1932

Abstract

The SUP05 clade of gammaproteobacteria (Thioglobaceae) comprises both primary producers and primary consumers of organic carbon in the oceans. Host-associated autotrophs are a principal source of carbon and other nutrients for deep-sea eukaryotes at hydrothermal vents, and their free-living relatives are a primary source of organic matter in seawater at vents and in marine oxygen minimum zones. Similar to other abundant marine heterotrophs, such as SAR11 and Roseobacter, heterotrophic Thioglobaceae use the dilute pool of osmolytes produced by phytoplankton for growth, including methylated amines and sulfonates. Heterotrophic members are common throughout the ocean, and autotrophic members are abundant at hydrothermal vents and in anoxic waters; combined, they can account for more than 50% of the total bacterial community. Studies of both cultured and uncultured representatives from this diverse family are providing novel insights into the shifting biogeochemical roles of autotrophic and heterotrophic bacteria that cross oxic–anoxic boundary layers in the ocean.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010814
2022-01-03
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-010419-010814.html?itemId=/content/journals/10.1146/annurev-marine-010419-010814&mimeType=html&fmt=ahah

Literature Cited

  1. Anantharaman K, Breier JA, Sheik CS, Dick GJ 2013. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. PNAS 110:330–35
    [Google Scholar]
  2. Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. 2014. Sulfur oxidation genes in diverse deep-sea viruses. Science 344:757–60
    [Google Scholar]
  3. Anderson RE, Beltrán MT, Hallam SJ, Baross JA. 2013. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system. FEMS Microbiol. Ecol. 83:324–39
    [Google Scholar]
  4. Ansorge R, Romano S, Sayavedra L, Rubin-Blum M, Gruber-Vodicka H et al. 2020. The hidden pangenome: comparative genomics reveals pervasive diversity in symbiotic and free-living sulfur-oxidizing bacteria. bioRxiv 2020.12.11.421487. https://doi.org/10.1101/2020.12.11.421487
    [Crossref]
  5. Babbin AR, Bianchi D, Jayakumar A, Ward BB. 2015. Rapid nitrous oxide cycling in the suboxic ocean. Science 348:1127–29
    [Google Scholar]
  6. Babbin AR, Keil RG, Devol AH, Ward BB. 2014. Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. Science 344:406–8
    [Google Scholar]
  7. Badger MR, Bek EJ. 2008. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J. Exp. Bot. 59:1525–41
    [Google Scholar]
  8. Barrett EL, Kwan HS. 1985. Bacterial reduction of trimethylamine oxide. Annu. Rev. Microbiol. 39:131–49
    [Google Scholar]
  9. Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A et al. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–6
    [Google Scholar]
  10. Beman JM, Carolan MT. 2013. Deoxygenation alters bacterial diversity and community composition in the ocean's largest oxygen minimum zone. Nat. Commun. 4:2705
    [Google Scholar]
  11. Callbeck CM, Canfield DE, Kuypers MMM, Yilmaz P, Lavik G et al. 2021. Sulfur cycling in oceanic oxygen minimum zones. Limnol. Oceanogr. 66:2360–92
    [Google Scholar]
  12. Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR et al. 2018. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nat. Commun. 9:1729
    [Google Scholar]
  13. Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T et al. 2010. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330:1375–78
    [Google Scholar]
  14. Carolan MT, Smith J, Beman JM. 2015. Transcriptomic evidence for microbial sulfur cycling in the eastern tropical North Pacific oxygen minimum zone. Front. Microbiol. 6:334
    [Google Scholar]
  15. Castro-Gonzalez M, Braker G, Farias L, Ulloa O. 2005. Communities of nirS-type denitrifiers in the water column of the oxygen minimum zone in the eastern South Pacific. Environ. Microbiol. 7:1298–306
    [Google Scholar]
  16. Chisolm SW, Frankel SL, Goericke R, Olson RJ, Palenik B et al. 1992. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine parokaryote containing divinyl chlorophyll a and b. Arch. Microbiol. 157:297–300
    [Google Scholar]
  17. Coltharp C, Buss J, Plumer TM, Xiao J 2016. Defining the rate-limiting processes of bacterial cytokinesis. PNAS 113:E1044–53
    [Google Scholar]
  18. Crowe SA, Cox RP, Jones C, Fowle DA, Santibañez-Bustos JF et al. 2018. Decrypting the sulfur cycle in oceanic oxygen minimum zones. ISME J 12:2322–29
    [Google Scholar]
  19. Diaz MR, Visscher PT, Taylor BF. 1992. Metabolism of dimethylsulfoniopropionate and glycine betaine by a marine bacterium. FEMS Microbiol. Lett. 96:61–65
    [Google Scholar]
  20. Distel DL, Lane DJ, Olsen GJ, Giovanonni SJ, Pace B et al. 1988. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA Sequences. J. Bacteriol. 170:2506–10
    [Google Scholar]
  21. Duarte CM, Regaudie-de-Gioux A, Arrieta JM, Delgado-Huertas A, Agustí S. 2013. The oligotrophic ocean is heterotrophic. Annu. Rev. Mar. Sci 5:551–69
    [Google Scholar]
  22. Durham BP, Boysen AK, Carlson LT, Groussman RD, Heal KR et al. 2019. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat. Microbiol. 4:1706–15
    [Google Scholar]
  23. Fitzsimmons JN, John SG, Marsay CM, Hoffman CL, Nicholas SL et al. 2017. Iron persistence in a distal hydrothermal plume supported by dissolved–particulate exchange. Nat. Geosci. 10:195–201
    [Google Scholar]
  24. Georges AA, El-Swais H, Craig SE, Li WK, Walsh DA. 2014. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J 8:1301–13
    [Google Scholar]
  25. Gilbert JA, Dupont CL. 2011. Microbial metagenomics: beyond the genome. Annu. Rev. Mar. Sci. 3:347–71
    [Google Scholar]
  26. Giovannoni SJ, Bibbs L, Cho J-C, Stapels MD, Desiderio R et al. 2005. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438:82–85
    [Google Scholar]
  27. Glaubitz S, Kießlich K, Meeske C, Labrenz M, Jürgens K. 2013. SUP05 dominates the gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central Baltic and Black Seas. Appl. Environ. Microbiol. 79:2767–76
    [Google Scholar]
  28. Goffredi SK, Motooka C, Fike DA, Gusmao LC, Tilic E et al. 2021. Mixotrophic chemosynthesis in a deep-sea anemone from hydrothermal vents in the Pescadero Basin, Gulf of California. BMC Biol 19:8
    [Google Scholar]
  29. Hamersley MR, Lavik G, Woebken D, Rattray JE, Lam P et al. 2007. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol. Oceanogr. 23:932–33
    [Google Scholar]
  30. Hawley AK, Brewer HM, Norbeck AD, Pasa-Toli L, Hallam SJ 2014. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. PNAS 111:11395–400
    [Google Scholar]
  31. Jayakumar DA, Francis CA, Naqvi SWA, Ward BB. 2004. Diversity of nitrite reductase genes (nirS) in the denitrifying water column of the coastal Arabian Sea. Aquat. Microb. Ecol. 34:69–78
    [Google Scholar]
  32. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–46
    [Google Scholar]
  33. Kuypers MM, Lavik G, Woebken D, Schmid M, Fuchs BM et al. 2005. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. PNAS 102:6478–83
    [Google Scholar]
  34. Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M et al. 2009. Revising the nitrogen cycle in the Peruvian oxygen minimum zone.. PNAS 106:4752–57
    [Google Scholar]
  35. Lavik G, Stührmann T, Brüchert V, Van der Plas A, Mohrholz V et al. 2009. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457:581–84
    [Google Scholar]
  36. Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ. 2012. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J 6:2257–68
    [Google Scholar]
  37. Li M, Toner BM, Baker BJ, Breier JA, Sheik CS, Dick GJ. 2014. Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Nat. Commun. 5:3192
    [Google Scholar]
  38. Lidbury ID, Murrell JC, Chen Y 2014. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. PNAS 111:2710–15
    [Google Scholar]
  39. Lidbury ID, Murrell JC, Chen Y. 2015. Trimethylamine and trimethylamine N-oxide are supplementary energy sources for a marine heterotrophic bacterium: implications for marine carbon and nitrogen cycling. ISME J 9:760–69
    [Google Scholar]
  40. Marshall KT, Morris RM. 2013. Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade. ISME J 7:452–55
    [Google Scholar]
  41. Marshall KT, Morris RM. 2015. Genome sequence of “Candidatus Thioglobus singularis” strain PS1, a mixotroph from the SUP05 clade of marine gammaproteobacteria. Genome Announc 3:e01155-15
    [Google Scholar]
  42. Mattes TE, Ingalls AE, Burke S, Morris RM. 2021. Metabolic flexibility of SUP05 under low DO growth conditions. Environ. Microbiol. 23:2823–33
    [Google Scholar]
  43. Mattes TE, Nunn BL, Marshall KT, Proskurowski G, Kelley DS et al. 2013. Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean. ISME J 7:2349–60
    [Google Scholar]
  44. Mock T, Daines SJ, Geider R, Collins S, Metodiev M et al. 2016. Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes. Glob. Change Biol. 22:61–75
    [Google Scholar]
  45. Murillo AA, Ramírez-Flandes S, DeLong EF, Ulloa O. 2014. Enhanced metabolic versatility of planktonic sulfur-oxidizing g-proteobacteria in an oxygen-deficient coastal ecosystem. Front. Mar. Sci 1:18
    [Google Scholar]
  46. Newton ILG, Woyke T, Auchtung TA, Dilly GF, Dutton RJ et al. 2007. The Calyptogena magnifica chemoautotrophic symbiont genome. Science 315:998–1000
    [Google Scholar]
  47. Nishijima M, Lindsay DJ, Hata J, Nakamura A, Kasai H et al. 2010. Association of thioautotrophic bacteria with deep-sea sponges. Mar. Biotechnol. 12:253–60
    [Google Scholar]
  48. Pfeifer F. 2012. Distribution, formation and regulation of gas vesicles. Nat. Rev. Microbiol. 10:705–15
    [Google Scholar]
  49. Ponnudurai R, Sayavedra L, Kleiner M, Heiden SE, Thürmer A et al. 2017. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Stand. Genom. Sci. 12:50
    [Google Scholar]
  50. Rappe MS, Connon SA, Vergin KL, Giovannoni SJ. 2002. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–33
    [Google Scholar]
  51. Rivas-Marin E, Canosa I, Devos DP. 2016. Evolutionary cell biology of division mode in the bacterial Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. Front. Microbiol. 7:1964
    [Google Scholar]
  52. Rodrigues-Oliveira T, Belmok A, Vasconcellos D, Schuster B, Kyaw CM. 2017. Archaeal S-layers: overview and current state of the art. Front. Microbiol. 8:2597
    [Google Scholar]
  53. Rogge A, Vogts A, Voss M, Jürgens K, Jost G, Labrenz M. 2017. Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r-strategists. Environ. Microbiol. 19:2495–506
    [Google Scholar]
  54. Rubin-Blum M, Antony CP, Sayavedra L, Martínez-Pérez C, Birgel D et al. 2019. Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts. ISME J 13:1209–25
    [Google Scholar]
  55. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S et al. 2007. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific.. PLOS Biol 5:e77
    [Google Scholar]
  56. Shah V, Chang BX, Morris RM. 2016. Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. ISME J 11:263–71
    [Google Scholar]
  57. Shah V, Zhao X, Lundeen RA, Ingalls AE, Nicastro D, Morris RM. 2019. Morphological plasticity in a sulfur-oxidizing marine bacterium from the SUP05 clade enhances dark carbon fixation. mBio 10:e00216-19
    [Google Scholar]
  58. Sleytr UB, Schuster B, Egelseer EM, Pum D. 2014. S-layers: principles and applications. FEMS Microbiol. Rev. 38:823–64
    [Google Scholar]
  59. Spietz RL, Lundeen RA, Zhao X, Nicastro D, Ingalls AE, Morris RM. 2019. Heterotrophic carbon metabolism and energy acquisition in Candidatus Thioglobus singularis strain PS1, a member of the SUP05 clade of marine Gammaproteobacteria. Environ. Microbiol. 21:2391–401
    [Google Scholar]
  60. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–13
    [Google Scholar]
  61. Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ 2011. Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLOS ONE 6:e19725
    [Google Scholar]
  62. Stepanauskas R Sieracki ME. 2007. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. PNAS 104:9052–57
    [Google Scholar]
  63. Stewart FJ, Newton IL, Cavanaugh CM. 2005. Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces. Trends Microbiol 13:439–48
    [Google Scholar]
  64. Sun J, Steindler L, Thrash JC, Halsey KH, Smith DP et al. 2011. One carbon metabolism in SAR11 pelagic marine bacteria. PLOS ONE 6:e23973
    [Google Scholar]
  65. Sunamura M, Higashi Y, Miyako C, Ishibashi JI, Maruyama A. 2004. Two bacteria phylotypes are predominant in the Suiyo seamount hydrothermal plume. Appl. Environ. Microbiol 70:1190–98
    [Google Scholar]
  66. Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T et al. 2011. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333:1296–300
    [Google Scholar]
  67. Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M et al. 2013. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. PNAS 110:11463–68
    [Google Scholar]
  68. Tcherkez GGB, Farquhar GD, Andrews TJ 2006. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. PNAS 103:7246–51
    [Google Scholar]
  69. Thamdrup B, Dalsgaard T, Jensen MM, Ulloa O, Farias L, Escribano R. 2006. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol. Oceanogr. 51:2145–56
    [Google Scholar]
  70. van Vliet DM, von Meijenfeldt FAB, Dutilh BE, Villanueva L, Sinninghe Damsté JS et al. 2021. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ. Microbiol. 23:2834–57
    [Google Scholar]
  71. Venter JC, Remington K, Heidelberg JF, Halpern AL, Eisen JA et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74
    [Google Scholar]
  72. Vohsen SA, Gruber-Vodicka HR, Osman EO, Saxton MA, Joye SB et al. 2020. Deep-sea corals near cold seeps associate with chemoautotrophic bacteria that are related to the symbionts of cold seep and hydrothermal vent mussels. bioRxiv 2020.02.27.968453. https://doi.org/10.1101/2020.02.27.968453
    [Crossref]
  73. Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ et al. 2009. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326:578–82
    [Google Scholar]
  74. Ward BB, Devol AH, Rich JJ, Chang BX, Bulow SE et al. 2009. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461:78–81
    [Google Scholar]
  75. Wiegand S, Jogler M, Jogler C. 2018. On the maverick Planctomycetes. FEMS Microbiol. Rev. 42:739–60
    [Google Scholar]
  76. Williams TJ, Long E, Evans F, Demaere MZ, Lauro FM et al. 2012. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J 6:1883–900
    [Google Scholar]
  77. Wood AP, Aurikko JP, Kelly DP. 2004. A challenge for 21st century molecular biology and biochemistry: What are the causes of obligate autotrophy and methanotrophy?. FEMS Microbiol. Rev. 28:335–52
    [Google Scholar]
  78. Wright JJ, Konwar KM, Hallam SJ. 2012. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10:381–94
    [Google Scholar]
  79. Xiao J, Goley ED. 2016. Redefining the roles of the FtsZ-ring in bacterial cytokinesis. Curr. Opin. Microbiol. 34:90–96
    [Google Scholar]
  80. Zaikova E, Walsh DA, Stilwell CP, Mohn WW, Tortell PD, Hallam SJ. 2010. Microbial community dynamics in a seasonally anoxic fjord: Saanich Inlet, British Columbia. Environ. Microbiol. 12:172–91
    [Google Scholar]
  81. Zhou K, Zhang R, Sun J, Zhang W, Tian R-M et al. 2019. Potential interactions between clade SUP05 sulfur-oxidizing bacteria and phages in hydrothermal vent sponges. Appl. Environ. Microbiol. 85:e00992-19
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010814
Loading
/content/journals/10.1146/annurev-marine-010419-010814
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error