar]
  70. Kim H, Kim JS. 67.  2014. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15:321–34 [Google Scholar]
  71. Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS. 68.  2009. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19:1279–88 [Google Scholar]
  72. Kiskinis E, Sandoe J, Williams LA, Boulting GL, Moccia R. 69.  et al. 2014. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14:781–95 [Google Scholar]
  73. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG. 70.  et al. 2008. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26:443–52 [Google Scholar]
  74. Lee HJ, Kweon J, Kim E, Kim S, Kim J-S. 71.  2012. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 22:539–48 [Google Scholar]
  75. Li H, Haurigot V, Doyon Y, Li T, Wong SY. 72.  et al. 2011. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–21 [Google Scholar]
  76. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T. 73.  et al. 2015. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep. 4:143–54 [Google Scholar]
  77. Li HL, Nakano T, Hotta A. 74.  2014. Genetic correction using engineered nucleases for gene therapy applications. Dev. Growth Differ. 56:63–77 [Google Scholar]
  78. Li M, Suzuki K, Kim NY, Liu GH, Izpisua Belmonte JC. 75.  2014. A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. J. Biol. Chem. 289:4594–99 [Google Scholar]
  79. Li Y, McClintick J, Zhong L, Edenberg HJ, Yoder MC, Chan RJ. 76.  2005. Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood 105:635–37 [Google Scholar]
  80. Lin Y, Cradick T, Brown M, Deshmukh H, Ranjan P. 77.  et al. 2014. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 22:S94–95 [Google Scholar]
  81. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee Y-L. 78.  et al. 2007. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25:1298–306 [Google Scholar]
  82. Lyozin GT, Bressloff PC, Kumar A, Kosaka Y, Demarest BL. 79.  et al. 2014. Isolation of rare recombinants without using selectable markers for one-step seamless BAC mutagenesis. Nat. Methods 11:966–70 [Google Scholar]
  83. Ma N, Liao B, Zhang H, Wang L, Shan Y. 80.  et al. 2014. Transcription activator–like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells. J. Biol. Chem. 288:34671–79 [Google Scholar]
  84. Mae S, Shono A, Shiota F, Yasuno T, Kajiwara M. 81.  et al. 2013. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat. Commun. 4:1367 [Google Scholar]
  85. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. 82.  2013. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10:977–79 [Google Scholar]
  86. Maetzel D, Sarkar S, Wang H, Abi-Mosleh L, Xu P. 83.  et al. 2014. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Rep. 2:866–80 [Google Scholar]
  87. Maier DA, Brennan AL, Jiang S, Binder-Scholl GK, Lee G. 84.  et al. 2013. Efficient clinical scale gene modification via zinc finger nuclease–targeted disruption of the HIV co-receptor CCR5. Hum. Gene Ther. 24:245–58 [Google Scholar]
  88. Mali P, Yang L, Esvelt KM, Aach J, Guell M. 85.  et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:823–26 [Google Scholar]
  89. Mansour SL, Thomas KR, Capecchi MR. 86.  1988. Disruption of the proto-oncogene int-2 in mouse embryo–derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–52 [Google Scholar]
  90. Martin GR. 87.  1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78:7634–38 [Google Scholar]
  91. Maruyama M, Ichisaka T, Nakagawa M, Yamanaka S. 88.  2005. Differential roles for Sox15 and Sox2 in transcriptional control in mouse embryonic stem cells. J. Biol. Chem. 280:24371–79 [Google Scholar]
  92. Matsui H, Fujimoto N, Sasakawa N, Ohinata Y, Shima M. 89.  et al. 2014. Delivery of full-length factor VIII using a piggyBac transposon vector to correct a mouse model of hemophilia A. PLOS ONE 9:e104957 [Google Scholar]
  93. Merling RK, Sweeney CL, Chu J, Bodansky A, Choi U. 90.  et al. 2015. An AAVS1-targeted minigene platform for correction of iPSCs from all five types of chronic granulomatous disease. Mol. Ther. 23:147–57 [Google Scholar]
  94. Miller JC, Tan S, Qiao G, Barlow KA, Wang J. 91.  et al. 2011. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29:143–48 [Google Scholar]
  95. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M. 92.  et al. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–42 [Google Scholar]
  96. Miyaoka Y, Chan AH, Judge LM, Yoo J, Huang M. 93.  et al. 2014. Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat. Methods 11:291–93 [Google Scholar]
  97. Moscou MJ, Bogdanove AJ. 94.  2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:1501 [Google Scholar]
  98. Nichols J, Smith A. 95.  2009. Naive and primed pluripotent states. Cell Stem Cell 4:487–92 [Google Scholar]
  99. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D. 96.  et al. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–91 [Google Scholar]
  100. Niwa H, Miyazaki J, Smith AG. 97.  2000. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24:372–76 [Google Scholar]
  101. Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ. 98.  et al. 2013. TALEN-based gene correction for epidermolysis bullosa. Mol. Ther. 21:1151–59 [Google Scholar]
  102. Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT. 99.  et al. 2013. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol. Ther. 21:1718–26 [Google Scholar]
  103. Pabo CO, Peisach E, Grant RA. 100.  2001. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70:313–40 [Google Scholar]
  104. Palpant NJ, Dudzinski D. 101.  2013. Zinc finger nucleases: looking toward translation. Gene Ther. 20:121–27 [Google Scholar]
  105. Park CY, Kim J, Kweon J, Son JS, Lee JS. 102.  et al. 2014. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc. Natl. Acad. Sci. USA 111:9253–58 [Google Scholar]
  106. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T. 103.  et al. 2008. Disease-specific induced pluripotent stem cells. Cell 134:877–86 [Google Scholar]
  107. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA. 104.  et al. 2008. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26:808–16 [Google Scholar]
  108. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM. 105.  et al. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10:973–76 [Google Scholar]
  109. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS. 106.  et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–83 [Google Scholar]
  110. Radecke F, Peter I, Radecke S, Gellhaus K, Schwarz K, Cathomen T. 107.  2006. Targeted chromosomal gene modification in human cells by single-stranded oligodeoxynucleotides in the presence of a DNA double-strand break. Mol. Ther. 14:798–808 [Google Scholar]
  111. Rais Y, Zviran A, Geula S, Gafni O, Chomsky E. 108.  et al. 2013. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502:65–70 [Google Scholar]
  112. Raitano S, Ordovas L, De Muynck L, Guo W, Espuny-Camacho I. 109.  et al. 2015. Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia. Stem Cell Rep. 4:16–24 [Google Scholar]
  113. Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S. 110.  et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–89 [Google Scholar]
  114. Río P, Baños R, Lombardo A, Quintana-Bustamante O, Alvarez L. 111.  et al. 2014. Targeted gene therapy and cell reprogramming in Fanconi anemia. EMBO Mol. Med. 6:835–48 [Google Scholar]
  115. Rouet P, Smih F, Jasin M. 112.  1994. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91:6064–68 [Google Scholar]
  116. Rouet P, Smih F, Jasin M. 113.  1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14:8096–106 [Google Scholar]
  117. Ruby KM, Zheng B. 114.  2009. Gene targeting in a HUES line of human embryonic stem cells via electroporation. Stem Cells 27:1496–506 [Google Scholar]
  118. Sakuma T, Hosoi S, Woltjen K, Suzuki K-I, Kashiwagi K. 115.  et al. 2013. Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 18:315–26 [Google Scholar]
  119. Sander JD, Joung JK. 116.  2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:347–55 [Google Scholar]
  120. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK. 117.  et al. 2012. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–20 [Google Scholar]
  121. Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C. 118.  et al. 2011. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29:1717–26 [Google Scholar]
  122. Segal DJ, Dreier B, Beerli RR, Barbas CF 3rd. 119.  1999. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96:2758–63 [Google Scholar]
  123. Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z. 120.  et al. 2014. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15:12–13 [Google Scholar]
  124. Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. 121.  2000. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28:3361–69 [Google Scholar]
  125. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. 122.  1985. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 317:230–34 [Google Scholar]
  126. Soldner F, Laganière J, Cheng AW, Hockemeyer D, Gao Q. 123.  et al. 2011. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146:318–31 [Google Scholar]
  127. Song H, Chung S-K, Xu Y. 124.  2010. Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6:80–89 [Google Scholar]
  128. Suzuki K, Mitsui K, Aizawa E, Hasegawa K, Kawase E. 125.  et al. 2008. Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors. Proc. Natl. Acad. Sci. USA 105:13781–86 [Google Scholar]
  129. Suzuki K, Yu C, Qu J, Li M, Yao X. 126.  et al. 2014. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell 15:31–36 [Google Scholar]
  130. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. 127.  2001. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11:1553–58 [Google Scholar]
  131. Takahashi K, Mitsui K, Yamanaka S. 128.  2003. Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature 423:541–45 [Google Scholar]
  132. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T. 129.  et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–72 [Google Scholar]
  133. Takahashi K, Yamanaka S. 130.  2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76 [Google Scholar]
  134. Takashima Y, Guo G, Loos R, Nichols J, Ficz G. 131.  et al. 2014. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158:1254–69 [Google Scholar]
  135. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 132.  2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–46 [Google Scholar]
  136. Tebas P, Stein D, Tang WW, Frank I, Wang SQ. 133.  et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370:901–10 [Google Scholar]
  137. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP. 134.  et al. 2007. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–99 [Google Scholar]
  138. Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA. 135.  et al. 2014. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:471–87 [Google Scholar]
  139. Thomas KR, Capecchi MR. 136.  1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–12 [Google Scholar]
  140. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ. 137.  et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–47 [Google Scholar]
  141. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV. 138.  et al. 2014. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33:187–97 [Google Scholar]
  142. Urbach A, Schuldiner M, Benvenisty N. 139.  2004. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22:635–41 [Google Scholar]
  143. Urnov FD, Miller JC, Lee Y-L, Beausejour CM, Rock JM. 140.  et al. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–51 [Google Scholar]
  144. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. 141.  2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11:636–46 [Google Scholar]
  145. Veres A, Gosis B, Ding Q, Collins R, Ragavendran A. 142.  et al. 2014. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15:27–30 [Google Scholar]
  146. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW. 143.  et al. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–18 [Google Scholar]
  147. Wang X, Wang Y, Huang H, Chen B, Chen X. 144.  et al. 2014. Precise gene modification mediated by TALEN and single-stranded oligodeoxynucleotides in human cells. PLOS ONE 9:e93575 [Google Scholar]
  148. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M. 145.  et al. 2007. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25:681–86 [Google Scholar]
  149. Williams LA, Davis-Dusenbery BN, Eggan KC. 146.  2012. SnapShot: directed differentiation of pluripotent stem cells. Cell 149:1174–74.e1 [Google Scholar]
  150. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. 147.  1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–13 [Google Scholar]
  151. Wu LC, Sun CW, Ryan TM, Pawlik KM, Ren J, Townes TM. 148.  2006. Correction of sickle cell disease by homologous recombination in embryonic stem cells. Blood 108:1183–88 [Google Scholar]
  152. Xie F, Ye L, Chang JC, Beyer AI, Wang J. 149.  et al. 2014. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 24:1526–33 [Google Scholar]
  153. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. 150.  2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–79 [Google Scholar]
  154. Yang L, Grishin D, Wang G, Aach J, Zhang CZ. 151.  et al. 2014. Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nat. Commun. 5:5507 [Google Scholar]
  155. Yang L, Guell M, Byrne S, Yang JL, De Los Angeles A. 152.  et al. 2013. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 41:9049–61 [Google Scholar]
  156. Yao Y, Nashun B, Zhou T, Qin L, Qin L. 153.  et al. 2011. Generation of CD34+ cells from CCR5-disrupted human embryonic and induced pluripotent stem cells. Hum. Gene Ther. 23:238–42 [Google Scholar]
  157. Ye L, Wang J, Beyer AI, Teque F, Cradick TJ. 154.  et al. 2014. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc. Natl. Acad. Sci. USA 111:9591–96 [Google Scholar]
  158. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu P-Q. 155.  et al. 2011. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–94 [Google Scholar]
  159. Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH. 156.  et al. 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339–50 [Google Scholar]
  160. Zhang F, Wen Y, Guo X. 157.  2014. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum. Mol. Genet. 23:R40–46 [Google Scholar]
  161. Zhu F, Gamboa M, Farruggio AP, Hippenmeyer S, Tasic B. 158.  et al. 2014. DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Res. 42:e34 [Google Scholar]
  162. Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S. 159.  et al. 2009. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:97–110 [Google Scholar]
  163. Zou J, Mali P, Huang X, Dowey SN, Cheng L. 160.  2011. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 118:4599–608 [Google Scholar]
  164. Zou J, Sweeney CL, Chou BK, Choi U, Pan J. 161.  et al. 2011. Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease–mediated safe harbor targeting. Blood 117:5561–72 [Google Scholar]
  165. Zwaka TP, Thomson JA. 162.  2003. Homologous recombination in human embryonic stem cells. Nat. Biotechnol. 21:319–21 [Google Scholar]
/content/journals/10.1146/annurev-genet-112414-054926
Loading
/content/journals/10.1146/annurev-genet-112414-054926
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error