1932

Abstract

The ancient idea of the balance of nature continues to influence modern perspectives on global environmental change. Assumptions of stable biogeochemical steady states and linear responses to perturbation are widely employed in the interpretation of geochemical records. Here, we review the dynamics of the marine carbon cycle and its interactions with climate and life over geologic time, focusing on what the record of past changes can teach us about stability and instability in the Earth system. Emerging themes include the role of amplifying feedbacks in producing past carbon cycle disruptions, the importance of critical rates of change in the context of mass extinctions and potential Earth system tipping points, and the application of these ideas to the modern unbalanced carbon cycle. A comprehensive dynamical understanding of the marine record of global environmental disruption will be of great value in understanding the long-term consequences of anthropogenic change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010318-095212
2022-01-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-010318-095212.html?itemId=/content/journals/10.1146/annurev-marine-010318-095212&mimeType=html&fmt=ahah

Literature Cited

  1. Alexandrov DV, Bashkirtseva IA, Crucifix M, Ryashko LB. 2021. Nonlinear climate dynamics: from deterministic behavior to stochastic excitability and chaos. Phys. Rep. 902:1–60
    [Google Scholar]
  2. Alroy J. 2008. Dynamics of origination and extinction in the marine fossil record. PNAS 105:Suppl. 111536–42
    [Google Scholar]
  3. Alroy J. 2014. Accurate and precise estimates of origination and extinction rates. Paleobiology 40:374–97
    [Google Scholar]
  4. Alvarez LW, Alvarez W, Asaro F, Michel HV. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–108
    [Google Scholar]
  5. Archer D. 2005. Fate of fossil fuel CO2 in geologic time. J. Geophys. Res. Oceans 110:C09S05
    [Google Scholar]
  6. Archer D. 2010. The Global Carbon Cycle Princeton, NJ: Princeton Univ. Press
  7. Archer D, Kheshgi H, Maier-Reimer E. 1998. Dynamics of fossil fuel CO2 neutralization by marine CaCO3. Glob. Biogeochem. Cycles 12:259–76
    [Google Scholar]
  8. Archer D, Winguth A, Lea D, Mahowald N. 2000. What caused the glacial/interglacial atmospheric pCO2 cycles?. Rev. Geophys. 38:159–89
    [Google Scholar]
  9. Arnscheidt CW, Rothman DH. 2020. Routes to global glaciation. Proc. R. Soc. A 476:20200303
    [Google Scholar]
  10. Arrhenius S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41:237–76
    [Google Scholar]
  11. Ashwin P, Wieczorek S, Vitolo R, Cox P. 2012. Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Philos. Trans. R. Soc. A 370:1166–84
    [Google Scholar]
  12. Bak P. 1996. How Nature Works: The Science of Self-Organized Criticality New York: Springer
  13. Bambach RK. 2006. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34:127–55
    [Google Scholar]
  14. Barnosky AD, Matzke N, Tomiya S, Wogan G, Swartz B et al. 2011. Has the Earth's sixth mass extinction already arrived?. Nature 471:51–57
    [Google Scholar]
  15. Berner RA. 1992. Weathering, plants, and the long-term carbon cycle. Geochim. Cosmochim. Acta 56:3225–31
    [Google Scholar]
  16. Berner RA. 2004. The Phanerozoic Carbon Cycle: CO2 and O2 New York: Oxford Univ. Press
  17. Berner RA, Caldeira K. 1997. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25:955–56
    [Google Scholar]
  18. Berner RA, Lasaga AC, Garrels RM. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283:641–83
    [Google Scholar]
  19. Blackburn TJ, Olsen PE, Bowring SA, McLean NM, Kent DV et al. 2013. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340:941–45
    [Google Scholar]
  20. Brand U, Blamey N, Garbelli C, Griesshaber E, Posenato R et al. 2016. Methane hydrate: killer cause of Earth's greatest mass extinction. Palaeoworld 25:496–507
    [Google Scholar]
  21. Broecker WS. 1982. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11:151–97
    [Google Scholar]
  22. Broecker WS, Peng TH. 1987. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeochem. Cycles 1:15–29
    [Google Scholar]
  23. Burgess SD, Bowring SA. 2015. High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction. Sci. Adv. 1:e1500470
    [Google Scholar]
  24. Caldeira K. 1991. Continental-pelagic carbonate partitioning and the global carbonate-silicate cycle. Geology 19:204–6
    [Google Scholar]
  25. Ceballos G, Ehrlich PR, Barnosky AD, Garca A, Pringle RM, Palmer TM. 2015. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1:e1400253
    [Google Scholar]
  26. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V et al. 2013. Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.465–570 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  27. Clapham ME, Renne PR. 2019. Flood basalts and mass extinctions. Annu. Rev. Earth Planet. Sci. 47:275–303
    [Google Scholar]
  28. Colbourn G, Ridgwell A, Lenton T. 2015. The time scale of the silicate weathering negative feedback on atmospheric CO2. Glob. Biogeochem. Cycles 29:583–96
    [Google Scholar]
  29. Courtillot V, Fluteau F. 2014. A review of the embedded time scales of flood basalt volcanism with special emphasis on dramatically short magmatic pulses. Volcanism, Impacts, and Mass Extinctions: Causes and Effects G Keller, AC Kerr Boulder, CO: Geol. Soc. Am. https://doi.org/10.1130/2014.2505(15)
    [Crossref] [Google Scholar]
  30. Cramer B, Jarvis I 2020. Carbon isotope stratigraphy. Geologic Time Scale 2020 FM Gradstein, JG Ogg, M Schmitz, G Ogg 309–43 Amsterdam: Elsevier
    [Google Scholar]
  31. Crucifix M. 2012. Oscillators and relaxation phenomena in Pleistocene climate theory. Philos. Trans. R. Soc. A 370:1140–65
    [Google Scholar]
  32. Cui H, Kaufman AJ, Xiao S, Zhou C, Liu XM. 2017. Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chem. Geol. 450:59–80
    [Google Scholar]
  33. Cuvier G. 1812 (1997. Preliminary discourse. Translated in Georges Cuvier, Fossil Bones, and Geological Catastrophes: New Translations and Interpretations of the Primary Texts ed. MJS Rudwick 183–252 Chicago: Univ. Chicago Press
    [Google Scholar]
  34. D'Antonio MP, Ibarra DE, Boyce CK. 2020. Land plant evolution decreased, rather than increased, weathering rates. Geology 48:29–33
    [Google Scholar]
  35. Darwin C 1859. On the Origin of Species London: Murray
  36. Davis Barnes B, Husson JM, Peters SE 2020. Authigenic carbonate burial in the Late Devonian–Early Mississippian Bakken Formation (Williston Basin, USA). Sedimentology 67:2065–94
    [Google Scholar]
  37. DeConto RM, Galeotti S, Pagani M, Tracy D, Schaefer K et al. 2012. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484:87–91
    [Google Scholar]
  38. Derham W. 1713. Physico-Theology; or, A Demonstration of the Being and Attributes of God, from His Works of Creation London: Innys
  39. Dickens GR. 2003. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213:169–83
    [Google Scholar]
  40. Dijkstra HA. 2013. Nonlinear Climate Dynamics Cambridge, UK: Cambridge Univ. Press
  41. Dunkley Jones T, Ridgwell A, Lunt D, Maslin M, Schmidt D, Valdes P 2010. A Palaeogene perspective on climate sensitivity and methane hydrate instability. Philos. Trans. R. Soc. A 368:2395–415
    [Google Scholar]
  42. Dyer B, Maloof AC, Higgins JA. 2015. Glacioeustasy, meteoric diagenesis, and the carbon cycle during the Middle Carboniferous. Geochem. Geophys. Geosyst. 16:3383–99
    [Google Scholar]
  43. Edmond JM, Huh Y. 2003. Non-steady state carbonate recycling and implications for the evolution of atmospheric . Earth Planet. Sci. Lett. 216:125–39
    [Google Scholar]
  44. Egerton FN. 1973. Changing concepts of the balance of nature. Q. Rev. Biol. 48:322–50
    [Google Scholar]
  45. Emerson SR, Hedges JI. 2008. Chemical Oceanography and the Marine Carbon Cycle Cambridge, UK: Cambridge Univ. Press
  46. Emiliani C. 1955. Pleistocene temperatures. J. Geol. 63:538–78
    [Google Scholar]
  47. Fantle MS, Barnes BD, Lau KV. 2020. The role of diagenesis in shaping the geochemistry of the marine carbonate record. Annu. Rev. Earth Planet. Sci. 48:549–83
    [Google Scholar]
  48. Feulner G. 2012. The faint young Sun problem. Rev. Geophys. 50:RG2006
    [Google Scholar]
  49. Foote E. 1856. Circumstances affecting the heat of the sun's rays. Am. J. Sci. Arts 22:382–83
    [Google Scholar]
  50. Foster GL, Royer DL, Lunt DJ. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8:14845
    [Google Scholar]
  51. Ghil M, Childress S. 1987. Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics New York: Springer
  52. Gildor H, Tziperman E. 2000. Sea ice as the glacial cycles' climate switch: role of seasonal and orbital forcing. Paleoceanography 15:605–15
    [Google Scholar]
  53. Grossman E, Joachimski M 2020. Oxygen isotope stratigraphy. Geologic Time Scale 2020 FM Gradstein, JG Ogg, M Schmitz, G Ogg 279–307 Amsterdam: Elsevier
    [Google Scholar]
  54. Gutjahr M, Ridgwell A, Sexton PF, Anagnostou E, Pearson PN et al. 2017. Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature 548:573–77
    [Google Scholar]
  55. Hallam A, Wignall PB. 1997. Mass Extinctions and Their Aftermath Oxford, UK: Oxford Univ. Press
  56. Hayes JM, Strauss H, Kaufman AJ. 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161:103–25
    [Google Scholar]
  57. Hays JD, Imbrie J, Shackleton NJ. 1976. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194:1121–32
    [Google Scholar]
  58. Higgins JA, Blättler C, Lundstrom E, Santiago-Ramos D, Akhtar A et al. 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim. Cosmochim. Acta 220:512–34
    [Google Scholar]
  59. Hofmann M, Schellnhuber HJ 2009. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. PNAS 106:3017–22
    [Google Scholar]
  60. Husson JM, Higgins JA, Maloof AC, Schoene B. 2015. Ca and Mg isotope constraints on the origin of Earth's deepest δ13C excursion. Geochim. Cosmochim. Acta 160:243–66
    [Google Scholar]
  61. Husson JM, Linzmeier BJ, Kitajima K, Ishida A, Maloof AC et al. 2020. Large isotopic variability at the micron-scale in ‘Shuram’ excursion carbonates from South Australia. Earth Planet. Sci. Lett. 538:116211
    [Google Scholar]
  62. Izhikevich EM. 2007. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting Cambridge, MA: MIT Press
  63. Joachimski MM, Lai X, Shen S, Jiang H, Luo G et al. 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40:195–98
    [Google Scholar]
  64. Kirchner JW. 1989. The Gaia hypothesis: Can it be tested?. Rev. Geophys. 27:223–35
    [Google Scholar]
  65. Kirchner JW. 2002. The Gaia hypothesis: fact, theory, and wishful thinking. Clim. Change 52:391–408
    [Google Scholar]
  66. Kirtland Turner S 2018. Constraints on the onset duration of the Paleocene–Eocene Thermal Maximum. Philos. Trans. R. Soc. A 376:20170082
    [Google Scholar]
  67. Kirtland Turner S, Sexton PF, Charles CD, Norris RD 2014. Persistence of carbon release events through the peak of early Eocene global warmth. Nat. Geosci. 7:748–51
    [Google Scholar]
  68. Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW. 2007. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256:295–313
    [Google Scholar]
  69. Kolbert E. 2014. The Sixth Extinction: An Unnatural History London: A&C Black
  70. Kump LR, Arthur MA. 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161:181–98
    [Google Scholar]
  71. Kurtz A, Kump L, Arthur M, Zachos J, Paytan A. 2003. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18:1090
    [Google Scholar]
  72. Le Treut H, Ghil M 1983. Orbital forcing, climatic interactions, and glaciation cycles. J. Geophys. Res. Oceans 88:5167–90
    [Google Scholar]
  73. Lenton TM, Daines SJ, Dyke JG, Nicholson AE, Wilkinson DM, Williams HT. 2018. Selection for Gaia across multiple scales. Trends Ecol. Evol. 33:633–45
    [Google Scholar]
  74. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W et al. 2008. Tipping elements in the Earth's climate system. PNAS 105:1786–93
    [Google Scholar]
  75. Lisiecki LE, Raymo ME. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003
    [Google Scholar]
  76. Lotka AJ. 1925. Elements of Physical Biology Baltimore, MD: Williams & Wilkins
  77. Lourens LJ, Sluijs A, Kroon D, Zachos JC, Thomas E et al. 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435:1083–87
    [Google Scholar]
  78. Lovejoy AO. 1936. The Great Chain of Being Cambridge, MA: Harvard Univ. Press
  79. Lovejoy S. 2015. A voyage through scales, a missing quadrillion and why the climate is not what you expect. Clim. Dyn. 44:3187–210
    [Google Scholar]
  80. Lovelock JE, Margulis L. 1974. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26:2–10
    [Google Scholar]
  81. Lunt DJ, Ridgwell A, Sluijs A, Zachos J, Hunter S, Haywood A. 2011. A model for orbital pacing of methane hydrate destabilization during the Palaeogene. Nat. Geosci. 4:775–78
    [Google Scholar]
  82. Lyell C. 1832. Principles of Geology, Being an Attempt to Explain the Former Changes of the Earth's Surface, by Reference to Causes Now in Operation, Vol. 2 London: Murray
  83. Macdonald FA, Swanson-Hysell NL, Park Y, Lisiecki L, Jagoutz O. 2019. Arc-continent collisions in the tropics set Earth's climate state. Science 364:181–84
    [Google Scholar]
  84. Maher K, Chamberlain C. 2014. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343:1502–4
    [Google Scholar]
  85. May RM. 1973. Stability and Complexity in Model Ecosystems Princeton, NJ: Princeton Univ. Press
  86. Mayr E. 1982. The Growth of Biological Thought: Diversity, Evolution, and Inheritance Cambridge, MA: Harvard Univ. Press
  87. McInerney FA, Wing SL. 2011. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39:489–516
    [Google Scholar]
  88. Milanković M. 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem Belgrade: K. Serb. Akad.
  89. Mitnick EH, Lammers LN, Zhang S, Zaretskiy Y, DePaolo DJ. 2018. Authigenic carbonate formation rates in marine sediments and implications for the marine δ13C record. Earth Planet. Sci. Lett. 495:135–45
    [Google Scholar]
  90. Newell ND. 1963. Crises in the history of life. Scientific American Feb., pp 76–95
    [Google Scholar]
  91. Paillard D, Parrenin F. 2004. The Antarctic ice sheet and the triggering of deglaciations. Earth Planet. Sci. Lett. 227:263–71
    [Google Scholar]
  92. Payne JL, Clapham ME. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century?. Annu. Rev. Earth Planet. Sci. 40:89–111
    [Google Scholar]
  93. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–36
    [Google Scholar]
  94. Pierrehumbert RT. 2010. Principles of Planetary Climate Cambridge, UK: Cambridge Univ. Press
  95. Pope A. 1733. An Essay on Man: In Epistles to a Friend Part I London: Wilford. , 2nd ed..
  96. Ridgwell A. 2005. A Mid Mesozoic Revolution in the regulation of ocean chemistry. Mar. Geol. 217:339–57
    [Google Scholar]
  97. Ridgwell A, Edwards U 2007. Geological carbon sinks. Greenhouse Gas Sinks D Reay, CN Hewitt, K Smith, J Grace 74–97 Wallingford, UK: CABI
    [Google Scholar]
  98. Ridgwell A, Hargreaves J. 2007. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model. Glob. Biogeochem. Cycles 21:GB2008
    [Google Scholar]
  99. Ridgwell A, Zeebe RE. 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234:299–315
    [Google Scholar]
  100. Riebesell U, Körtzinger A, Oschlies A 2009. Sensitivities of marine carbon fluxes to ocean change. PNAS 106:20602–9
    [Google Scholar]
  101. Rothman DH. 2015. Earth's carbon cycle: a mathematical perspective. Bull. Am. Math. Soc. 52:47–64
    [Google Scholar]
  102. Rothman DH. 2017. Thresholds of catastrophe in the Earth system. Sci. Adv. 3:e1700906
    [Google Scholar]
  103. Rothman DH. 2019. Characteristic disruptions of an excitable carbon cycle. PNAS 116:14813–22
    [Google Scholar]
  104. Rothman DH, Fournier GP, French KL, Alm EJ, Boyle EA et al. 2014. Methanogenic burst in the end-Permian carbon cycle. PNAS 111:5462–67
    [Google Scholar]
  105. Rothman DH, Hayes JM, Summons RE 2003. Dynamics of the Neoproterozoic carbon cycle. PNAS 100:8124–29
    [Google Scholar]
  106. Rudwick MJS. 2014. Earth's Deep History: How It Was Discovered and Why It Matters Chicago: Univ. Chicago Press
  107. Sagan C, Mullen G. 1972. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177:52–56
    [Google Scholar]
  108. Saltzman B. 2002. Dynamical Paleoclimatology: Generalized Theory of Global Climate Change San Diego, CA: Academic
  109. Saltzman B, Hansen AR, Maasch KA. 1984. The late Quaternary glaciations as the response of a three-component feedback system to Earth-orbital forcing. J. Atmos. Sci. 41:3380–89
    [Google Scholar]
  110. Sarmiento JL, Gruber N. 2006. Ocean Biogeochemical Dynamics Princeton, NJ: Princeton Univ. Press
  111. Schoene B, Eddy MP, Samperton KM, Keller CB, Keller G et al. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363:862–66
    [Google Scholar]
  112. Schrag DP, Higgins JA, Macdonald FA, Johnston DT. 2013. Authigenic carbonate and the history of the global carbon cycle. Science 339:540–43
    [Google Scholar]
  113. Self S, Thordarson T, Widdowson M. 2005. Gas fluxes from flood basalt eruptions. Elements 1:283–87
    [Google Scholar]
  114. Sepkoski D. 2020. Catastrophic Thinking: Extinction and the Value of Diversity from Darwin to the Anthropocene Chicago: Univ. Chicago Press
  115. Sexton PF, Norris RD, Wilson PA, Pälike H, Westerhold T et al. 2011. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature 471:349–52
    [Google Scholar]
  116. Shackleton NJ 1977. Carbon-13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. The Fate of Fossil Fuel CO2 in the Oceans NR Andersen, A Malahoff 401–27 New York: Plenum
    [Google Scholar]
  117. Sherwood S, Webb MJ, Annan JD, Armour K, Forster PM et al. 2020. An assessment of Earth's climate sensitivity using multiple lines of evidence. Rev. Geophys. 58:e2019RG000678
    [Google Scholar]
  118. Sigman DM, Boyle EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–69
    [Google Scholar]
  119. Simberloff D. 2014. The “balance of nature”—evolution of a panchreston. PLOS Biol 12:e1001963
    [Google Scholar]
  120. Sprain CJ, Renne PR, Vanderkluysen L, Pande K, Self S, Mittal T. 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363:866–70
    [Google Scholar]
  121. Stanley SM. 2010. Relation of Phanerozoic stable isotope excursions to climate, bacterial metabolism, and major extinctions. PNAS 107:19185–89
    [Google Scholar]
  122. Steffen W, Rockström J, Richardson K, Lenton TM, Folke C et al. 2018. Trajectories of the Earth system in the Anthropocene. PNAS 115:8252–59
    [Google Scholar]
  123. Strogatz S. 1994. Nonlinear Dynamics and Chaos New York: Addison-Wesley
  124. Sundquist ET 1985. Geological perspectives on carbon dioxide and the carbon cycle. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present ET Sundquist, WS Broecker 55–59 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  125. Sundquist ET. 1990. Influence of deep-sea benthic processes on atmospheric CO2. Philos. Trans. R. Soc. Lond. A 331:155–65
    [Google Scholar]
  126. Sundquist ET. 1991. Steady-and non-steady-state carbonate-silicate controls on atmospheric CO2. Quat. Sci. Rev. 10:283–96
    [Google Scholar]
  127. Tyndall J. 1863. On radiation through the earth's atmosphere. Lond. Edinb. Dublin Philos. Mag. J. Sci. 25:200–6
    [Google Scholar]
  128. Tyrrell T. 2020. Chance played a role in determining whether Earth stayed habitable. Nat. Commun. Earth Environ. 1:61
    [Google Scholar]
  129. Tziperman E, Raymo ME, Huybers P, Wunsch C. 2006. Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography 21:PA4206
    [Google Scholar]
  130. Volterra V. 1926. Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Mem. R. Accad. Lincei 2:31–113
    [Google Scholar]
  131. Walker JC, Hays P, Kasting JF. 1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res. Oceans 86:9776–82
    [Google Scholar]
  132. Walliser OH 1996. Global Events and Event Stratigraphy in the Phanerozoic Berlin: Springer
  133. Wallmann K, Flögel S, Scholz F, Dale AW, Kemena TP et al. 2019. Periodic changes in the Cretaceous ocean and climate caused by marine redox see-saw. Nat. Geosci. 12:456–61
    [Google Scholar]
  134. Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C et al. 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science 369:1383–87
    [Google Scholar]
  135. Westerhold T, Röhl U, Frederichs T, Agnini C, Raffi I et al. 2017. Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?. Clim. Past 13:1129–52
    [Google Scholar]
  136. Wieczorek S, Ashwin P, Luke CM, Cox PM. 2010. Excitability in ramped systems: the compost-bomb instability. Proc. R. Soc. A 467:1243–69
    [Google Scholar]
  137. Wignall PB, Twitchett RJ. 1996. Oceanic anoxia and the End Permian mass extinction. Science 272:1155–58
    [Google Scholar]
  138. Williams RG, Follows MJ. 2011. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms Cambridge, UK: Cambridge Univ. Press
  139. Wunsch C. 2004. Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change. Quat. Sci. Rev. 23:1001–12
    [Google Scholar]
  140. Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–83
    [Google Scholar]
  141. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–93
    [Google Scholar]
  142. Zeebe RE, Caldeira K. 2008. Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records. Nat. Geosci. 1:312–15
    [Google Scholar]
  143. Zeebe RE, Ridgwell A, Zachos JC. 2016. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosci. 9:325–29
    [Google Scholar]
  144. Zeebe RE, Westbroek P. 2003. A simple model for the CaCO3 saturation state of the ocean: the “Strangelove,” the “Neritan,” and the “Cretan” Ocean. Geochem. Geophys. Geosyst. 4:1104
    [Google Scholar]
  145. Zeebe RE, Zachos JC. 2013. Long-term legacy of massive carbon input to the Earth system: Anthropocene versus Eocene. Philos. Trans. R. Soc. A 371:20120006
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010318-095212
Loading
/content/journals/10.1146/annurev-marine-010318-095212
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error