1932

Abstract

Tissue-resident macrophages are present in most tissues with developmental, self-renewal, or functional attributes that do not easily fit into a textbook picture of a plastic and multifunctional macrophage originating from hematopoietic stem cells; nor does it fit a pro- versus anti-inflammatory paradigm. This review presents and discusses current knowledge on the developmental biology of macrophages from an evolutionary perspective focused on the function of macrophages, which may aid in study of developmental, inflammatory, tumoral, and degenerative diseases. We also propose a framework to investigate the functions of macrophages in vivo and discuss how inherited germline and somatic mutations may contribute to the roles of macrophages in diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-093019-111748
2021-04-26
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-093019-111748.html?itemId=/content/journals/10.1146/annurev-immunol-093019-111748&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Werner Y, Mass E, Ashok Kumar P, Ulas T, Handler K et al. 2020. Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke. Nat. Neurosci. 23:351–62
    [Google Scholar]
  2. 2. 
    Jacome-Galarza CE, Percin GI, Muller JT, Mass E, Lazarov T et al. 2019. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568:541–45
    [Google Scholar]
  3. 3. 
    Stamatiades EG, Tremblay ME, Bohm M, Crozet L, Bisht K et al. 2016. Immune monitoring of trans-endothelial transport by kidney-resident macrophages. Cell 166:991–1003
    [Google Scholar]
  4. 4. 
    Godwin JW, Pinto AR, Rosenthal NA 2013. Macrophages are required for adult salamander limb regeneration. PNAS 110:9415–20
    [Google Scholar]
  5. 5. 
    Takeishi T, Hirano K, Kobayashi T, Hasegawa G, Hatakeyama K, Naito M. 1999. The role of Kupffer cells in liver regeneration. Arch. Histol. Cytol. 62:413–22
    [Google Scholar]
  6. 6. 
    Wolf Y, Boura-Halfon S, Cortese N, Haimon Z, Sar Shalom H et al. 2017. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat. Immunol. 18:665–74
    [Google Scholar]
  7. 7. 
    Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S et al. 2006. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Investig. 116:115–24
    [Google Scholar]
  8. 8. 
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 112:1796–808
    [Google Scholar]
  9. 9. 
    Woodcock KJ, Kierdorf K, Pouchelon CA, Vivancos V, Dionne MS, Geissmann F. 2015. Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity 42:133–44
    [Google Scholar]
  10. 10. 
    Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B et al. 2019. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178:686–98.e14
    [Google Scholar]
  11. 11. 
    Rosen ED, Spiegelman BM. 2006. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–53
    [Google Scholar]
  12. 12. 
    Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. 1995. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Investig. 95:2409–15
    [Google Scholar]
  13. 13. 
    Cox N, Geissmann F. 2020. Macrophage ontogeny in the control of adipose tissue biology. Curr. Opin. Immunol. 62:1–8
    [Google Scholar]
  14. 14. 
    Nicholson AM, Baker MC, Finch NA, Rutherford NJ, Wider C et al. 2013. CSF1R mutations link POLD and HDLS as a single disease entity. Neurology 80:1033–40
    [Google Scholar]
  15. 15. 
    Baba Y, Ghetti B, Baker MC, Uitti RJ, Hutton ML et al. 2006. Hereditary diffuse leukoencephalopathy with spheroids: clinical, pathologic and genetic studies of a new kindred. Acta Neuropathol 111:300–11
    [Google Scholar]
  16. 16. 
    Konno T, Tada M, Tada M, Nishizawa M, Ikeuchi T. 2014.. [ Hereditary diffuse leukoencephalopathy with spheroids (HDLS): a review of the literature on its clinical characteristics and mutations in the colony-stimulating factor-1 receptor gene. ]. Brain Nerve 66:581–90 In Japanese )
    [Google Scholar]
  17. 17. 
    Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N et al. 2011. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 44:200–5
    [Google Scholar]
  18. 18. 
    Wider C, Van Gerpen JA, DeArmond S, Shuster EA, Dickson DW, Wszolek ZK. 2009. Leukoencephalopathy with spheroids (HDLS) and pigmentary leukodystrophy (POLD): a single entity?. Neurology 72:1953–59
    [Google Scholar]
  19. 19. 
    Oosterhof N, Chang IJ, Karimiani EG, Kuil LE, Jensen DM et al. 2019. Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am. J. Hum. Genet. 104:936–47
    [Google Scholar]
  20. 20. 
    Mass E, Ballesteros I, Farlik M, Halbritter F, Gunther P et al. 2016. Specification of tissue-resident macrophages during organogenesis. Science 353:aaf4238
    [Google Scholar]
  21. 21. 
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E et al. 2015. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–51
    [Google Scholar]
  22. 22. 
    Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N et al. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90
    [Google Scholar]
  23. 23. 
    Mass E, Jacome-Galarza CE, Blank T, Lazarov T, Durham BH et al. 2017. A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature 549:389–93
    [Google Scholar]
  24. 24. 
    Metchnikoff E. 1905. Immunity in Infective Diseases Cambridge, UK: Cambridge Univ. Press
  25. 25. 
    Metchnikoff E. 1883. Untersuchungen ueber die mesodermalen Phagocyten einiger Wirbeltiere. Biologisches Centralblatt 3:560–65
    [Google Scholar]
  26. 26. 
    Buchmann K. 2014. Evolution of innate immunity: clues from invertebrates via fish to mammals. Front. Immunol. 5:459
    [Google Scholar]
  27. 27. 
    Gaudet RG, Bradfield CJ, MacMicking JD. 2016. Evolution of cell-autonomous effector mechanisms in macrophages versus non-immune cells. Microbiol. Spectr. 4: https://doi.org/10.1128/microbiolspec.MCHD-0050-2016
    [Crossref] [Google Scholar]
  28. 28. 
    Bilej M, De Baetselier P, Beschin A. 2000. Antimicrobial defense of the earthworm. Folia Microbiol. 45:283–300
    [Google Scholar]
  29. 29. 
    Wittamer V, Bertrand JY, Gutschow PW, Traver D. 2011. Characterization of the mononuclear phagocyte system in zebrafish. Blood 117:7126–35
    [Google Scholar]
  30. 30. 
    Cossart P, Helenius A. 2014. Endocytosis of viruses and bacteria. Cold Spring Harb. Perspect. Biol. 6:a016972
    [Google Scholar]
  31. 31. 
    Ho HI, Hirose S, Kuspa A, Shaulsky G. 2013. Kin recognition protects cooperators against cheaters. Curr. Biol. 23:1590–95
    [Google Scholar]
  32. 32. 
    Khare A, Santorelli LA, Strassmann JE, Queller DC, Kuspa A, Shaulsky G. 2009. Cheater-resistance is not futile. Nature 461:980–82
    [Google Scholar]
  33. 33. 
    Hirose S, Benabentos R, Ho HI, Kuspa A, Shaulsky G. 2011. Self-recognition in social amoebae is mediated by allelic pairs of tiger genes. Science 333:467–70
    [Google Scholar]
  34. 34. 
    Chen G, Zhuchenko O, Kuspa A. 2007. Immune-like phagocyte activity in the social amoeba. Science 317:678–81
    [Google Scholar]
  35. 35. 
    Vogel G, Thilo L, Schwarz H, Steinhart R. 1980. Mechanism of phagocytosis in Dictyostelium discoideum: Phagocytosis is mediated by different recognition sites as disclosed by mutants with altered phagocytotic properties. J. Cell Biol. 86:456–65
    [Google Scholar]
  36. 36. 
    Walk A, Callahan J, Srisawangvong P, Leuschner J, Samaroo D et al. 2011. Lipopolysaccharide enhances bactericidal activity in Dictyostelium discoideum cells. Dev. Comp. Immunol. 35:850–56
    [Google Scholar]
  37. 37. 
    Albert ML, Kim JI, Birge RB. 2000. αvβ5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat. Cell Biol. 2:899–905
    [Google Scholar]
  38. 38. 
    Wang QQ, Li H, Oliver T, Glogauer M, Guo J, He YW. 2008. Integrin β1 regulates phagosome maturation in macrophages through Rac expression. J. Immunol. 180:2419–28
    [Google Scholar]
  39. 39. 
    Underhill DM, Ozinsky A. 2002. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20:825–52
    [Google Scholar]
  40. 40. 
    Glass E, Stewart J, Weir DM. 1981. Presence of bacterial binding ‘lectin-like’ receptors on phagocytes. Immunology 44:529–34
    [Google Scholar]
  41. 41. 
    Taylor ME, Drickamer K. 2019. Mammalian sugar-binding receptors: known functions and unexplored roles. FEBS J 286:1800–14
    [Google Scholar]
  42. 42. 
    Foukas LC, Katsoulas HL, Paraskevopoulou N, Metheniti A, Lambropoulou M, Marmaras VJ. 1998. Phagocytosis of Escherichia coli by insect hemocytes requires both activation of the Ras/mitogen-activated protein kinase signal transduction pathway for attachment and β3 integrin for internalization. J. Biol. Chem. 273:14813–18
    [Google Scholar]
  43. 43. 
    Nonaka S, Nagaosa K, Mori T, Shiratsuchi A, Nakanishi Y. 2013. Integrin αPS3/βν-mediated phagocytosis of apoptotic cells and bacteria in Drosophila. J. Biol. Chem. 288:10374–80
    [Google Scholar]
  44. 44. 
    Melcarne C, Lemaitre B, Kurant E. 2019. Phagocytosis in Drosophila: from molecules and cellular machinery to physiology. Insect. Biochem. Mol. Biol. 109:1–12
    [Google Scholar]
  45. 45. 
    Tatischeff I, Petit PX, Grodet A, Tissier JP, Duband-Goulet I, Ameisen JC. 2001. Inhibition of multicellular development switches cell death of Dictyostelium discoideum towards mammalian-like unicellular apoptosis. Eur. J. Cell Biol. 80:428–41
    [Google Scholar]
  46. 46. 
    Cornillon S, Gebbie L, Benghezal M, Nair P, Keller S et al. 2006. An adhesion molecule in free-living Dictyostelium amoebae with integrin β features. EMBO Rep 7:617–21
    [Google Scholar]
  47. 47. 
    Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2:95–108
    [Google Scholar]
  48. 48. 
    Bayles KW. 2007. The biological role of death and lysis in biofilm development. Nat. Rev. Microbiol. 5:721–26
    [Google Scholar]
  49. 49. 
    Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K et al. 2009. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457:318–21
    [Google Scholar]
  50. 50. 
    Cohn ZA. 1963. The fate of bacteria within phagocytic cells: I. The degradation of isotopically labeled bacteria by polymorphonuclear leucocytes and macrophages. J. Exp. Med. 117:27–42
    [Google Scholar]
  51. 51. 
    del Rio-Hortega P. 1919. El “tercer elemento” de los centros nerviosos: I. La microglia en estado normal. II. Intervencion de la microglia en los procesos patologicos (celulas en bastoncito y cuerpos granuloadiposos). III. Naturaleza probable de la microglia. Bol. Soc. Esp. Biol. 9:68–120
    [Google Scholar]
  52. 52. 
    Kupffer C. 1876. Ueber Sternzellen der Leber. Arch. Für. Mikrosk. Anat. 12:353–58
    [Google Scholar]
  53. 53. 
    Langerhans P. 1868. Ueber die Nerven der menschlichen Haut. Arch. Für. Pathol. Anat. Physiol. Für. Klin. Med. 44:325–37
    [Google Scholar]
  54. 54. 
    Vilhardt F. 2005. Microglia: phagocyte and glia cell. Int. J. Biochem. Cell Biol. 37:17–21
    [Google Scholar]
  55. 55. 
    Pollard JW. 2009. Trophic macrophages in development and disease. Nat. Rev. Immunol. 9:259–70
    [Google Scholar]
  56. 56. 
    Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E et al. 1998. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4:814–21
    [Google Scholar]
  57. 57. 
    Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J. 2007. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 27:2596–605
    [Google Scholar]
  58. 58. 
    Michaelson MD, Bieri PL, Mehler MF, Xu H, Arezzo JC et al. 1996. CSF-1 deficiency in mice results in abnormal brain development. Development 122:2661–72
    [Google Scholar]
  59. 59. 
    Cohen PE, Hardy MP, Pollard JW. 1997. Colony-stimulating factor-1 plays a major role in the development of reproductive function in male mice. Mol. Endocrinol. 11:1636–50
    [Google Scholar]
  60. 60. 
    McKusick-Nathans Inst. Genet. Med 2007. Pulmonary alveolar proteinosis, acquired Online Mendelian Inheritance in Man, Baltimore, updated Apr. 7, 2017, retrieved Jan. 8, 2021. http://omim.org/entry/610910
  61. 61. 
    Bossard MJ, Tomaszek TA, Thompson SK, Amegadzie BY, Hanning CR et al. 1996. Proteolytic activity of human osteoclast cathepsin K: expression, purification, activation, and substrate identification. J. Biol. Chem. 271:12517–24
    [Google Scholar]
  62. 62. 
    Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A et al. 1998. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. PNAS 95:13453–58
    [Google Scholar]
  63. 63. 
    Boyle WJ, Simonet WS, Lacey DL. 2003. Osteoclast differentiation and activation. Nature 423:337–42
    [Google Scholar]
  64. 64. 
    Boissy P, Saltel F, Bouniol C, Jurdic P, Machuca-Gayet I. 2002. Transcriptional activity of nuclei in multinucleated osteoclasts and its modulation by calcitonin. Endocrinology 143:1913–21
    [Google Scholar]
  65. 65. 
    Maroteaux P, Lamy M. 1962. La pycnodysostose. Presse Med 70:999–1002
    [Google Scholar]
  66. 66. 
    Gelb BD, Shi GP, Chapman HA, Desnick RJ. 1996. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–38
    [Google Scholar]
  67. 67. 
    Shook BA, Wasko RR, Rivera-Gonzalez GC, Salazar-Gatzimas E, Lopez-Giraldez F et al. 2018. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362:eaar2971
    [Google Scholar]
  68. 68. 
    Frade JM, Barde YA. 1998. Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20:35–41
    [Google Scholar]
  69. 69. 
    Lang RA, Bishop JM. 1993. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74:453–62
    [Google Scholar]
  70. 70. 
    Xie H, Cui Z, Wang L, Xia Z, Hu Y et al. 2014. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 20:1270–78
    [Google Scholar]
  71. 71. 
    Han Y, You X, Xing W, Zhang Z, Zou W. 2018. Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 6:16
    [Google Scholar]
  72. 72. 
    Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ 2008. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. PNAS 105:20764–69
    [Google Scholar]
  73. 73. 
    Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. 2011. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLOS ONE 6:e26317
    [Google Scholar]
  74. 74. 
    Chawla A, Nguyen KD, Goh YP. 2011. Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 11:738–49
    [Google Scholar]
  75. 75. 
    Olefsky JM, Glass CK. 2010. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72:219–46
    [Google Scholar]
  76. 76. 
    van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. 1972. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46:845–52
    [Google Scholar]
  77. 77. 
    Volkman A, Gowans JL. 1965. The production of macrophages in the rat. Br. J. Exp. Pathol. 46:50–61
    [Google Scholar]
  78. 78. 
    Virolainen M. 1968. Hematopoietic origin of macrophages as studied by chromosome markers in mice. J. Exp. Med. 127:943–52
    [Google Scholar]
  79. 79. 
    Kennedy DW, Abkowitz JL. 1997. Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model. Blood 90:986–93
    [Google Scholar]
  80. 80. 
    Godleski JJ, Brain JD. 1972. The origin of alveolar macrophages in mouse radiation chimeras. J. Exp. Med. 136:630–43
    [Google Scholar]
  81. 81. 
    Parwaresch MR, Wacker HH. 1984. Origin and kinetics of resident tissue macrophages: parabiosis studies with radiolabelled leucocytes. Cell Tissue Kinet 17:25–39
    [Google Scholar]
  82. 82. 
    Alliot F, Godin I, Pessac B. 1999. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117:145–52
    [Google Scholar]
  83. 83. 
    Yona S, Kim KW, Wolf Y, Mildner A, Varol D et al. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91
    [Google Scholar]
  84. 84. 
    Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB et al. 2013. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804
    [Google Scholar]
  85. 85. 
    Kieusseian A, Brunet de la Grange P, Burlen-Defranoux O, Godin I, Cumano A. 2012. Immature hematopoietic stem cells undergo maturation in the fetal liver. Development 139:3521–30
    [Google Scholar]
  86. 86. 
    Merad M, Manz MG, Karsunky H, Wagers A, Peters W et al. 2002. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3:1135–41
    [Google Scholar]
  87. 87. 
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–45
    [Google Scholar]
  88. 88. 
    Okabe Y, Medzhitov R. 2014. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157:832–44
    [Google Scholar]
  89. 89. 
    Bleriot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M. 2015. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42:145–58
    [Google Scholar]
  90. 90. 
    Bain CC, Bravo-Blas A, Scott CL, Perdiguero EG, Geissmann F et al. 2014. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15:929–37
    [Google Scholar]
  91. 91. 
    Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA et al. 2014. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104
    [Google Scholar]
  92. 92. 
    Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD et al. 2011. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332:1284–88
    [Google Scholar]
  93. 93. 
    Calderon B, Carrero JA, Ferris ST, Sojka DK, Moore L et al. 2015. The pancreas anatomy conditions the origin and properties of resident macrophages. J. Exp. Med. 212:1497–512
    [Google Scholar]
  94. 94. 
    Ensan S, Li A, Besla R, Degousee N, Cosme J et al. 2016. Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nat. Immunol. 17:159–68
    [Google Scholar]
  95. 95. 
    Hassnain Waqas SF, Noble A, Hoang AC, Ampem G, Popp M et al. 2017. Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse. J. Leukoc. Biol. 102:845–55
    [Google Scholar]
  96. 96. 
    Waqas SFH, Hoang AC, Lin YT, Ampem G, Azegrouz H et al. 2017. Neuropeptide FF increases M2 activation and self-renewal of adipose tissue macrophages. J. Clin. Investig. 127:2842–54
    [Google Scholar]
  97. 97. 
    Kim KW, Vallon-Eberhard A, Zigmond E, Farache J, Shezen E et al. 2011. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118:e156–67
    [Google Scholar]
  98. 98. 
    Liao X, Shen Y, Zhang R, Sugi K, Vasudevan NT et al. 2018. Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy. PNAS 115:E4661–69
    [Google Scholar]
  99. 99. 
    Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR. 2011. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur. J. Immunol. 41:2155–64
    [Google Scholar]
  100. 100. 
    Tagliani E, Shi C, Nancy P, Tay CS, Pamer EG, Erlebacher A. 2011. Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J. Exp. Med. 208:1901–16
    [Google Scholar]
  101. 101. 
    Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. 2007. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10:1538–43
    [Google Scholar]
  102. 102. 
    Chorro L, Sarde A, Li M, Woollard KJ, Chambon P et al. 2009. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206:3089–100
    [Google Scholar]
  103. 103. 
    Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakoski NR et al. 2016. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17:1397–406
    [Google Scholar]
  104. 104. 
    Schneider C, Nobs SP, Kurrer M, Rehrauer H, Thiele C, Kopf M. 2014. Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat. Immunol. 15:1026–37
    [Google Scholar]
  105. 105. 
    Reu P, Khosravi A, Bernard S, Mold JE, Salehpour M et al. 2017. The lifespan and turnover of microglia in the human brain. Cell Rep 20:779–84
    [Google Scholar]
  106. 106. 
    Bian Z, Gong Y, Huang T, Lee CZW, Bian L et al. 2020. Deciphering human macrophage development at single-cell resolution. Nature 582:571–76
    [Google Scholar]
  107. 107. 
    Enzan H. 1986. Electron microscopic studies of macrophages in early human yolk sacs. Acta Pathol. Jpn. 36:49–64
    [Google Scholar]
  108. 108. 
    Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T et al. 2018. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat. Commun. 9:75
    [Google Scholar]
  109. 109. 
    Migliaccio G, Migliaccio AR, Petti S, Mavilio F, Russo G et al. 1986. Human embryonic hemopoiesis: kinetics of progenitors and precursors underlying the yolk sac–liver transition. J. Clin. Invest. 78:51–60
    [Google Scholar]
  110. 110. 
    Buchrieser J, James W, Moore MD. 2017. Human induced pluripotent stem cell-derived macrophages share ontogeny with MYB-independent tissue-resident macrophages. Stem Cell Rep 8:334–45
    [Google Scholar]
  111. 111. 
    Takata K, Kozaki T, Lee CZW, Thion MS, Otsuka M et al. 2017. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 47:183–98.e6
    [Google Scholar]
  112. 112. 
    Gautier EL, Shay T, Miller J, Greter M, Jakubzick C et al. 2012. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13:1118–28
    [Google Scholar]
  113. 113. 
    Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–26
    [Google Scholar]
  114. 114. 
    Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ et al. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–40
    [Google Scholar]
  115. 115. 
    Glass CK. 2015. Genetic and genomic approaches to understanding macrophage identity and function. Arterioscler. Thromb. Vasc. Biol. 35:755–62
    [Google Scholar]
  116. 116. 
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ et al. 2014. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17:131–43
    [Google Scholar]
  117. 117. 
    Sakai M, Troutman TD, Seidman JS, Ouyang Z, Spann NJ et al. 2019. Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity. Immunity 51:655–70.e8
    [Google Scholar]
  118. 118. 
    Patel DJ. 2016. A structural perspective on readout of epigenetic histone and DNA methylation marks. Cold Spring Harb. Perspect. Biol. 8:a018754
    [Google Scholar]
  119. 119. 
    Barreda DR, Neely HR, Flajnik MF. 2016. Evolution of myeloid cells. Microbiol. Spectr. 4: https://doi.org/10.1128/microbiolspec.MCHD-0007-2015
    [Crossref] [Google Scholar]
  120. 120. 
    Nott A, Holtman IR, Coufal NG, Schlachetzki JCM, Yu M et al. 2019. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366:1134–39
    [Google Scholar]
  121. 121. 
    Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA. 2017. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94:759–73.e8
    [Google Scholar]
  122. 122. 
    Knecht AK, Bronner-Fraser M. 2002. Induction of the neural crest: a multigene process. Nat. Rev. Genet. 3:453–61
    [Google Scholar]
  123. 123. 
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–58
    [Google Scholar]
  124. 124. 
    Li MO, Sarkisian MR, Mehal WZ, Rakic P, Flavell RA. 2003. Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302:1560–63
    [Google Scholar]
  125. 125. 
    Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J et al. 2013. Programmed cell senescence during mammalian embryonic development. Cell 155:1104–18
    [Google Scholar]
  126. 126. 
    Huffman Reed JA, Rice WR, Zsengeller ZK, Wert SE, Dranoff G, Whitsett JA. 1997. GM-CSF enhances lung growth and causes alveolar type II epithelial cell hyperplasia in transgenic mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 273:L715–25
    [Google Scholar]
  127. 127. 
    Yoshida M, Ikegami M, Reed JA, Chroneos ZC, Whitsett JA. 2001. GM-CSF regulates protein and lipid catabolism by alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 280:L379–86
    [Google Scholar]
  128. 128. 
    Ikegami M, Ueda T, Hull W, Whitsett JA, Mulligan RC et al. 1996. Surfactant metabolism in transgenic mice after granulocyte macrophage-colony stimulating factor ablation. Am. J. Physiol. Lung Cell. Mol. Physiol. 270:L650–58
    [Google Scholar]
  129. 129. 
    Henson PM, Hume DA. 2006. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 27:244–50
    [Google Scholar]
  130. 130. 
    Henson PM, Bratton DL. 2013. Antiinflammatory effects of apoptotic cells. J. Clin. Investig. 123:2773–74
    [Google Scholar]
  131. 131. 
    Arandjelovic S, Ravichandran KS. 2015. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16:907–17
    [Google Scholar]
  132. 132. 
    Nagata S, Hanayama R, Kawane K. 2010. Autoimmunity and the clearance of dead cells. Cell 140:619–30
    [Google Scholar]
  133. 133. 
    Nagata S. 2018. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 36:489–517
    [Google Scholar]
  134. 134. 
    Hochreiter-Hufford A, Ravichandran KS. 2013. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5:a008748
    [Google Scholar]
  135. 135. 
    Roberts AW, Lee BL, Deguine J, John S, Shlomchik MJ, Barton GM. 2017. Tissue-resident macrophages are locally programmed for silent clearance of apoptotic cells. Immunity 47:913–27.e6
    [Google Scholar]
  136. 136. 
    Morioka S, Maueroder C, Ravichandran KS. 2019. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50:1149–62
    [Google Scholar]
  137. 137. 
    Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. 2007. Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–39
    [Google Scholar]
  138. 138. 
    Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. 1992. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148:2207–16
    [Google Scholar]
  139. 139. 
    Flannagan RS, Canton J, Furuya W, Glogauer M, Grinstein S. 2014. The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis. Mol. Biol. Cell 25:1511–22
    [Google Scholar]
  140. 140. 
    Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. 2002. Identification of a factor that links apoptotic cells to phagocytes. Nature 417:182–87
    [Google Scholar]
  141. 141. 
    Lemke G. 2013. Biology of the TAM receptors. Cold Spring Harb. Perspect. Biol. 5:a009076
    [Google Scholar]
  142. 142. 
    Segawa K, Nagata S. 2015. An apoptotic ‘eat me’ signal: phosphatidylserine exposure. Trends Cell Biol 25:639–50
    [Google Scholar]
  143. 143. 
    Kawano M, Nagata S 2018. Lupus-like autoimmune disease caused by a lack of Xkr8, a caspase-dependent phospholipid scramblase. PNAS 115:2132–37
    [Google Scholar]
  144. 144. 
    Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R et al. 2001. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411:207–11
    [Google Scholar]
  145. 145. 
    Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M et al. 2004. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304:1147–50
    [Google Scholar]
  146. 146. 
    Miyanishi M, Segawa K, Nagata S. 2012. Synergistic effect of Tim4 and MFG-E8 null mutations on the development of autoimmunity. Int. Immunol. 24:551–59
    [Google Scholar]
  147. 147. 
    Kimani SG, Geng K, Kasikara C, Kumar S, Sriram G et al. 2014. Contribution of defective PS recognition and efferocytosis to chronic inflammation and autoimmunity. Front. Immunol. 5:566
    [Google Scholar]
  148. 148. 
    Bottger A, Alexandrova O. 2007. Programmed cell death in Hydra. Semin. Cancer Biol. 17:134–46
    [Google Scholar]
  149. 149. 
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–86
    [Google Scholar]
  150. 150. 
    Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–18
    [Google Scholar]
  151. 151. 
    Ling EA, Wong WC. 1993. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7:9–18
    [Google Scholar]
  152. 152. 
    McWhorter FY, Wang T, Nguyen P, Chung T Liu WF. 2013. Modulation of macrophage phenotype by cell shape. PNAS 110:17253–58
    [Google Scholar]
  153. 153. 
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8:752–58
    [Google Scholar]
  154. 154. 
    Nishibu A, Ward BR, Jester JV, Ploegh HL, Boes M, Takashima A. 2006. Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli. J. Investig. Dermatol. 126:787–96
    [Google Scholar]
  155. 155. 
    Chapman HA Jr., Allen CL, Stone OL, Fair DS. 1985. Human alveolar macrophages synthesize factor VII in vitro: possible role in interstitial lung disease. J. Clin. Investig. 75:2030–37
    [Google Scholar]
  156. 156. 
    Zanolini D, Merlin S, Feola M, Ranaldo G, Amoruso A et al. 2015. Extrahepatic sources of factor VIII potentially contribute to the coagulation cascade correcting the bleeding phenotype of mice with hemophilia A. Haematologica 100:881–92
    [Google Scholar]
  157. 157. 
    Finlay GA, O'Driscoll LR, Russell KJ, D'Arcy EM, Masterson JB et al. 1997. Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am. J. Respir. Crit. Care Med. 156:240–47
    [Google Scholar]
  158. 158. 
    Zhou X, Franklin RA, Adler M, Jacox JB, Bailis W et al. 2018. Circuit design features of a stable two-cell system. Cell 172:744–57.e17
    [Google Scholar]
  159. 159. 
    Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J et al. 2013. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16:543–51
    [Google Scholar]
  160. 160. 
    Pridans C, Raper A, Davis GM, Alves J, Sauter KA et al. 2018. Pleiotropic impacts of macrophage and microglial deficiency on development in rats with targeted mutation of the Csf1r locus. J. Immunol. 201:2683–99
    [Google Scholar]
  161. 161. 
    Cecchini MG, Dominguez MG, Mocci S, Wetterwald A, Felix R et al. 1994. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120:1357–72
    [Google Scholar]
  162. 162. 
    Cohen PE, Chisholm O, Arceci RJ, Stanley ER, Pollard JW. 1996. Absence of colony-stimulating factor-1 in osteopetrotic (csfmoP/csfmOP) mice results in male fertility defects. Biol. Reprod. 55:310–17
    [Google Scholar]
  163. 163. 
    Cohen PE, Zhu L, Pollard JW. 1997. Absence of colony stimulating factor-1 in osteopetrotic (csfmop/csfmop) mice disrupts estrous cycles and ovulation. Biol. Reprod. 56:110–18
    [Google Scholar]
  164. 164. 
    Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW. 2006. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev. Dyn. 235:3222–29
    [Google Scholar]
  165. 165. 
    Banaei-Bouchareb L, Gouon-Evans V, Samara-Boustani D, Castellotti MC, Czernichow P et al. 2004. Insulin cell mass is altered in Csf1op/Csf1op macrophage-deficient mice. J. Leukoc. Biol. 76:359–67
    [Google Scholar]
  166. 166. 
    Gordon EJ, Rao S, Pollard JW, Nutt SL, Lang RA, Harvey NL. 2010. Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development 137:3899–910
    [Google Scholar]
  167. 167. 
    Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q et al. 2010. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–40
    [Google Scholar]
  168. 168. 
    Blackwell TS, Hipps AN, Yamamoto Y, Han W, Barham WJ et al. 2011. NF-κB signaling in fetal lung macrophages disrupts airway morphogenesis. J. Immunol. 187:2740–47
    [Google Scholar]
  169. 169. 
    Higashi K, Naito M, Takeya M, Ando M, Araki S, Takahashi K. 1992. Ontogenetic development, differentiation, and phenotypic expression of macrophages in fetal rat lungs. J. Leukoc. Biol. 51:444–54
    [Google Scholar]
  170. 170. 
    Sathi GA, Farahat M, Hara ES, Taketa H, Nagatsuka H et al. 2017. MCSF orchestrates branching morphogenesis in developing submandibular gland tissue. J. Cell Sci. 130:1559–69
    [Google Scholar]
  171. 171. 
    Rae F, Woods K, Sasmono T, Campanale N, Taylor D et al. 2007. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r–EGFP transgene reporter. Dev. Biol. 308:232–46
    [Google Scholar]
  172. 172. 
    Munro DAD, Wineberg Y, Tarnick J, Vink CS, Li Z et al. 2019. Macrophages restrict the nephrogenic field and promote endothelial connections during kidney development. eLife 8:e43271
    [Google Scholar]
  173. 173. 
    Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL. 2011. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13:655–67
    [Google Scholar]
  174. 174. 
    Pekala P, Kawakami M, Vine W, Lane MD, Cerami A. 1983. Studies of insulin resistance in adipocytes induced by macrophage mediator. J. Exp. Med. 157:1360–65
    [Google Scholar]
  175. 175. 
    Kawakami M, Pekala PH, Lane MD, Cerami A 1982. Lipoprotein lipase suppression in 3T3-L1 cells by an endotoxin-induced mediator from exudate cells. PNAS 79:912–16
    [Google Scholar]
  176. 176. 
    Pekala PH, Kawakami M, Angus CW, Lane MD, Cerami A 1983. Selective inhibition of synthesis of enzymes for de novo fatty acid biosynthesis by an endotoxin-induced mediator from exudate cells. PNAS 80:2743–47
    [Google Scholar]
  177. 177. 
    Hotamisligil GS, Shargill NS, Spiegelman BM. 1993. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91
    [Google Scholar]
  178. 178. 
    Hirsch J, Batchelor B. 1976. Adipose tissue cellularity in human obesity. Clin. Endocrinol. Metab. 5:299–311
    [Google Scholar]
  179. 179. 
    McLaughlin T, Ackerman SE, Shen L, Engleman E. 2017. Role of innate and adaptive immunity in obesity-associated metabolic disease. J. Clin. Investig. 127:5–13
    [Google Scholar]
  180. 180. 
    Xu H, Barnes GT, Yang Q, Tan G, Yang D et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 112:1821–30
    [Google Scholar]
  181. 181. 
    Suganami T, Ogawa Y. 2010. Adipose tissue macrophages: their role in adipose tissue remodeling. J. Leukoc. Biol. 88:33–39
    [Google Scholar]
  182. 182. 
    Parker R, Weston CJ, Miao Z, Corbett C, Armstrong MJ et al. 2018. CC chemokine receptor 2 promotes recruitment of myeloid cells associated with insulin resistance in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 314:G483–93
    [Google Scholar]
  183. 183. 
    Pirzgalska RM, Seixas E, Seidman JS, Link VM, Sanchez NM et al. 2017. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23:1309–18
    [Google Scholar]
  184. 184. 
    Cox N, Crozet L, Holtman IR, Loyher P, Lazarov Tet al 2020. Diet-regulated production of PDGFcc by macrophages controls energy storage. bioRxiv 2020.06.15.152397
  185. 185. 
    Satoh T, Kidoya H, Naito H, Yamamoto M, Takemura N et al. 2013. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature 495:524–28
    [Google Scholar]
  186. 186. 
    Obstfeld AE, Sugaru E, Thearle M, Francisco AM, Gayet C et al. 2010. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59:916–25
    [Google Scholar]
  187. 187. 
    Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K et al. 2006. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Investig. 116:1494–505
    [Google Scholar]
  188. 188. 
    Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T et al. 2006. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 281:26602–14
    [Google Scholar]
  189. 189. 
    Ito A, Suganami T, Yamauchi A, Degawa-Yamauchi M, Tanaka M et al. 2008. Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue. J. Biol. Chem. 283:35715–23
    [Google Scholar]
  190. 190. 
    Kraegen EW, Clark PW, Jenkins AB, Daley EA, Chisholm DJ, Storlien LH. 1991. Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 40:1397–403
    [Google Scholar]
  191. 191. 
    Wernstedt Asterholm I, Tao C, Morley TS, Wang QA, Delgado-Lopez F et al. 2014. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 20:103–18
    [Google Scholar]
  192. 192. 
    Debels H, Galea L, Han XL, Palmer J, van Rooijen N et al. 2013. Macrophages play a key role in angiogenesis and adipogenesis in a mouse tissue engineering model. Tissue Eng. Part A 19:2615–25
    [Google Scholar]
  193. 193. 
    Zeyda M, Gollinger K, Kriehuber E, Kiefer FW, Neuhofer A, Stulnig TM. 2010. Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression. Int. J. Obes. 34:1684–94
    [Google Scholar]
  194. 194. 
    Remmerie A, Scott CL. 2018. Macrophages and lipid metabolism. Cell Immunol 330:27–42
    [Google Scholar]
  195. 195. 
    Chambon P. 2004. How I became one of the fathers of a superfamily. Nat. Med. 10:1027–31
    [Google Scholar]
  196. 196. 
    Evans R. 2004. A transcriptional basis for physiology. Nat. Med. 10:1022–26
    [Google Scholar]
  197. 197. 
    Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. 2001. Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–70
    [Google Scholar]
  198. 198. 
    Gautier EL, Chow A, Spanbroek R, Marcelin G, Greter M et al. 2012. Systemic analysis of PPARγ in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity. J. Immunol. 189:2614–24
    [Google Scholar]
  199. 199. 
    Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y et al. 2001. A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol. Cell 7:161–71
    [Google Scholar]
  200. 200. 
    Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V et al. 2007. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447:1116–20
    [Google Scholar]
  201. 201. 
    Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. 2003. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9:213–19
    [Google Scholar]
  202. 202. 
    Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC et al. 2000. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRα. PNAS 97:12097–102
    [Google Scholar]
  203. 203. 
    Costet P, Luo Y, Wang N, Tall AR. 2000. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J. Biol. Chem. 275:28240–45
    [Google Scholar]
  204. 204. 
    Schwartz K, Lawn RM, Wade DP. 2000. ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR. Biochem. Biophys. Res. Commun. 274:794–802
    [Google Scholar]
  205. 205. 
    Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L et al. 2000. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 289:1524–29
    [Google Scholar]
  206. 206. 
    Iwasaki A, Medzhitov R. 2015. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16:343–53
    [Google Scholar]
  207. 207. 
    Shi C, Pamer EG. 2011. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11:762–74
    [Google Scholar]
  208. 208. 
    Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature 454:428–35
    [Google Scholar]
  209. 209. 
    Jambo KC, Banda DH, Kankwatira AM, Sukumar N, Allain TJ et al. 2014. Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function. Mucosal Immunol. 7:1116–26
    [Google Scholar]
  210. 210. 
    Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C et al. 2008. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLOS Pathog. 4:e1000204
    [Google Scholar]
  211. 211. 
    Franklin RA, Li MO. 2016. Ontogeny of tumor-associated macrophages and its implication in cancer regulation. Trends Cancer 2:20–34
    [Google Scholar]
  212. 212. 
    Laviron M, Boissonnas A. 2019. Ontogeny of tumor-associated macrophages. Front. Immunol. 10:1799
    [Google Scholar]
  213. 213. 
    Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH et al. 2012. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLOS ONE 7:e50946
    [Google Scholar]
  214. 214. 
    Gul N, Babes L, Siegmund K, Korthouwer R, Bogels M et al. 2014. Macrophages eliminate circulating tumor cells after monoclonal antibody therapy. J. Clin. Investig. 124:812–23
    [Google Scholar]
  215. 215. 
    Kimura Y, Inoue A, Hangai S, Saijo S, Negishi H et al. 2016. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. PNAS 113:14097–102
    [Google Scholar]
  216. 216. 
    Zhu Y, Herndon JM, Sojka DK, Kim KW, Knolhoff BL et al. 2017. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47:323–38.e6
    [Google Scholar]
  217. 217. 
    Dumas AA, Pomella N, Rosser G, Guglielmi L, Vinel C et al. 2020. Microglia promote glioblastoma via mTOR-mediated immunosuppression of the tumour microenvironment. EMBO J. 39:e103790
    [Google Scholar]
  218. 218. 
    Quail DF, Joyce JA. 2017. The microenvironmental landscape of brain tumors. Cancer Cell 31:326–41
    [Google Scholar]
  219. 219. 
    Chitu V, Gokhan S, Gulinello M, Branch CA, Patil M et al. 2015. Phenotypic characterization of a Csf1r haploinsufficient mouse model of adult-onset leukodystrophy with axonal spheroids and pigmented glia (ALSP). Neurobiol. Dis. 74:219–28
    [Google Scholar]
  220. 220. 
    Oosterhof N, Kuil LE, van der Linde HC, Burm SM, Berdowski W et al. 2018. Colony-stimulating factor 1 receptor (CSF1R) regulates microglia density and distribution, but not microglia differentiation in vivo. Cell Rep 24:1203–17.e6
    [Google Scholar]
  221. 221. 
    Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr., Ahmed-Ansari A, Sell KW et al. 1990. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. PNAS 87:4828–32
    [Google Scholar]
  222. 222. 
    Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG et al. 2002. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:111–20
    [Google Scholar]
  223. 223. 
    Jay TR, von Saucken VE, Landreth GE. 2017. TREM2 in neurodegenerative diseases. Mol. Neurodegener. 12:56
    [Google Scholar]
  224. 224. 
    Yeh FL, Hansen DV, Sheng M. 2017. TREM2, microglia, and neurodegenerative diseases. Trends Mol. Med. 23:512–33
    [Google Scholar]
  225. 225. 
    Poliani PL, Wang Y, Fontana E, Robinette ML, Yamanishi Y et al. 2015. TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Investig. 125:2161–70
    [Google Scholar]
  226. 226. 
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E et al. 2013. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368:117–27
    [Google Scholar]
  227. 227. 
    Jonsson T, Stefansson K. 2013. TREM2 and neurodegenerative disease. N. Engl. J. Med. 369:1568–69
    [Google Scholar]
  228. 228. 
    Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV et al. 2013. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 368:107–16
    [Google Scholar]
  229. 229. 
    Ulland TK, Colonna M. 2018. TREM2—a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14:667–75
    [Google Scholar]
  230. 230. 
    Platt FM, d'Azzo A, Davidson BL, Neufeld EF, Tifft CJ. 2018. Lysosomal storage diseases. Nat. Rev. Dis. Primers 4:27
    [Google Scholar]
  231. 231. 
    Robak LA, Jansen IE, van Rooij J, Uitterlinden AG, Kraaij R et al. 2017. Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain 140:3191–203
    [Google Scholar]
  232. 232. 
    Ran C, Brodin L, Forsgren L, Westerlund M, Ramezani M et al. 2016. Strong association between glucocerebrosidase mutations and Parkinson's disease in Sweden. Neurobiol. Aging 45:212e5–11
    [Google Scholar]
  233. 233. 
    Neumann J, Bras J, Deas E, O'Sullivan SS, Parkkinen L et al. 2009. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain 132:1783–94
    [Google Scholar]
  234. 234. 
    Krivit W, Sung JH, Shapiro EG, Lockman LA. 1995. Microglia: the effector cell for reconstitution of the central nervous system following bone marrow transplantation for lysosomal and peroxisomal storage diseases. Cell Transplant. 4:385–92
    [Google Scholar]
  235. 235. 
    Hebert LE, Weuve J, Scherr PA, Evans DA. 2013. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80:1778–83
    [Google Scholar]
  236. 236. 
    Alzheimer's Assoc 2019. 2019 Alzheimer's disease facts and figures Rep. Alzheimer's Assoc Washington, DC: https://www.alz.org/media/documents/alzheimers-facts-and-figures-2019-r.pdf
  237. 237. 
    Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA et al. 1993. Association of apolipoprotein E allele ε4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43:1467–72
    [Google Scholar]
  238. 238. 
    Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J et al. 1993. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. PNAS 90:1977–81
    [Google Scholar]
  239. 239. 
    Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E et al. 2012. Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190–95
    [Google Scholar]
  240. 240. 
    McQuade A, Blurton-Jones M. 2019. Microglia in Alzheimer's disease: exploring how genetics and phenotype influence risk. J. Mol. Biol. 431:1805–17
    [Google Scholar]
  241. 241. 
    Vostrikov VM. 1985.. [ Electron-cytochemical study of microglia in Alzheimer's disease and senile dementia]. Zh. Nevropatol. Psikhiatr. Im S S Korsakova. 85:974–76 In Russian )
    [Google Scholar]
  242. 242. 
    Evans PH, Yano E, Klinowski J, Peterhans E. 1992. Oxidative damage in Alzheimer's dementia, and the potential etiopathogenic role of aluminosilicates, microglia and micronutrient interactions. Free Radicals and Aging, eds. I Emerit, B Chance 178–89 EXS. Basel, Switz: Birkhäuser
    [Google Scholar]
  243. 243. 
    Martincorena I, Campbell PJ. 2015. Somatic mutation in cancer and normal cells. Science 349:1483–89
    [Google Scholar]
  244. 244. 
    Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P et al. 2015. Tumor evolution: high burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–86
    [Google Scholar]
  245. 245. 
    Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F et al. 2018. Somatic mutant clones colonize the human esophagus with age. Science 362:911–17
    [Google Scholar]
  246. 246. 
    Frank SA. 2010. Somatic evolutionary genomics: Mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. PNAS 107:Suppl. 11725–30
    [Google Scholar]
  247. 247. 
    Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR et al. 2018. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359:555–59
    [Google Scholar]
  248. 248. 
    Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK et al. 2015. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:94–98
    [Google Scholar]
  249. 249. 
    Behjati S, Huch M, van Boxtel R, Karthaus W, Wedge DC et al. 2014. Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature 513:422–25
    [Google Scholar]
  250. 250. 
    Bhatia S, Nesbit ME Jr., Egeler RM, Buckley JD, Mertens A, Robison LL. 1997. Epidemiologic study of Langerhans cell histiocytosis in children. J. Pediatr. 130:774–84
    [Google Scholar]
  251. 251. 
    Heritier S, Emile JF, Barkaoui MA, Thomas C, Fraitag S et al. 2016. BRAF mutation correlates with high-risk Langerhans cell histiocytosis and increased resistance to first-line therapy. J. Clin. Oncol. 34:3023–30
    [Google Scholar]
  252. 252. 
    Haroche J, Charlotte F, Arnaud L, von Deimling A, Helias-Rodzewicz Z et al. 2012. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood 120:2700–3
    [Google Scholar]
  253. 253. 
    Diamond EL, Durham BH, Haroche J, Yao Z, Ma J et al. 2016. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov 6:154–65
    [Google Scholar]
  254. 254. 
    Diamond EL, Abdel-Wahab O, Pentsova E, Borsu L, Chiu A et al. 2013. Detection of an NRAS mutation in Erdheim-Chester disease. Blood 122:1089–91
    [Google Scholar]
  255. 255. 
    Emile JF, Diamond EL, Helias-Rodzewicz Z, Cohen-Aubart F, Charlotte F et al. 2014. Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease. Blood 124:3016–19
    [Google Scholar]
  256. 256. 
    Badalian-Very G, Vergilio JA, Degar BA, MacConaill LE, Brandner B et al. 2010. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116:1919–23
    [Google Scholar]
  257. 257. 
    Satoh T, Smith A, Sarde A, Lu HC, Mian S et al. 2012. B-RAF mutant alleles associated with Langerhans cell histiocytosis, a granulomatous pediatric disease. PLOS ONE 7:e33891
    [Google Scholar]
  258. 258. 
    Heritier S, Barkaoui MA, Miron J, Thomas C, Moshous D et al. 2018. Incidence and risk factors for clinical neurodegenerative Langerhans cell histiocytosis: a longitudinal cohort study. Br. J. Haematol. 183:608–17
    [Google Scholar]
  259. 259. 
    Papo M, Emile JF, Maciel TT, Bay P, Baber A et al. 2019. Erdheim-Chester disease: a concise review. Curr. Rheumatol. Rep. 21:66
    [Google Scholar]
  260. 260. 
    Wnorowski M, Prosch H, Prayer D, Janssen G, Gadner H, Grois N. 2008. Pattern and course of neurodegeneration in Langerhans cell histiocytosis. J. Pediatr. 153:127–32
    [Google Scholar]
  261. 261. 
    Hu G, Guo M, Xu J, Wu F, Fan J et al. 2019. Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front. Immunol. 10: 1998.
    [Google Scholar]
  262. 262. 
    Ponzoni M, Pastorino F, Di Paolo D, Perri P, Brignole C 2018. Targeting macrophages as a potential therapeutic intervention: impact on inflammatory diseases and cancer. Int. J. Mol. Sci. 19:1953
    [Google Scholar]
  263. 263. 
    Cassetta L, Pollard JW. 2018. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17:887–904
    [Google Scholar]
  264. 264. 
    Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J et al. 2019. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. Nat. Commun. 10:3758
    [Google Scholar]
  265. 265. 
    Henry RJ, Ritzel RM, Barrett JP, Doran SJ, Jiao Y et al. 2020. Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces neurodegeneration and neurological deficits. J. Neurosci. 40:2960–74
    [Google Scholar]
  266. 266. 
    Wang S, Mustafa M, Yuede CM, Salazar SV, Kong P et al. 2020. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer's disease model. J. Exp. Med. 217:e20200785
    [Google Scholar]
  267. 267. 
    Kierdorf K, Erny D, Goldmann T et al. 2013. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16:273–80
    [Google Scholar]
  268. 268. 
    Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chevre R et al. 2013. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153:1025–35
    [Google Scholar]
  269. 269. 
    Haldar M, Murphy KM. 2014. Origin, development, and homeostasis of tissue-resident macrophages. Immunol. Rev. 262:25–35
    [Google Scholar]
  270. 270. 
    Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D et al. 2011. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208:261–71
    [Google Scholar]
  271. 271. 
    Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC et al. 2003. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4:380–86
    [Google Scholar]
  272. 272. 
    Chopin M, Seillet C, Chevrier S, Wu L, Wang H et al. 2013. Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks. J. Exp. Med. 210:2967–80
    [Google Scholar]
  273. 273. 
    Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C et al. 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13:753–60
    [Google Scholar]
  274. 274. 
    Rosas M, Davies LC, Giles PJ, Liao CT, Kharfan B et al. 2014. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science 344:645–48
    [Google Scholar]
  275. 275. 
    A-Gonzalez N, Guillen JA, Gallardo G, Diaz M, de la Rosa JV et al. 2013. The nuclear receptor LXRα controls the functional specialization of splenic macrophages. Nat. Immunol. 14:831–39
    [Google Scholar]
  276. 276. 
    Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L et al. 2013. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210:1977–92
    [Google Scholar]
  277. 277. 
    Trapnell BC, Whitsett JA. 2002. GM-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu. Rev. Physiol. 64:775–802
    [Google Scholar]
  278. 278. 
    Allen CE, Parsons DW. 2015. Biological and clinical significance of somatic mutations in Langerhans cell histiocytosis and related histiocytic neoplastic disorders. Hematol. Am. Soc. Hematol. Educ. Program 2015.559–64 https://doi.org/10.1182/asheducation-2015.1.559
    [Crossref] [Google Scholar]
  279. 279. 
    Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. 2013. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat. Rev. Endocrinol. 9:522–36
    [Google Scholar]
  280. 280. 
    Walker DG. 1973. Osteopetrosis cured by temporary parabiosis. Science 180:875
    [Google Scholar]
  281. 281. 
    Ballet JJ, Griscelli C, Coutris C, Milhaud G, Maroteaux P. 1977. Bone-marrow transplantation in osteopetrosis. Lancet 2:1137
    [Google Scholar]
  282. 282. 
    Coccia PF, Krivit W, Cervenka J, Clawson C, Kersey JH et al. 1980. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N. Engl. J. Med. 302:701–8
    [Google Scholar]
  283. 283. 
    Sorell M, Kapoor N, Kirkpatrick D, Rosen JF, Chaganti RS et al. 1981. Marrow transplantation for juvenile osteopetrosis. Am. J. Med. 70:1280–87
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-093019-111748
Loading
/content/journals/10.1146/annurev-immunol-093019-111748
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error