1932

Abstract

Whale falls produce remarkable organic- and sulfide-rich habitat islands at the seafloor. The past decade has seen a dramatic increase in studies of modern and fossil whale remains, yielding exciting new insights into whale-fall ecosystems. Giant body sizes and especially high bone-lipid content allow great-whale carcasses to support a sequence of heterotrophic and chemosynthetic microbial assemblages in the energy-poor deep sea. Deep-sea metazoan communities at whale falls pass through a series of overlapping successional stages that vary with carcass size, water depth, and environmental conditions. These metazoan communities contain many new species and evolutionary novelties, including bone-eating worms and snails and a diversity of grazers on sulfur bacteria. Molecular and paleoecological studies suggest that whale falls have served as hot spots of adaptive radiation for a specialized fauna; they have also provided evolutionary stepping stones for vent and seep mussels and could have facilitated speciation in other vent/seep taxa.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010213-135144
2015-01-03
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/marine/7/1/annurev-marine-010213-135144.html?itemId=/content/journals/10.1146/annurev-marine-010213-135144&mimeType=html&fmt=ahah

Literature Cited

  1. Allison PA, Smith CR, Kukert H, Deming JW, Bennett BA. 1991. Deep-water taphonomy of vertebrate carcasses: a whale skeleton in the bathyal Santa Catalina Basin. Paleobiology 17:78–89 [Google Scholar]
  2. Amano K, Kiel S. 2007. Fossil vesicomyid bivalves from the North Pacific region. Veliger 49:270–93 [Google Scholar]
  3. Amano K, Little CTS. 2005. Miocene whale-fall community from Hokkaido, northern Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 215:345–56 [Google Scholar]
  4. Amano K, Little CTS, Inoue K. 2007. A new Miocene whale-fall community from Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 247:236–42 [Google Scholar]
  5. Amon DJ, Glover AG, Wiklund H, Marsh L, Linse K. et al. 2013. The discovery of a natural whale fall in the Antarctic deep sea. Deep-Sea Res. II 92:87–96 [Google Scholar]
  6. Amon DJ, Wiklund H, Dahlgren TG, Copley JT, Smith CR. et al. 2014. Molecular taxonomy of Osedax (Annelida: Siboglinidae) in the Southern Ocean. Zool. Scr. 43:405–17 [Google Scholar]
  7. Baco AR, Smith CR, Peek AS, Roderick GK, Vrijenhoek RC. 1999. The phylogenetic relationships of whale-fall vesicomyid clams based on mitochondrial COI DNA sequences. Mar. Ecol. Prog. Ser. 182:137–47 [Google Scholar]
  8. Baco-Taylor AR. 2002. Food-web structure, succession and phylogenetics on deep-sea whale skeletons PhD Thesis, Univ. Hawaii, Honolulu
  9. Barnes LG, Raschke RE, Brown JE. 1987. A fossil baleen whale. Whalewatcher 21:7–10 [Google Scholar]
  10. Beal EJ, House CH, Orphan VJ. 2009. Manganese- and iron-dependent marine methane oxidation. Science 325:184–87 [Google Scholar]
  11. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F. et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–26 [Google Scholar]
  12. Bolotin J, Hrs-Brenko M, Tutman P, Glavić N, Kožul V. et al. 2005. First record of Idas simpsoni (Mollusca: Bivalvia: Mytilidae) in the Adriatic Sea. J. Mar. Biol. Assoc. UK 85:977–78 [Google Scholar]
  13. Bottcher ME, Thamdrup B. 2001. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2. Geochim. Cosmochim. Acta 65:1573–81 [Google Scholar]
  14. Braby CE, Rouse GW, Johnson SB, Jones WJ, Vrijenhoek RC. 2007. Bathymetric and temporal variation among Osedax boneworms and associated megafauna on whale falls in Monterey Bay, California. Deep-Sea Res. I 54:1773–91 [Google Scholar]
  15. Britton JC, Morton B. 1994. Marine carrion and scavengers. Oceanogr. Mar. Biol. Annu. Rev. 32:369–434 [Google Scholar]
  16. Bush GL. 1975. Modes of animal speciation. Annu. Rev. Ecol. Syst. 6:339–64 [Google Scholar]
  17. Butman CA, Carlton JT, Palumbi SR. 1995. Whaling effects on deep-sea biodiversity. Conserv. Biol. 9:462–64 [Google Scholar]
  18. Carney RS. 2005. Zonation of deep-biota on continental margins. Oceanogr. Mar. Biol. Annu. Rev. 43:211–78 [Google Scholar]
  19. Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP. et al. 1979. Submarine thermal springs on the Galapagos Rift. Science 203:1073–83 [Google Scholar]
  20. Dahlgren TG, Glover AG, Baco A, Smith CR. 2004. Fauna of whale falls: systematics and ecology of a new polychaete (Annelida: Chrysopetalidae) from the deep Pacific Ocean. Deep-Sea Res. I 51:1873–87 [Google Scholar]
  21. Dahlgren TG, Wiklund H, Kallstrom B, Lundalv T, Smith CR, Glover AG. 2006. A shallow-water whale-fall experiment in the north Atlantic. Cah. Biol. Mar. 47:385–89 [Google Scholar]
  22. Dando PR, Dixon DR, Southward AJ, Southward EC, Crawford A, Crawford M. 1992. Shipwrecked tubeworms. Nature 356:667 [Google Scholar]
  23. Danise S, Cavalazzi B, Dominici S, Westall F, Monechi S, Guioli S. 2012. Evidence of microbial activity from a shallow water whale fall (Voghera, northern Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 317:13–26 [Google Scholar]
  24. Danise S, Dominici S. 2014. A record of fossil shallow-water whale falls from Italy. Lethaia 47:229–43 [Google Scholar]
  25. de Buffrénil V, de Ricqlès A, Ray C, Domning D. 1990. Bone histology of the ribs of the Archaeocetes (Mammalia: Cetacea). J. Vertebr. Paleontol. 10:455–66 [Google Scholar]
  26. de Ricqlès A, de Buffrénil V. 2001. Bone histology, heterochronies and the return of tetrapods to life in water: Where are we?. Secondary Adaptation of Tetrapods to Life in Water JM Mazin, V de Buffrénil 289–310 Munich: Friedrich Pfeil [Google Scholar]
  27. Decker C, Olu K, Cunha RL, Arnaud-Haond S. 2012. Phylogeny and diversification patterns among vesicomyid bivalves. PLoS ONE 7:e33359 [Google Scholar]
  28. Dell RK. 1987. Mollusca of the family Mytilidae (Bivalvia) associated with organic remains from deep water off New Zealand, with revisions of the genera Adipicola Dautzenborg, 1927 and Idasola Iredale, 1915. Natl. Mus. N. Z. Rec. 3:17–36 [Google Scholar]
  29. Dell RK. 1995. New species and records of deep-water mollusca from off New Zealand. Tuhinga 2:1–26 [Google Scholar]
  30. Deming J, Reysenbach AL, Macko SA, Smith CR. 1997. The microbial diversity at a whale fall on the seafloor: bone-colonizing mats and animal-associated symbionts. Microsc. Res. Tech. 37:162–70 [Google Scholar]
  31. Distel DL, Baco AR, Chuang E, Morrill W, Cavanaugh C, Smith CR. 2000. Marine ecology: Do mussels take wooden steps to deep-sea vents?. Nature 403:725–26 [Google Scholar]
  32. Dominici S, Cioppi E, Danise S, Betocchi U, Gallai G. et al. 2009. Mediterranean fossil whale falls and the adaptation of mollusks to extreme habitats. Geology 37:815–18 [Google Scholar]
  33. Dubilier N, Bergin C, Lott C. 2008. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat. Rev. Microbiol. 6:725–40 [Google Scholar]
  34. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S. et al. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:544–50 [Google Scholar]
  35. Feldman RA, Shank TM, Black MB, Baco AR, Smith CR, Vrijenhoek RC. 1998. Vestimentiferan on a whale fall. Biol. Bull. 194:116–19 [Google Scholar]
  36. Fitzgerald E. 2006. A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales. Proc. R. Soc. B 273:2955–63 [Google Scholar]
  37. Fordyce RE. 2003. Early crown-group Cetacea in the Southern Ocean: the toothed archaic mysticete Llanocetus. J. Vertebr. Paleontol. 23:Suppl. 350A [Google Scholar]
  38. Fordyce RE, Muizon CD. 2001. Evolutionary history of cetaceans: a review. Secondary Adaptation of Tetrapods to Life in Water JM Mazin, V de Buffrénil 169–233 Munich: Friedrich Pfeil [Google Scholar]
  39. Fujikura K, Fujiwara Y, Kawato M. 2006. A new species of Osedax (Annelida: Siboglinidae) associated with whale carcasses off Kyushu, Japan. Zool. Sci. 23:733–40 [Google Scholar]
  40. Fujioka K, Wada H, Okano H. 1993. Torishima whale deep-sea animal community assemblage—new finding by “Shinkai 6500.”. J. Geogr. 102:507–17 [Google Scholar]
  41. Fujiwara Y, Kawato M, Noda C, Kinoshita G, Yamanaka T. et al. 2010. Extracellular and mixotrophic symbiosis in the whale-fall mussel Adipicola pacifica: a trend in evolution from extra- to intracellular symbiosis. PLoS ONE 5:e11808 [Google Scholar]
  42. Fujiwara Y, Kawato M, Yamamoto T, Yamanaka T, Sato-Okoshi W. et al. 2007. Three-year investigations into sperm whale-fall ecosystems in Japan. Mar. Ecol. 28:219–32 [Google Scholar]
  43. Gibbs PE. 1987. A new species of Phascolosoma (Sipuncula) associated with a decaying whale's skull trawled at 880 m depth in the South-west Pacific. N.Z. J. Zool. 14:135–37 [Google Scholar]
  44. Gingerich P. 1998. Paleobiological perspectives on Mesonychia, Archaeoceti and the origin of whales. The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea JGM Thewissen 423–64 New York: Plenum [Google Scholar]
  45. Girguis PR, Cozen AE, Delong EF. 2005. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl. Environ. Microbiol. 71:3725–33 [Google Scholar]
  46. Glover AG, Goetze E, Dahlgren TG, Smith CR. 2005a. Morphology, reproductive biology and genetic structure of the whale-fall and hydrothermal-vent specialist, Bathykurila guaymasensis Pettibone, 1989 (Annelida: Polynoidae). Mar. Ecol. 26:223–34 [Google Scholar]
  47. Glover AG, Kallstrom B, Smith CR, Dahlgren TG. 2005b. World-wide whale worms? A new species of Osedax from the shallow north Atlantic. Proc. R. Soc. B 272:2587–92 [Google Scholar]
  48. Glover AG, Kemp KM, Smith CR, Dahlgren TG. 2008. On the role of bone-eating worms in the degradation of marine vertebrate remains. Proc. R. Soc. B 275:1959–61 [Google Scholar]
  49. Glover AG, Wiklund H, Taboada S, Avila C, Cristobo J. et al. 2013. Bone-eating worms from the Antarctic: the contrasting fate of whale and wood remains on the Southern Ocean seafloor. Proc. R. Soc. B 280:20131390 [Google Scholar]
  50. Goedert JL, Squires RL, Barnes LG. 1995. Paleoecology of whale-fall habitats from deep-water Oligocene rocks, Olympic Peninsula, Washington State. Palaeogeogr. Palaeoclimatol. Palaeoecol. 118:151–58 [Google Scholar]
  51. Goffredi SK, Johnson SB, Vrijenhoek RC. 2007. Genetic diversity and potential function of microbial symbionts associated with newly-discovered species of Osedax polychaete worms. Appl. Environ. Microbiol. 73:2314–23 [Google Scholar]
  52. Goffredi SK, Orphan VJ. 2010. Bacterial community shifts in taxa and diversity in response to localized organic loading in the deep sea. Environ. Microbiol. 12:344–63 [Google Scholar]
  53. Goffredi SK, Orphan VJ, Rouse GW, Jahnke L, Embaye T. et al. 2005. Evolutionary innovation: a bone-eating marine symbiosis. Environ. Microbiol. 7:1369–78 [Google Scholar]
  54. Goffredi SK, Paull CK, Fulton-Bennett K, Hurtado LA, Vrijenhoek RC. 2004. Unusual benthic fauna associated with a whale fall in Monterey Canyon, California. Deep-Sea Res. I 51:1295–306 [Google Scholar]
  55. Goffredi SK, Wilpiszeski R, Lee R, Orphan V. 2008. Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California. ISME J. 2:204–20 [Google Scholar]
  56. Gray N-M, Kainec K, Madar S, Tomko L, Wolfe S. 2007. Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans. Anat. Rec. 290:638–53 [Google Scholar]
  57. Gulland FMD, Pérez-Cortés MH, Urbán RJ, Rojas-Bracho L, Ylitalo G. et al. 2005. Eastern North Pacific gray whale (Eschrichtius robustus) unusual mortality event, 1999–2000. NOAA Tech. Memo. NMFS-AFSC-150, Alaska Fish. Sci. Cent., Natl. Oceanogr. Atmos. Adm., Seattle, WA
  58. Hachiya K. 1992. A unique community in the reduced environment found from the Morozaki Group. Kaseki no Tomo 39:37–41 [Google Scholar]
  59. Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60:439–71 [Google Scholar]
  60. Hecker B. 1985. Fauna from a cold sulfur-seep in the Gulf of Mexico: comparison with hydrothermal vent communities and evolutionary implications. Bull. Biol. Soc. Wash. 6:465–73 [Google Scholar]
  61. Heezen BC, Hollister CD. 1971. The Face of the Deep Oxford, UK: Oxford Univ. Press
  62. Higgs ND, Gates A, Jones DOB. 2014a. Fish food in the deep sea: revisiting the role of large food-falls. PLoS ONE 9:e96016 [Google Scholar]
  63. Higgs ND, Glover AG, Dahlgren TG, Little CTS. 2010. Using computed-tomography to document borings by Osedax mucofloris in whale bone. Cah. Biol. Mar. 51:401–5 [Google Scholar]
  64. Higgs ND, Glover AG, Dahlgren TG, Little CTS. 2011a. Bone-boring worms: characterizing the morphology, rate, and method of bioerosion by Osedax mucofloris (Annelida, Siboglinidae). Biol. Bull. 221:307–16 [Google Scholar]
  65. Higgs ND, Glover AG, Dahlgren TG, Smith CR, Fujiwara Y. et al. 2014b. The morphological diversity of Osedax worm borings (Annelida: Siboglinidae). J. Mar. Biol. Assoc. UK 941429–39
  66. Higgs ND, Little CTS, Glover AG. 2011b. Bones as biofuel: a review of whale bone composition with implications for deep-sea biology and palaeoanthropology. Proc. R. Soc. B 278:9–17 [Google Scholar]
  67. Higgs ND, Little CTS, Glover AG, Dahlgren TG, Smith CR, Dominici S. 2012. Evidence of Osedax worm borings in Pliocene (∼3 Ma) whale bone from the Mediterranean. Hist. Biol. 24:269–77 [Google Scholar]
  68. Johnson SB, Waren A, Lee R, Yano Y, Kaim A. et al. 2010. Rubyspira, new genus and two new species of bone-eating deep-sea snails with ancient habitats. Biol. Bull. 219:166–77 [Google Scholar]
  69. Jones WJ, Johnson SB, Rouse GW, Vrijenhoek RC. 2008. Marine worms (genus Osedax) colonize cow bones. Proc. R. Soc. B 275:387–91 [Google Scholar]
  70. Jørgensen BB, Nelson DC. 2004. Sulfide oxidation in marine sediments: Geochemistry meets microbiology. Geol. Soc. Am. Spec. Pap. 379:63–81 [Google Scholar]
  71. Kaim A, Kobayashi Y, Echizenya H, Jenkins RG, Tanabe K. 2008. Chemosynthesis-based associations on Cretaceous plesiosaurid carcasses. Acta Palaeontol. Pol. 53:97–104 [Google Scholar]
  72. Katz S, Klepal W, Bright M. 2010. The skin of Osedax (Siboglinidae, Annelida): an ultrastructural investigation of its epidermis. J. Morphol. 271:1272–80 [Google Scholar]
  73. Katz S, Klepal W, Bright M. 2011. The Osedax trophosome: organization and ultrastructure. Biol. Bull. 220:128–39 [Google Scholar]
  74. Kiel S. 2008. Fossil evidence for micro- and macrofaunal utilization of large nekton falls: examples from early Cenozoic deep-water sediments in Washington State, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 267:161–74 [Google Scholar]
  75. Kiel S. 2009. Global hydrocarbon seep-carbonate precipitation correlates with deep-water temperatures and eustatic sea-level fluctuations since the Late Jurassic. Terra Nova 21:279–84 [Google Scholar]
  76. Kiel S. 2010. The fossil record of vent and seep molluscs. The Vent and Seep Biota: Aspects from Microbes to Ecosystems S Kiel 255–78 New York: Springer [Google Scholar]
  77. Kiel S, Amano K. 2013. The earliest bathymodiolin mussels: an evaluation of Eocene and Oligocene taxa from deep-sea methane seep deposits in Western Washington State, USA. J. Paleontol. 87:589–602 [Google Scholar]
  78. Kiel S, Goedert JL. 2006. Deep-sea food bonanzas: early Cenozoic whale-fall communities resemble wood-fall rather than seep communities. Proc. R. Soc. B 273:2625–31 [Google Scholar]
  79. Kiel S, Goedert JL, Kahl WA, Rouse GW. 2010. Fossil traces of the bone-eating worm Osedax in early Oligocene whale bones. Proc. Natl. Acad. Sci. USA 107:8656–59 [Google Scholar]
  80. Kiel S, Kahl WA, Goedert JL. 2011. Osedax borings in fossil marine bird bones. Naturwissenschaften 98:51–55 [Google Scholar]
  81. Kiel S, Little CTS. 2006. Cold-seep mollusks are older than the general marine mollusk fauna.. Science 313:1429–31 [Google Scholar]
  82. King NJ, Bailey DM, Priede IG, Browman HI. 2007. Role of scavengers in marine ecosystems. Mar. Ecol. Prog. Ser. 350:175–78 [Google Scholar]
  83. Krogh A. 1934. Conditions of life at great depths in the ocean. Ecol. Monogr. 4:430–39 [Google Scholar]
  84. Lambert O, Bianucci G, Post K, de Muizon C, Salas-Gismondi R. et al. 2010. The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. Nature 466:105–8 [Google Scholar]
  85. Lancaster WC. 1986. The taphonomy of an archaeocete skeleton and its associated fauna. Montgomery Landing Site, Marine Eocene (Jackson) of Central Louisiana JA Schiebout, W van den Bold 119–31 Austin, TX: Gulf Coast Assoc. Geol. Soc. [Google Scholar]
  86. Lockyer C. 1976. Body weights of some species of large whales. J. Cons. Int. Explor. Mer 36:259–73 [Google Scholar]
  87. Lorion J, Buge B, Cruaud C, Samadi S. 2010. New insights into diversity and evolution of deep-sea Mytilidae (Mollusca: Bivalvia). Mol. Phylogenet. Evol. 57:71–83 [Google Scholar]
  88. Lorion J, Duperron S, Gros O, Cruaud C, Samadi S. 2009. Several deep-sea mussels and their associated symbionts are able to live both on wood and on whale falls. Proc. R. Soc. B 276:177–85 [Google Scholar]
  89. Lorion J, Halary S, Nascimento J, Samadi S, Couloux A, Duperron S. 2012. Evolutionary history of Idas sp. Med (Bivalvia: Mytilidae), a cold seep mussel bearing multiple symbionts. Cah. Biol. Mar. 53:77–87 [Google Scholar]
  90. Lorion J, Kiel S, Faure B, Kawato M, Ho SYW. et al. 2013. Adaptive radiation of chemosymbiotic deep-sea mussels. Proc. R. Soc. B 280:20131243 [Google Scholar]
  91. Lundsten L, Paull CK, Schlining KL, McGann M, Ussler W III. 2010a. Biological characterization of a whale fall near Vancouver Island, British Columbia, Canada. Deep-Sea Res. I 57:918–22 [Google Scholar]
  92. Lundsten L, Schlining KL, Frasier K, Johnson SB, Kuhnz LA. et al. 2010b. Time-series analysis of six whale-fall communities in Monterey Canyon, California, USA. Deep-Sea Res. I 57:1573–84 [Google Scholar]
  93. Madar S. 1998. Structural adaptations of early Archaeocete long bones. The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea JGM Thewissen 353–78 New York: Plenum [Google Scholar]
  94. McLean JH. 1992. Cocculiniform limpets (Cocculinidae and Pyropeltidae) living on whale bone in the deep sea off California. J. Molluscan Stud. 58:401–14 [Google Scholar]
  95. Milessi AC, Sellanes J, Gallardo VA, Lange CB. 2005. Osseous skeletal material and fish scales in marine sediments under the oxygen minimum zone off northern and central Chile. Estuar. Coast. Shelf Sci. 64:185–90 [Google Scholar]
  96. Miyamoto N, Yamamoto T, Yusa Y, Fujiwara Y. 2013. Postembryonic development of the bone-eating worm Osedax japonicus. Naturwissenschaften 100:285–89 [Google Scholar]
  97. Miyazaki JI, Martins LO, Fujita Y, Matsumoto H, Fujiwara Y. 2010. Evolutionary process of deep-sea Bathymodiolus mussels. PLoS ONE 5:e10363 [Google Scholar]
  98. Naganuma T, Wada H, Fujioka K. 1996. Biological community and sediment fatty acids associated with the deep-sea whale skeleton at the Torishima seamount. J. Oceanogr. 52:1–15 [Google Scholar]
  99. Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F. 2007. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol. 9:187–96 [Google Scholar]
  100. Pavlyuk ON, Trebukhova YA, Tarasov VG. 2009. The impact of implanted whale carcass on nematode communities in shallow water area of Peter the Great Bay (East Sea). Ocean Sci. J. 44:181–88 [Google Scholar]
  101. Pedrós-Alió C. 2012. The rare bacterial biosphere. Annu. Rev. Mar. Sci. 4:449–66 [Google Scholar]
  102. Pelorce J, Poutiers JM. 2009. Une nouvelle espèce de Bathymodiolinae (Mollusca, Bivalvia, Mytilidae) associée à des os de baleine coulés en Méditerranée. Zoosystema 31:975–85 [Google Scholar]
  103. Pershing AJ, Christensen LB, Record NR, Sherwood GD, Stetson PB, Humphries S. 2010. The impact of whaling on the ocean carbon cycle: Why bigger was better. PLoS ONE 5:e12444 [Google Scholar]
  104. Pleijel F, Rouse GW, Ruta C, Wiklund H, Nygren A. 2008. Vrijenhoekia balaenophila, a new hesionid polychaete from a whale fall off California. Zool. J. Linn. Soc. 152:625–34 [Google Scholar]
  105. Pond C. 1978. Morphological aspects and the ecological and mechanical consequences of fat deposition in wild vertebrates. Annu. Rev. Ecol. Syst. 9:519–70 [Google Scholar]
  106. Puig P, Palanques A, Martín J. 2014. Contemporary sediment-transport processes in submarine canyons. Annu. Rev. Mar. Sci. 6:53–77 [Google Scholar]
  107. Pyenson ND, Haasl DM. 2007. Miocene whale fall from California demonstrates that cetacean size did not determine the evolution of modern whale-fall communities. Biol. Lett. 3:709–11 [Google Scholar]
  108. Pyenson ND, Sponberg SN. 2011. Reconstructing body size in extinct crown Cetacea (Neoceti) using allometry, phylogenetic methods and tests from the fossil record. J. Mamm. Evol. 18:269–88 [Google Scholar]
  109. Reisdorf AG, Bux R, Wyler D, Benecke M, Klug C. et al. 2012. Float, explode or sink: postmortem fate of lung-breathing marine vertebrates.. Palaeobiodivers. Palaeoenviron. 92:67–81 [Google Scholar]
  110. Roman J, Estes JA, Morissette L, Smith CR, Costa D. et al. 2014. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12377–85
  111. Rouse GW, Goffredi SK, Johnson SB, Vrijenhoek RC. 2011. Not whale-fall specialists, Osedax worms also consume fishbones. Biol. Lett. 7:736–39 [Google Scholar]
  112. Rouse GW, Goffredi SK, Vrijenhoek RC. 2004. Osedax: bone-eating marine worms with dwarf males. Science 305:668–71 [Google Scholar]
  113. Rouse GW, Wilson NG, Goffredi SK, Johnson SB, Smart T. et al. 2009. Spawning and development in Osedax boneworms (Siboglinidae, Annelida). Mar. Biol. 156:395–405 [Google Scholar]
  114. Rouse GW, Worsaae K, Johnson SB, Jones WJ, Vrijenhoek RC. 2008. Acquisition of dwarf male “harems” by recently settled females of Osedax roseus n. sp. (Siboglinidae; Annelida). Biol. Bull. 214:67–82 [Google Scholar]
  115. Rowe GT, Wei C, Nunnally C, Haedrich R, Montagna P. et al. 2008. Comparative biomass structure and estimated carbon flow in food webs in the deep Gulf of Mexico. Deep-Sea Res. II 55:2699–711 [Google Scholar]
  116. Samadi S, Quemere E, Lorion J, Tillier A, Von Cosel R. et al. 2007. Molecular phylogeny in mytilids supports the wooden steps to deep-sea vents hypothesis. C. R. Biol. 330:446–56 [Google Scholar]
  117. Schander C, Rapp HT, Dahlgren TG. 2010. Osedax mucofloris (Polychaeta, Siboglinidae), a bone-eating marine worm new to Norway. Fauna Nor. 30:5–8 [Google Scholar]
  118. Schuller D, Kadko D, Smith CR. 2004. Use of 210Pb/226Ra disequilibria in the dating of deep-sea whale falls. Earth Planet. Sci. Lett. 218:277–89 [Google Scholar]
  119. Schulze A, Halanych KM. 2003. Siboglinid evolution shaped by habitat preference and sulfide tolerance. Hydrobiologia 496:199–205 [Google Scholar]
  120. Shapiro RS, Spangler E. 2009. Bacterial fossil record in whale falls: petrographic evidence of microbial sulfate reduction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 274:196–203 [Google Scholar]
  121. Smith CR. 1992. Whale falls: chemosynthesis on the deep seafloor. Oceanus 35:74–78 [Google Scholar]
  122. Smith CR. 2006. Bigger is better: the role of whales as detritus in marine ecosystems. Whales, Whaling and Ocean Ecosystems JA Estes, P DeMaster, DF Doak, TM Williams, RL Brownell Jr 286–300 Berkeley: Univ. Calif. Press [Google Scholar]
  123. Smith CR, Baco AR. 2003. Ecology of whale falls at the deep-sea floor. Oceanogr. Mar. Biol. Annu. Rev. 41:311–54 [Google Scholar]
  124. Smith CR, Baco AR, Glover AG. 2002. Faunal succession on replicate deep-sea whale falls: time scales and vent-seep affinities. Cah. Biol. Mar. 39:345–46 [Google Scholar]
  125. Smith CR, Bernardino AF, Baco A, Hannides AK, Altamira I. 2014. The seven-year enrichment: macrofaunal succession in deep-sea sediments around a 30-tonne whale fall in the Northeast Pacific. Mar. Ecol. Prog. Ser. In press. doi: 10.3354/meps10955
  126. Smith CR, de Leo F, Bernardino AF, Sweetman AK, Arbizu PM. 2008. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23:518–28 [Google Scholar]
  127. Smith CR, Demopoulos AWJ. 2003. The deep Pacific Ocean floor. Ecosystems of the World PA Tyler 181–220 Amsterdam: Elsevier [Google Scholar]
  128. Smith CR, Kukert H, Wheatcroft RA, Jumars PA, Deming JW. 1989. Vent fauna on whale remains. Nature 341:27–28 [Google Scholar]
  129. Smith KE, Thatje S, Singh H, Amsler MO, Vos SC. et al. 2014. Discovery of a recent, natural whale fall on the continental slope off Anvers Island, western Antarctic Peninsula. Deep-Sea Res. I 90:76–80 [Google Scholar]
  130. Sogin ML, Morrison G, Huber J, Welch D, Huse S. et al. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere.”. Proc. Natl. Acad. Sci. USA 103:12115–20 [Google Scholar]
  131. Squires RL. 1991. Whale carcasses. Nature 349:574 [Google Scholar]
  132. Taboada S, Wiklund H, Glover A, Dahlgren T, Cristobo J, Avila C. 2013. Two new Antarctic Ophryotrocha (Annelida: Dorvilleidae) described from shallow-water whale bones. Polar Biol. 36:1031–45 [Google Scholar]
  133. Tarasov VG, Gebruk A, Mironov AN, Moskalev LI. 2005. Deep-sea and shallow-water hydrothermal vent communities: two different phenomena?. Chem. Geol. 224:5–39 [Google Scholar]
  134. Taylor MA. 2000. Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods. Hist. Biol. 14:15–31 [Google Scholar]
  135. Thamdrup B, Finster K, Hansen JW, Bak F. 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron and manganese. Appl. Environ. Microbiol. 59:101–8 [Google Scholar]
  136. Thiel V, Blumenberg M, Kiel S, Leefmann T, Liebenau K. et al. 2014. Occurrence and fate of fatty acyl biomarkers in an ancient whale bone (Oligocene, El Cien Formation, Mexico). Org. Geochem. 68:71–81 [Google Scholar]
  137. Thubaut J, Puillandre N, Faure B, Cruaud C, Samadi S. 2013. The contrasted evolutionary fates of deep sea chemosynthetic mussels (Bivalvia, Bathymodiolinae). Ecol. Evol. 3:4748–66 [Google Scholar]
  138. Tresguerres M, Katz S, Rouse GW. 2013. How to get into bones: proton pump and carbonic anhydrase in Osedax boneworms. Proc. R. Soc. B 280:20130625 [Google Scholar]
  139. Treude T, Smith CR, Wenzhàfer F, Carney E, Bernardino AF. et al. 2009. Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis. Mar. Ecol. Prog. Ser. 382:1–21 [Google Scholar]
  140. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K. et al. 2005. Comparative metagenomics of microbial communities. Science 308:554–57 [Google Scholar]
  141. Uhen MD. 2008. New protocetid whales from Alabama and Mississippi, and a new cetacean clade, Pelagiceti. J. Vertebr. Paleontol. 28:589–93 [Google Scholar]
  142. Uhen MD. 2010. The origin(s) of whales. Annu. Rev. Earth Planet. Sci. 38:189–219 [Google Scholar]
  143. Underwood CJ, Ward DJ, King C, Antar SM, Zalmout IS, Gingerich PD. 2011. Shark and ray faunas in the Middle and Late Eocene of the Fayum Area, Egypt. Proc. Geol. Assoc. 122:47–66 [Google Scholar]
  144. Van Dover CL. 2000. The Ecology of Deep-Sea Hydrothermal Vents Princeton, NJ: Princeton Univ. Press
  145. Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC. 2002. Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–57 [Google Scholar]
  146. Verna C, Ramette A, Wiklund H, Dahlgren TG, Glover AG. et al. 2010. High symbiont diversity in the bone-eating worm Osedax mucofloris from shallow whale falls in the North Atlantic. Environ. Microbiol. 12:2355–70 [Google Scholar]
  147. Vrijenhoek RC. 2013. On the instability and evolutionary age of deep-sea chemosynthetic communities. Deep-Sea Res. II 92:189–200 [Google Scholar]
  148. Vrijenhoek RC, Collins P, Van Dover CL. 2008. Bone-eating marine worms: habitat specialists or generalists?. Proc. R. Soc. B 275:1963–64 [Google Scholar]
  149. Vrijenhoek RC, Johnson SB, Rouse GW. 2009. A remarkable diversity of bone-eating worms (Osedax; Siboglinidae; Annelida). BMC Biol. 7:74 [Google Scholar]
  150. Wada H, Naganuma T, Fujioka K, Ditazato H, Kawamura K, Akazawa Y. 1994. The discovery of the Torishima whale bone animal community and its meaning: the results of revisit dives by the “Shinkai 6500.”. JAMSTEC Deep-Sea Res. 10:38–47 [Google Scholar]
  151. Waren A. 1996. New and little known Mollusca from Iceland and Scandinavia. Part 3. Sarsia 81:197–245 [Google Scholar]
  152. Wiklund H, Altamira I, Glover AG, Smith CR, Baco A, Dahlgren TG. 2012. Systematics and biodiversity of Ophryotrocha (Annelida, Dorvilleidae) with descriptions of six new species from deep-sea whale-fall and wood-fall habitats in the north-east Pacific. Syst. Biodivers. 2012:243–59 [Google Scholar]
  153. Wiklund H, Glover AG, Dahlgren TG. 2009a. Three new species of Ophryotrocha (Annelida: Dorvilleidae) from a whale fall in the Northeast Atlantic. Zootaxa 2228:43–56 [Google Scholar]
  154. Wiklund H, Glover AG, Johannessen PJ, Dahlgren TG. 2009b. Cryptic speciation at organic-rich marine habitats: a new bacteriovore annelid from whale-fall and fish farms in the North-East Atlantic. Zool. J. Linn. Soc. 155:774–85 [Google Scholar]
  155. Woodward SP. 1854. A Manual of the Mollusca; or, Rudimentary Treatise on Recent and Fossil Shells. London: Weale [Google Scholar]
/content/journals/10.1146/annurev-marine-010213-135144
Loading
/content/journals/10.1146/annurev-marine-010213-135144
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error