1932

Abstract

Plankton are transported onshore, providing subsidies of food and new recruits to surf-zone and intertidal communities. The transport of plankton to the surf zone is influenced by wind, wave, and tidal forcing, and whether they enter the surf zone depends on alongshore variation in surf-zone hydrodynamics caused by the interaction of breaking waves with coastal morphology. Areas with gently sloping shores and wide surf zones typically have orders-of-magnitude-higher concentrations of plankton in the surf zone and dense larval settlement in intertidal communities because of the presence of bathymetric rip currents, which are absent in areas with steep shores and narrow surf zones. These striking differences in subsidies have profound consequences; areas with greater subsidies support more productive surf-zone communities and possibly more productive rocky intertidal communities. Recognition of the importance of spatial subsidies for rocky community dynamics has recently advanced ecological theory, and incorporating surf-zone hydrodynamics would be an especially fruitful line of investigation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010816-060514
2018-01-03
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/marine/10/1/annurev-marine-010816-060514.html?itemId=/content/journals/10.1146/annurev-marine-010816-060514&mimeType=html&fmt=ahah

Literature Cited

  1. Adams NG, MacFadyen A, Hickey BM, Trainer VL. 2006. The nearshore advection of a toxigenic Pseudo-nitzschia bloom and subsequent domoic acid contamination of intertidal bivalves. Afr. J. Mar. Sci. 28:271–76 [Google Scholar]
  2. Altwein DM, Foster K, Doose G, Newton RT. 1995. The detection and distribution of the marine neurotoxin domoic acid on the Pacific Coast of the United States 1991–1993. J. Shelf Res. 14:217–22 [Google Scholar]
  3. Baker R, Sheaves M. 2007. Shallow-water refuge paradigm: conflicting evidence from tethering experiments in a tropical estuary. Mar. Ecol. Prog. Ser. 349:13–22 [Google Scholar]
  4. Barros F, Borzone CA, Rosso S. 2001. Macroinfauna of six beaches near Guaratuba Bay, Southern Brazil. Braz. Arch. Biol. Technol. 4:351–64 [Google Scholar]
  5. Bowen AJ. 1969. Rip currents: 1. Theoretical investigations. J. Geophys. Res. 74:5467–78 [Google Scholar]
  6. Bracken MS, Menge BA, Foley MM, Sorte CJB, Lubchenco J, Schiel DR. 2012. Mussel selectivity for high-quality food drives carbon inputs into open-coast intertidal ecosystems. Mar. Ecol. Prog. Ser. 459:53–62 [Google Scholar]
  7. Broitman BR, Blanchette CA, Menge BA, Lubchenco J, Krenz C. et al. 2008. Spatial and temporal patterns of invertebrate recruitment along the west coast of the United States. Ecol. Monogr. 78:403–21 [Google Scholar]
  8. Brown JA, MacMahan JH, Reniers AJHM, Thornton E. 2015. Field observations of surfzone-inner shelf exchange on a rip channeled beach. J. Phys. Oceanogr. 45:2339–55 [Google Scholar]
  9. Budelmann B-U. 1988. Morphological diversity of equilibrium receptor systems in aquatic invertebrates. Sensory Biology of Aquatic Animals J Atema, RR Fay, AN Popper, WN Tavolga 757–82 New York: Springer-Verlag [Google Scholar]
  10. Campbell EE, Bate GC. 1988. The estimation of annual primary production in a high energy surf-zone. Bot. Mar. 31:337–43 [Google Scholar]
  11. Castelle B, Coco G. 2013. Surf zone flushing on embayed beaches. Geophys. Res. Lett. 40:2206–10 [Google Scholar]
  12. Castelle B, Reniers AJHM, MacMahan JH. 2014. Numerical modeling of surfzone retention on open rip channeled beaches exposed to shore-normal incident waves: impact of nearshore bathymetry. Ocean Dyn 64:1221–31 [Google Scholar]
  13. Clark BM. 1997. Variation in surf-zone fish community structure across a wave-exposure gradient. Estuar. Coast. Shelf Sci. 44:659–74 [Google Scholar]
  14. Clark DB, Elgar S, Raubenheimer B. 2012. Vorticity generation by short-crested wave breaking. Geophys. Res. Lett. 39:L24604 [Google Scholar]
  15. Clark DB, Lenain L, Feddersen F, Boss E, Guza RT. 2014. Aerial imaging of fluorescent dye in the nearshore. J. Atmos. Ocean. Technol. 31:1410–21 [Google Scholar]
  16. Connolly SR, Menge BA, Roughgarden J. 2001. A latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology 82:1799–813 [Google Scholar]
  17. Connolly SR, Roughgarden J. 1998. A latitudinal gradient in northeast Pacific intertidal community structure: evidence for an oceanographically based synthesis of marine community theory. Am. Nat. 151:311–26 [Google Scholar]
  18. Csordas A, Wang JK. 2004. An integrated photobioreactor and foam fractionation unity for the growth and harvest of Chaetoceros spp. in open systems. Aquacult. Eng. 30:15–30 [Google Scholar]
  19. Cudaback CN, Washburn L, Dever E. 2005. Subtidal inner-shelf circulation near Point Conception. J. Geophys. Res. 110:C10007 [Google Scholar]
  20. Dalrymple RA, MacMahan JH, Reniers AJHM, Nelko V. 2011. Rip currents. Annu. Rev. Fluid Mech. 43:551–81 [Google Scholar]
  21. Defeo O, McLachlan A. 2011. Coupling between macrofauna community structure and beach type: a deconstructive metaanalysis. Mar. Ecol. Prog. Ser. 433:29–41 [Google Scholar]
  22. DeLancey L. 1989. Trophic relationship in the surf zone during the summer at Folly Beach, South Carolina. J. Coast. Res. 5:477–88 [Google Scholar]
  23. Drake PT, Edwards CA, Morgan SG, Dever EP. 2013. Influence of larval behavior on transport and population connectivity in a realistic simulation of the California Current System. J. Mar. Res. 71:317–50 [Google Scholar]
  24. Du Preez DR, Bate GC. 1992. Dark survival of the surf diatom Anaulus australis Drebes et Schulz. Bot. Mar. 35:315–19 [Google Scholar]
  25. Du Preez DR, Campbell EE. 1996. Cell coatings of surf diatoms. Rev. Chil. Hist. Nat. 69:539–44 [Google Scholar]
  26. Du Preez HH, McLachlan A, Marais JFK, Cockroft AC. 1990. Bioenergetics of fishes in a high-energy surf-zone. Mar. Biol. 106:1–12 [Google Scholar]
  27. Dugan JE, Defeo O, Jaramillo E, Jones AR, Lastra M. et al. 2010. Give beach ecosystems their day in the sun. Science 329:1146 [Google Scholar]
  28. Epifanio CE, Cohen JH. 2016. Behavioral adaptations in larvae of brachyuran crabs: a review. J. Exp. Mar. Biol. Ecol. 482:85–105 [Google Scholar]
  29. Feddersen F. 2014. The generation of surfzone eddies in a strong alongshore current. J. Phys. Oceanogr. 44:600–17 [Google Scholar]
  30. Ferdin ME, Kvitek RG, Bretz CK, Powell CL, Doucette GJ. et al. 2002. Emerita analoga (Stimpson)—possible new indicator species for the phycotoxin domoic acid in California coastal waters. Toxicon 40:1259–65 [Google Scholar]
  31. Fewings MR, Lentz SJ, Fredericks J. 2008. Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf. J. Phys. Oceanogr. 38:2358–78 [Google Scholar]
  32. Fuchs HL, DiBacco C. 2011. Mussel larval responses to turbulence are unaltered by larval age or light conditions. Limnol. Oceanogr. 1:120–34 [Google Scholar]
  33. Fuchs HL, Gerbi GP. 2016. Seascape-level variation in turbulence- and wave-generated hydrodynamic signals experienced by plankton. Prog. Oceanogr. 141:109–29 [Google Scholar]
  34. Fuchs HL, Huter HJ, Schmitt ML, Guazz RA. 2013. Active downward propulsion by oyster larvae in turbulence. J. Exp. Biol. 216:1458–69 [Google Scholar]
  35. Fujimura A, Reniers AJHM, Paris CB, Shanks AL, MacMahan JH, Morgan SG. 2013. Slope-dependent biophysical modeling of surf zone larval transport. Coast. Dyn. 2013:661–70 [Google Scholar]
  36. Fujimura A, Reniers AJHM, Paris CB, Shanks AL, MacMahan JH, Morgan SG. 2014. Numerical simulations of larval transport into a rip-channeled surf zone. Limnol. Oceanogr. 59:1434–47 [Google Scholar]
  37. Garcia VMT, Gianuca NM. 1997. The beach and surf-zone. Subtropical Convergence Environments: The Coast and Sea in the Southwestern Atlantic U Seeliger, C Odebrecht, JP Castello 166–70 Berlin: Springer-Verlag [Google Scholar]
  38. Garver JL, Lewin J. 1981. Persistent blooms of surf diatoms along the Pacific Coast, U.S.A. I. Physical characteristics of the coastal region in relation to the distribution and abundance of the species. Estuar. Coast. Shelf Sci. 12:217–29 [Google Scholar]
  39. Gayoso AM, Muglia VH. 1991. Blooms of the surf-zone diatom Gonioceros armatus (Bacillariophyceae) on the South Atlantic coast (Argentina). Diatom Res 6:247–53 [Google Scholar]
  40. Haines JW, Sallenger AH Jr. 1994. Vertical structure of mean cross-shore currents across a barred surfzone. J. Geophys. Res. Oceans 99:14223–42 [Google Scholar]
  41. Haller MC, Dalrymple RA, Svendsen IA. 2002. Experimental study of nearshore dynamics on a barred beach with rip channels. J. Geophys. Res. Oceans 107:14–121 [Google Scholar]
  42. Hally-Rosendahl K, Feddersen F. 2016. Modeling surfzone to inner-shelf tracer exchange. J. Geophys. Res. Oceans 121:4007–25 [Google Scholar]
  43. Hally-Rosendahl K, Feddersen F, Clark DB, Guza R. 2015. Surfzone to inner-shelf exchange estimated from dye tracer balances. J. Geophys. Res. Oceans 120:6289–308 [Google Scholar]
  44. Hally-Rosendahl K, Feddersen F, Guza RT. 2014. Cross-shore tracer exchange between the surfzone and inner-shelf. J. Geophys. Res. Oceans 119:4367–88 [Google Scholar]
  45. Helmuth B, Harley CDG, Halpin PM, O'Donnell M, Hofmann GE, Blanchette CA. 2002. Climate change and latitudinal patterns of intertidal thermal stress. Science 298:1015–17 [Google Scholar]
  46. Hickey BM, Banas NS. 2008. Why is the northern end of the California Current System so productive. Oceanography 21:490–107 [Google Scholar]
  47. Inoue T, Suda Y, Sano M. 2008. Surf zone fishes in an exposed sandy beach at Sanrimatsubara, Japan: Does fish assemblage structure differ among microhabitats. Estuar. Coast. Shelf Sci. 77:1–11 [Google Scholar]
  48. Inui R, Nishida T, Onikura N, Eguchi K, Kawagishi M. et al. 2010. Physical factors influencing immature-fish communities in the surf zones of sandy beaches in northwestern Kyushu Island, Japan. Estuar. Coast. Shelf Sci. 86:467–76 [Google Scholar]
  49. Jacinto D, Cruz T. 2008. Tidal settlement of the intertidal barnacles Chthamalus spp. in SW Portugal: interaction between diel and semi-lunar cycles. Mar. Ecol. Prog. Ser. 366:129–35 [Google Scholar]
  50. Johnson D, Pattiaratchi C. 2006. Boussinesq modelling of transient rip currents. Coast. Eng. 53:419–39 [Google Scholar]
  51. Kahn AE, Cahoon L. 2012. Phytoplankton productivity and physiology in the surf zone of sandy beaches in North Carolina, USA. Estuaries Coasts 35:1393–400 [Google Scholar]
  52. Kingsford MJ, Leis JM, Shanks AL, Lindeman KC, Morgan SG, Pineda J. 2002. Sensory environments, larval abilities and local self-recruitment. Bull. Mar. Sci. 70:Suppl. 1309–40 [Google Scholar]
  53. Kirincich AR, Lentz SJ, Barth JA. 2009. Wave-driven inner-shelf motions on the Oregon coast. J. Phys. Oceanogr. 39:2942–56 [Google Scholar]
  54. Komar PD. 1983. Nearshore currents and sand transport on beaches. Physical Oceanography of Coastal and Shelf Seas B Johns 67–109 New York: Elsevier [Google Scholar]
  55. Krichnavaruck S, Oowtongsook S, Pavasant P. 2007. Enhanced productivity of Chaetoveros calcitrans in airlift photobioreactors. Biosci. Technol. 98:2123–30 [Google Scholar]
  56. Kumar N, Feddersen F. 2017a. The effect of Stokes drift and transient rip currents on the inner-shelf. Part I: no stratification. J. Phys. Oceanogr. 47:227–41 [Google Scholar]
  57. Kumar N, Feddersen F. 2017b. The effect of Stokes drift and transient rip currents on the inner shelf. Part II: with stratification. J. Phys. Oceanogr. 47:243–60 [Google Scholar]
  58. Kumar N, Feddersen F. 2017c. A new offshore transport mechanism for shoreline-released tracer induced by transient rip currents and stratification. Geophys. Res. Lett. 44:2843–51 [Google Scholar]
  59. Ladah LB, Tapia FJ, Pineda J, Lopez M. 2005. Spatially heterogeneous, synchronous settlement of Chthamalus spp. larvae in northern Baja California. Mar. Ecol. Prog. Ser. 302:177–85 [Google Scholar]
  60. Layman CA. 2000. Fish assemblage structure of the shallow ocean surf-zone on the eastern shore of Virginia barrier islands. Estuar. Coast. Shelf Sci. 51:201–13 [Google Scholar]
  61. Leis JM, Siebeck U, Dixson DL. 2011. How Nemo finds home: the neuroecology of dispersal and of population connectivity in larvae of marine fishes. Integr. Comp. Biol. 51:826–43 [Google Scholar]
  62. Lentz SJ. 1994. Current dynamics over the northern California inner shelf. J. Phys. Oceanogr. 24:2461–78 [Google Scholar]
  63. Lentz SJ, Fewings MR. 2012. The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci. 4:317–43 [Google Scholar]
  64. Lentz SJ, Fewings MR, Howd P, Fredericks J, Hathaway K. 2008. Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr. 38:2341–57 [Google Scholar]
  65. Lentz SJ, Guza RT, Elgar S, Feddersen F, Herbers THC. 1999. Momentum balances on the North Carolina inner shelf. J. Geophys. Res. Oceans 104:18205–26 [Google Scholar]
  66. Leslie HM, Breck EN, Chan C, Lubchenco J, Menge BA. 2005. Barnacle reproductive hotspots linked to nearshore ocean conditions. PNAS 102:10534–39 [Google Scholar]
  67. Lewin J. 1978. Blooms of surf-zone diatoms along the coast of the Olympic Peninsula, Washington. IX: factors controlling the seasonal cycle of nitrate in the surf at Copalis Beach (1971 through 1975). Estuar. Coast. Shelf Sci. 7:173–83 [Google Scholar]
  68. Lewin J, Hruby T. 1973. Blooms of the surf-zone diatoms along the coast of the Olympic Peninsula, Washington. II. A diel periodicity in buoyancy shown by the surf-zone diatom species, Chaetocerosarmatum T. West. Estuar. Coast. Shelf Sci. 1:101–5 [Google Scholar]
  69. Lewin J, Schaefer CT, Winter DF. 1989. Surf-zone ecology and dynamics. Coastal Oceanography of Washington and Oregon MR Landry, BM Hickey 567–94 Amsterdam: Elsevier [Google Scholar]
  70. Longuet-Higgins MS. 1953. Mass transport in water waves. Philos. Trans. R. Soc. Lond. A 245:535–81 [Google Scholar]
  71. MacMahan JH, Brown J, Brown J, Thornton EB, Reniers AJHM. et al. 2010. Mean Lagrangian flow behavior on an open coast rip-channeled beaches: new perspectives. Mar. Geol. 268:1–15 [Google Scholar]
  72. MacMahan JH, Thornton EB, Reniers AJHM. 2006. Rip current overview. Coast. Eng. 53:191–208 [Google Scholar]
  73. MacTavish AL, Ladah LB, Lavín MF, Filonov A, Tapia FJ, Leichter J. 2016. High frequency (hourly) variation in vertical distribution and abundance of meroplanktonic larvae in nearshore waters during strong internal tidal forcing. Cont. Shelf Res. 117:92–99 [Google Scholar]
  74. Manning LM, Peterson CH, Fegley SR. 2013. Degradation of surf-fish foraging habitat driven by persistent sedimentological modifications caused by beach nourishment. Bull. Mar. Sci. 89:83–106 [Google Scholar]
  75. Marmorino GO, Smith GB, Miller WB. 2013. Infrared remote sensing of surf-zone eddies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6:1710–18 [Google Scholar]
  76. McGwynne LE. 1991. The microbial loop: its role in a diatom-enriched surf zone PhD Thesis, Univ. Port Elizab., S. Afr.
  77. McLachlan A, Brown AC. 2006. The Ecology of Sandy Shores Burlington, VT: Academic
  78. McLachlan A, Dorvlo A. 2005. Global patterns in sandy macrobenthic communities. J. Coast Res. 21:674–87 [Google Scholar]
  79. McLachlan A, Hesp P. 1984. Faunal response to morphology and water circulation of a sandy beach with cusps. Mar. Ecol. Prog. Ser. 19:133–44 [Google Scholar]
  80. Menge BA, Daley BA, Wheeler PA, Dahlhoff E, Sanford E, Strub PT. 1997a. Benthic-pelagic links and rocky intertidal communities: bottom-up effects on top-down control. PNAS 94:14530–35 [Google Scholar]
  81. Menge BA, Daley BA, Wheeler PA, Strub PT. 1997b. Rocky intertidal oceanography: an association between community structure and nearshore phytoplankton concentration. Limnol. Oceanogr. 42:57–66 [Google Scholar]
  82. Menge BA, Lubchenco J, Bracken MES, Chan F, Foley MM. et al. 2003. Coastal oceanography sets the pace of rocky intertidal community dynamics. PNAS 100:12229–34 [Google Scholar]
  83. Menge BA, Sutherland JP. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130:730–57 [Google Scholar]
  84. Modde T, Ross ST. 1981. Seasonality of fishes occupying a surf zone habitat in the northern Gulf of Mexico. Fish Bull 78:911–22 [Google Scholar]
  85. Morgan SG. 2001. The larval ecology of marine communities. Marine Community Ecology MD Bertness, SD Gaines, ME Hay 159–81 Sunderland, MA: Sinauer [Google Scholar]
  86. Morgan SG. 2014. Behaviorally mediated larval transport in upwelling systems. Adv. Oceanogr. 2014:364214 [Google Scholar]
  87. Morgan SG. 2017. Dispersal. The Natural History of the Crustacea 7 Developmental Biology and Larval Ecology K Anger, S Harzsch, M Thiel New York: Academic In press [Google Scholar]
  88. Morgan SG, Fisher JL, Mace AJ. 2009a. Larval recruitment in a region of strong, persistent upwelling and recruitment limitation. Mar. Ecol. Prog. Ser. 394:79–99 [Google Scholar]
  89. Morgan SG, Fisher JL, Miller SH, McAfee ST, Largier JL. 2009b. Nearshore larval retention in a region of strong upwelling and recruitment limitation. Ecology 90:3489–502 [Google Scholar]
  90. Morgan SG, Shanks AL, MacMahan JH, Reniers AJHM, Griesemer CD. et al. 2016. Surfzone hydrodynamics as a key determinant of spatial variation in marine communities. Proc. R. Soc. Lond. B 283:20161017 [Google Scholar]
  91. Morgan SG, Shanks AL, MacMahan JH, Reniers AJHM, Griesemer CD. et al. 2017. Surf zones regulate larval supply and zooplankton subsidies to nearshore communities. Limnol. Oceanogr. In press. https://doi.org/10.1002/lno.10609
  92. Nakane Y, Suda Y, Hayakawa Y, Ohtomi J, Sano M. 2009. Predation pressure for a juvenile fish on an exposed sandy beach: comparison among beach types using tethering experiments. Mer 46:109–15 [Google Scholar]
  93. Nakane Y, Suda Y, Sano M. 2013. Responses of fish assemblage structures to sandy beach types in Kyushu Island, southern Japan. Mar. Biol. 160:1563–81 [Google Scholar]
  94. Navarrete SA, Largier JL, Vera G, Tapia FJ, Parrague M. et al. 2015. Tumbling under the surf: wave-modulated settlement of intertidal mussels and the continuous settlement-relocation model. Mar. Ecol. Prog. Ser. 520:101–21 [Google Scholar]
  95. Nel R, McLachlan A, Winter D. 1999. The effect of sand particle size on the burrowing ability of the beach mysid Gasrtosaccus psammodytes Tattersall. Estuar. Coast. Shelf Sci. 48:599–604 [Google Scholar]
  96. Niencheski LFH, Windom HL, Moore WS, Jahnke RA. 2007. Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Mar. Chem. 106:546–61 [Google Scholar]
  97. Odebrecht C, Du Preez DR, Abreu PC, Campbell EE. 2014. Surf zone diatoms: a review of the drivers, patterns and role in sandy beaches food chains. Estuar. Coast. Shelf Sci. 150:24–35 [Google Scholar]
  98. Peregrine DH. 1998. Surf zone currents. Theor. Comput. Fluid Dyn. 10:295–309 [Google Scholar]
  99. Peterson W. 1998. Life cycle strategies of copepods in coastal upwelling zones. J. Mar. Syst. 15:313–26 [Google Scholar]
  100. Phillips NE. 2005. Growth of filter-feeding benthic invertebrates from a region with variable upwelling intensity. Mar. Ecol. Prog. Ser. 295:79–89 [Google Scholar]
  101. Phillips NE. 2007. A spatial gradient in the potential reproductive output of the sea mussel Mytilus californianus. Mar. Biol. 151:1543–50 [Google Scholar]
  102. Pineda J. 1999. Circulation and larval distribution in internal tidal bore warm fronts. Limnol. Oceanogr. 44:1400–14 [Google Scholar]
  103. Queiroga H, Blanton J. 2005. Interactions between behavior and physical forcing in the control of horizontal transport of decapod crustacean larvae. Adv. Mar. Biol. 47:107–214 [Google Scholar]
  104. Reniers AJHM, Gallagher EL, MacMahan JH, Brown JA, van Rooijen AR. et al. 2013. Observations and modeling of steep-beach grain-size variability. J. Geophys. Res. Oceans 118:577–91 [Google Scholar]
  105. Reniers AJHM, MacMahan JH, Beron-Vera FJ, Olascoaga MJ. 2010. Rip-current pulses tied to Lagrangian coherent structures. Geophys. Res. Lett. 37:L05605 [Google Scholar]
  106. Reniers AJHM, MacMahan JH, Thornton EB, Stanton TP, Henriquez M. et al. 2009. Surfzone surface retention on a rip-channeled beach. J. Geophys. Res. 114:C10010 [Google Scholar]
  107. Reniers AJHM, Thornton EB, Stanton TP, Roelvink JA. 2004. Vertical flow structure during Sandy Duck: observations and modeling. Coast. Eng. 51:237–60 [Google Scholar]
  108. Reynolds C. 2006. Ecology of Phytoplankton Cambridge, UK: Cambridge Univ. Press
  109. Rodil IF, Lastra M, Sanchez-Mata AG. 2006. Community structure and intertidal zonation of the macroinfauna in intermediate sandy beaches in temperate latitudes: north coast of Spain. Estuar. Coast. Shelf Sci. 67:267–79 [Google Scholar]
  110. Romer GS. 1990. Surf zone fish community and species responses to a wave energy gradient. J. Fish Biol. 36:279–87 [Google Scholar]
  111. Roy A, Metaxas A, Ross T. 2012. Swimming patterns of larval Strongylocentrotus droebachiensis in turbulence in the laboratory. Mar. Ecol. Prog. Ser. 453:117–27 [Google Scholar]
  112. Ryan JP, Dierssen HM, Kudela RM, Scholin CA, Ryan JP. et al. 2005. Coastal ocean physics and red tides: an example from Monterey Bay, California. Oceanography 18:2246–55 [Google Scholar]
  113. Scholin CA, Gulland F, Doucette GJ, Benson S, Busman M. et al. 2000. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403:80–84 [Google Scholar]
  114. Shanks AL. 1995. Mechanisms of cross-shelf dispersal of larval invertebrates and fish. Ecology of Marine Invertebrate Larvae L McEdward 323–67 New York: CRC [Google Scholar]
  115. Shanks AL. 2006. Mechanisms of cross-shelf transport of crab megalopae inferred from a time series of daily abundance. Mar. Biol. 148:1383–98 [Google Scholar]
  116. Shanks AL, Brink L. 2005. Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis. Mar. Ecol. Prog. Ser. 302:1–12 [Google Scholar]
  117. Shanks AL, Morgan SG, MacMahan JH, Reniers AJHM. 2010. Surf zone physical and morphological regime as determinants of temporal and spatial variation in larval recruitment. J. Exp. Mar. Biol. Ecol. 392:140–50 [Google Scholar]
  118. Shanks AL, Morgan SG, MacMahan JH, Reniers AJHM. 2017a. Alongshore variation in barnacle populations is determined by surfzone hydrodynamics. Ecol. Monogr. 87:508–32 [Google Scholar]
  119. Shanks AL, Morgan SG, MacMahan JH, Reniers AJHM, Jarvis M. et al. 2014. Onshore transport of plankton by the internal tides and upwelling-relaxation events. Mar. Ecol. Prog. Ser. 502:39–51 [Google Scholar]
  120. Shanks AL, Morgan SG, MacMahan JH, Reniers AJHM, Jarvis M. et al. 2015. Transport of larvae and detritus across the surf zone of a steep reflective pocket beach. Mar. Ecol. Prog. Ser. 528:71–86 [Google Scholar]
  121. Shanks AL, Morgan SG, MacMahan JH, Reniers AJHM, Jarvis M. et al. 2017b. Persistent differences in horizontal gradients in phytoplankton concentration maintained by surf zone hydrodynamics. Estuaries Coasts In press. https://doi.org/10.1007/s12237-017-0278-2
  122. Shanks AL, Morgan SG, MacMahan JH, Reniers AJHM, Kudela R. et al. 2016. Variation in the abundance of Pseudo-nitzschia and domoic acid with surf zone type. Harmful Algae 55:172–78 [Google Scholar]
  123. Shanks AL, Sheesley P, Johnson L. 2017c. Phytoplankton subsidies to the inter-tidal zone are strongly affected by surf-zone hydrodynamics. Mar. Ecol. 38:e12441 [Google Scholar]
  124. Shepard FP, Emory KO, La Fond EC. 1941. Rip currents: a process of geological importance. J. Geol. 49:337–69 [Google Scholar]
  125. Shkedy Y, Roughgarden J. 1997. Barnacle recruitment and population dynamics predicted from coastal upwelling. Oikos 80:487–98 [Google Scholar]
  126. Spydell M, Feddersen F. 2009. Lagrangian drifter dispersion in the surf zone: directionally spread, normally incident waves. J. Phys. Oceanogr. 39:809–30 [Google Scholar]
  127. Stull KJ, Cahoon LB, Lankford TE. 2016. Zooplankton abundance in the surf zones of nourished and unnourished beaches in southeastern North Carolina, U.S.A. J. Coast. Res. 32:70–77 [Google Scholar]
  128. Suanda SH, Feddersen F. 2015. A self-similar scaling for cross-shelf exchange driven by transient rip currents. Geophys. Res. Lett. 42:5427–34 [Google Scholar]
  129. Talbot MMB, Bate GC. 1987. Rip current characteristics and their role in the exchange of water and surf diatoms between the surf zone and nearshore. Estuar. Coast. Shelf Sci. 25:707–20 [Google Scholar]
  130. Talbot MMB, Bate GC. 1988a. The use of false buoyancies by the surf diatom Anaulus birostratus in the formation and decay of cell patches. Estuar. Coast. Shelf Sci. 26:155–67 [Google Scholar]
  131. Talbot MMB, Bate GC. 1988b. The relative quantities of live and detrital organic matter in a beach-surf ecosystem. J. Exp. Mar. Biol. Ecol. 121:255–64 [Google Scholar]
  132. Talbot MMB, Bate GC, Campbell EE. 1990. A review of the ecology of surf-zone diatoms, with special reference to Anaulus australis. Oceanogr. Mar. Biol. Annu. Rev. 28:155–75 [Google Scholar]
  133. Thorson G. 1964. Light as an ecological factor in the dispersal and settlement of larvae of marine bottom invertebrates. Ophelia 1:167–208 [Google Scholar]
  134. Trainer VL, Pitcher GC, Reguera B, Smayda TJ. 2010. The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems. Prog. Oceanogr. 85:33–52 [Google Scholar]
  135. Trowbridge J, Madsen OS. 1984. Turbulent wave boundary layers 2. Second-order theory and mass transport. J. Geophys. Res. Oceans 89:7999–8007 [Google Scholar]
  136. Underwood AJ, Keough MJ. 2001. Supply-side ecology: the nature and consequences of variations in recruitment of intertidal organisms. Marine Community Ecology MD Bertness, SD Gaines, ME Hay 183–200 Sunderland, MA: Sinauer [Google Scholar]
  137. Ursell F. 1950. On the theoretical form of ocean swell on a rotating Earth. Mon. Not. R. Astron. Soc. Geophys. Suppl. 6:1–8 [Google Scholar]
  138. Watt-Pringle P, Strydom NA. 2003. Habitat use by larval fishes in a temperate South African surf zone. Estuar. Coast. Shelf Sci. 58:765–74 [Google Scholar]
  139. Wright LD, Short AD. 1984. Morphodynamic variability of surf zones and beaches: a synthesis. Mar. Geol. 56:93–118 [Google Scholar]
/content/journals/10.1146/annurev-marine-010816-060514
Loading
/content/journals/10.1146/annurev-marine-010816-060514
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error