1932

Abstract

The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that () classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, () modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and () the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-121916-063351
2018-01-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/marine/10/1/annurev-marine-121916-063351.html?itemId=/content/journals/10.1146/annurev-marine-121916-063351&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal YC, Aubrey DG. 1992. Velocity observations above a rippled bed using laser Doppler velocimetry. J. Geophys. Res. 97:20249–59 [Google Scholar]
  2. Agrawal YC, Traykovski P. 2001. Particles in the bottom boundary layer: concentration and size dynamics through events. J. Geophys. Res. 106:9533–42 [Google Scholar]
  3. Allen JJ, Shockling MA, Kunkel GJ, Smits AJ. 2007. Turbulent flow in smooth and rough pipes. Philos. Trans. R. Soc. A 365:699–714 [Google Scholar]
  4. Allen JS, Newberger PA. 1996. Downwelling circulation on the Oregon continental shelf. Part I: response to idealized forcing. J. Phys. Oceanogr. 26:2011–35 [Google Scholar]
  5. Allen JS, Newberger PA. 1998. On symmetric instabilities in bottom boundary layers. J. Phys. Oceanogr. 28:1131–51 [Google Scholar]
  6. Bailey SCC, Vallikivi M, Hultmark M, Smits AJ. 2014. Estimating the value of von Kármán's constant in turbulent pipe flow. J. Fluid Mech. 749:79–98 [Google Scholar]
  7. Barth JA, Bogucki D, Pierce SD, Kosro PM. 1998. Secondary circulation associated with a shelfbreak front. Geophys. Res. Lett. 25:2761–64 [Google Scholar]
  8. Barth JA, Hebert D, Dale AC, Ullman DS. 2004. Direct observations of along-isopycnal upwelling and diapycnal velocity at a shelfbreak front. J. Phys. Oceanogr. 34:543–65 [Google Scholar]
  9. Batchelor GK. 1953. The Theory of Homogeneous Turbulence New York: Cambridge Univ. Press
  10. Beljaars ACM, Holtslag AAM. 1991. Flux parameterization over land surface for atmospheric models. J. Appl. Meteorol. 30:327–41 [Google Scholar]
  11. Benthuysen J, Thomas LN, Lentz SJ. 2015. Rapid generation of upwelling at a shelf break caused by buoyancy shutdown. J. Phys. Oceanogr. 45:294–312 [Google Scholar]
  12. Blondeaux P, Scandura P, Vittori G. 2004. Coherent structures in an oscillatory separated flow: numerical experiments. J. Fluid Mech. 518:215–29 [Google Scholar]
  13. Brink KH. 2012. Baroclinic instability of an idealized tidal mixing front. J. Mar. Res. 70:661–88 [Google Scholar]
  14. Brink KH. 2013. Instability of a tidal mixing front in the presence of realistic tides and mixing. J. Mar. Res. 71:227–52 [Google Scholar]
  15. Brink KH. 2016. Cross-shelf exchange. Annu. Rev. Mar. Sci. 8:59–78 [Google Scholar]
  16. Brink KH, Cherian DA. 2013. Instability of an idealized tidal mixing front: symmetric instabilities and frictional effects. J. Mar. Res. 71:425–50 [Google Scholar]
  17. Brink KH, Lentz SJ. 2010. Buoyancy arrest and bottom Ekman transport. Part I: steady flow. J. Phys. Oceanogr. 40:621–35 [Google Scholar]
  18. Burchard H. 2002. Applied Turbulence Modelling in Marine Waters New York: Springer-Verlag
  19. Burchard H, Craig PD, Gemmrich JR, van Haren H, Mathieu PP. et al. 2008. Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing. Prog. Oceanogr. 76:399–42 [Google Scholar]
  20. Businger JA, Wyngaard JC, Izumi Y, Bradley EF. 1971. Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28:181–89 [Google Scholar]
  21. Chapman DC. 2002. Deceleration of a finite-width, stratified current over a sloping bottom: frictional spindown or buoyancy shutdown. J. Phys. Oceanogr. 32:336–52 [Google Scholar]
  22. Chapman DC, Lentz SJ. 2005. Acceleration of a stratified current over a sloping bottom, driven by an alongshelf pressure gradient. J. Phys. Oceanogr. 35:1305–17 [Google Scholar]
  23. Charru F, Andreotti B, Claudin P. 2013. Sand ripples and dunes. Annu. Rev. Fluid Mech. 45:469–93 [Google Scholar]
  24. Clifton HE. 1976. Wave-formed sedimentary structures: a conceptual model. Beach and Nearshore Sedimentation RA Davis Jr., RL Ethington 126–48 SEPM Spec. Publ. 24 Tulsa, OK: Soc. Sediment. Geol. [Google Scholar]
  25. Clifton HE, Dingler JR. 1984. Wave-formed structures and paleoenvironmental reconstruction. Mar. Geol. 60:165–98 [Google Scholar]
  26. Cowen RK, Sponaugle S. 2009. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1:443–66 [Google Scholar]
  27. Davies AG, Soulsby RL, King HL. 1988. A numerical model of the combined wave and current bottom boundary layer. J. Geophys. Res. 93:491–508 [Google Scholar]
  28. Davies AG, Villaret C. 2002. Prediction of sand transport rates by waves and currents in the coastal zone. Cont. Shelf Res. 22:2725–37 [Google Scholar]
  29. Drake DE, Cacchione DA, Grant WD. 1992. Shear stress and bed roughness estimates for combined wave and current flows over a rippled bed. J. Geophys. Res. 97:2319–26 [Google Scholar]
  30. Drazin PG, Reid WH. 1981. Hydrodynamic Stability New York: Cambridge Univ. Press
  31. Dyer KR, Soulsby RL. 1988. Sand transport on the continental shelf. Annu. Rev. Fluid Mech. 20:295–324 [Google Scholar]
  32. Feddersen F, Gallagher E, Guza RT, Elgar S. 2003. The drag coefficient, bottom roughness, and wave-breaking in the nearshore. Coast. Eng. 48:189–95 [Google Scholar]
  33. Feddersen F, Guza R, Elgar S. 2004. Inverse modeling of one-dimensional setup and alongshore current in the nearshore. J. Phys. Oceanogr. 34:920–33 [Google Scholar]
  34. Feddersen F, Trowbridge JH, Williams AJ. 2007. Vertical structure of dissipation in the nearshore. J. Phys. Oceangr. 37:1764–77 [Google Scholar]
  35. Feddersen F, Williams AJ. 2007. Direct estimation of the Reynolds stress vertical structure in the nearshore. J. Atmos. Ocean. Technol. 24:102–16 [Google Scholar]
  36. Foster DL, Beach RA, Holman RA. 2000. Field observations of the wave bottom boundary layer. J. Geophys. Res. 105:19,631–48 [Google Scholar]
  37. Foster DL, Beach RA, Holman RA. 2006. Turbulence observations of the nearshore wave bottom boundary layer. J. Geophys. Res. 111:C04011 [Google Scholar]
  38. Frisch U. 1995. Turbulence: The Legacy of A. N. Kolmogorov New York: Cambridge Univ. Press
  39. Ganju NK, Lentz SJ, Kirincich AR, Farrar JT. 2011. Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high‐resolution model. J. Geophys. Res. 116:C10036 [Google Scholar]
  40. Gargett AE, Wells JR. 2007. Langmuir turbulence in shallow water. Part 1. Observations. J. Fluid Mech. 576:27–61 [Google Scholar]
  41. Gargett AE, Wells JR, Tejada-Martınez AE, Grosch CE. 2004. Langmuir supercells: a mechanism for sediment resuspension and transport in shallow seas. Science 306:1925–28 [Google Scholar]
  42. Garrett C, MacCready P, Rhines P. 1993. Boundary mixing and arrested Ekman layers: rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech. 25:291–323 [Google Scholar]
  43. Gemmrich JR, Farmer DM. 2004. Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr. 34:1067–86 [Google Scholar]
  44. Gerbi GP, Trowbridge JH, Terray EA, Plueddemann AJ, Kukulka T. 2009. Observations of turbulence in the ocean surface boundary layer: energetics and transport. J. Phys. Oceanogr. 39:1077–96 [Google Scholar]
  45. Ghodke CD, Apte SV. 2016. DNS study of particle-bed-turbulence interactions in an oscillatory wall-bounded flow. J. Fluid Mech. 792:232–51 [Google Scholar]
  46. Glenn SM, Grant WD. 1987. A suspended sediment stratification correction for combined wave and current flows. J. Geophys. Res. 92:8244–64 [Google Scholar]
  47. Grant WD, Madsen OS. 1979. Combined wave and current interaction with a rough bottom. J. Geophys. Res. 84:1797–808 [Google Scholar]
  48. Grant WD, Madsen OS. 1982. Moveable bed roughness in unsteady oscillatory flow. J. Geophys. Res. 87:469–81 [Google Scholar]
  49. Grant WD, Madsen OS. 1986. The continental-shelf bottom boundary layer. Annu. Rev. Fluid Mech. 18:265–305 [Google Scholar]
  50. Gross TF, Nowell RM. 1985. Spectral scaling in a tidal boundary layer. J. Phys. Oceanogr. 15:496–508 [Google Scholar]
  51. Hackett E, Luznik L, Katz J, Osborn TR. 2009. Effect of finite spatial resolution on the turbulent energy spectrum measured in the coastal ocean bottom boundary layer. J. Atmos. Ocean. Technol. 26:2610–25 [Google Scholar]
  52. Hay AE. 2008. Near-bed turbulence and relict waveformed sand ripples: observations from the inner shelf. J. Geophys. Res. 113:C04040 [Google Scholar]
  53. Hay AE. 2011. Geometric bed roughness and the bed state storm cycle. J. Geophys. Res. 116:C04017 [Google Scholar]
  54. Hay AE, Mudge T. 2005. Principal bed states during SandyDuck97: occurrence, spectral anisotropy, and the bed state storm cycle. J. Geophys. Res. 110:C03013 [Google Scholar]
  55. Hay AE, Zedel L, Cheel R, Dillon J. 2012a. Observations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness beds using a prototype wideband coherent Doppler profiler: 1. The oscillatory component of the flow. J. Geophys. Res. 117:C03005 [Google Scholar]
  56. Hay AE, Zedel L, Cheel R, Dillon J. 2012b. Observations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness using a prototype wideband coherent Doppler profiler: 2. Turbulence and stress. J. Geophys. Res. 117:C03006 [Google Scholar]
  57. Hay AE, Zedel L, Cheel R, Dillon J. 2012c. On the vertical and temporal structure of flow and stress within the turbulent oscillatory boundary layer above evolving sand ripples. Cont. Shelf Res. 46:31–49 [Google Scholar]
  58. Henderson SM, Allen JS, Newberger PA. 2004. Nearshore sandbar migration predicted by an eddy-diffusive boundary layer model. J. Geophys. Res. 109:C06024 [Google Scholar]
  59. Högström U. 1988. Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Bound. Layer Meteorol. 42:55–78 [Google Scholar]
  60. Houghton RW, Hebert D, Prater M. 2006. Circulation and mixing at the New England shelfbreak front: results of purposeful tracer experiments. Prog. Oceanogr. 70:289–312 [Google Scholar]
  61. Houghton RW, Visbeck M. 1998. Upwelling and convergence in the Middle Atlantic Bight shelfbreak front. Geophys. Res. Lett. 25:2765–68 [Google Scholar]
  62. Howell J, Sun J. 1999. Surface layer fluxes in stable conditions. Bound. Layer Meteorol. 90:495–520 [Google Scholar]
  63. Huettel M, Berg P, Kostka JE. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. Annu. Rev. Mar. Sci. 6:23–51 [Google Scholar]
  64. Jacobs SJ. 1984. Mass transport in a turbulent boundary layer under a progressive water wave. J. Fluid Mech. 146:303–12 [Google Scholar]
  65. Jiménez J. 2004. Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36:173–96 [Google Scholar]
  66. Jiménez J. 2012. Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44:27–45 [Google Scholar]
  67. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR. 1972. Spectral characteristics of surface layer turbulence. Q. J. R. Meteorol. Soc. 98:563–89 [Google Scholar]
  68. Kineke GC, Sternberg RW, Trowbridge JH, Geyer WR. 1996. Fluid-mud processes on the Amazon continental shelf. Cont. Shelf Res. 16:667–96 [Google Scholar]
  69. Kirincich AR. 2016. The occurrence, drivers, and implications of submesoscale eddies on the Martha's Vineyard inner shelf. J. Phys. Oceanogr. 46:2645–62 [Google Scholar]
  70. Kirincich AR, Lentz SJ, Farrar JT. 2013. The spatial structure of tidal and mean circulation over the inner shelf south of Martha's Vineyard, Massachusetts. J. Phys. Oceanogr. 43:1940–58 [Google Scholar]
  71. Kukulka T, Plueddemann AJ, Trowbridge JH, Sullivan PP. 2011. The influence of crosswind tidal currents on Langmuir circulation in a shallow ocean. J. Geophys. Res. 116:C08005 [Google Scholar]
  72. Lamb KG. 2014. Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech. 46:231–54 [Google Scholar]
  73. Large WG, Gent PR. 1999. Validation of vertical mixing in an equatorial ocean model using large eddy simulations and observations. J. Phys. Oceanogr. 29:449–64 [Google Scholar]
  74. Large WG, McWilliams JC, Doney SC. 1994. Oceanic vertical mixing: a review and a model with nonlocal boundary layer parameterization. Rev. Geophys. 32:363–403 [Google Scholar]
  75. Lentz SJ, Trowbridge JH. 1991. The bottom boundary layer over the northern California shelf. J. Phys. Oceanogr. 21:1186–201 [Google Scholar]
  76. Lentz SJ, Trowbridge JH. 2001. A dynamical description of fall and winter mean current profiles over the northern California shelf. J. Phys. Oceangr. 31:914–31 [Google Scholar]
  77. Lien RC, Sanford TB. 2004. Turbulence spectra and local similarity scaling in a strongly stratified oceanic bottom boundary layer. Cont. Shelf Res. 24:375–92 [Google Scholar]
  78. Longuet-Higgins MS. 1953. Mass transport in water waves. Philos. Trans. R. Soc. Lond. A 245:535–81 [Google Scholar]
  79. Lumley JL, Terray EA. 1983. Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr. 13:2000–7 [Google Scholar]
  80. Luznik L, Gurka R, Zhu W, Nimmo Smith WAM, Katz J, Osborn TR. 2007. Distributions of energy spectra, Reynolds stresses, turbulence production and dissipation in a tidally driven bottom boundary layer. J. Phys. Oceanogr. 37:1527–50 [Google Scholar]
  81. Madsen OS. 1977. A realistic model of the wind-induced Ekman boundary layer. J. Phys. Oceanogr. 7:248–55 [Google Scholar]
  82. Mahrt L. 2014. Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 46:23–45 [Google Scholar]
  83. Maier I, Hay AE. 2009. Occurrence and orientation of anorbital ripples in near-shore sands. J. Geophys. Res. 114:F04022 [Google Scholar]
  84. McComb WD. 1991. The Physics of Fluid Turbulence Oxford, UK: Oxford Univ. Press
  85. McWilliams JC. 2006. Fundamentals of Geophysical Fluid Dynamics New York: Cambridge Univ. Press
  86. McWilliams JC, Sullivan P. 2001. Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull. 6:225–37 [Google Scholar]
  87. Mellor GL. 2002. Oscillatory bottom boundary layers. J. Phys. Oceanogr. 32:3075–88 [Google Scholar]
  88. Monin AS, Yaglom AM. 1971. Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 1 Mineola, NY: Dover
  89. Monin AS, Yaglom AM. 1975. Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 2 Mineola, NY: Dover
  90. Moum JN, Perlin A, Klymak JM, Levine MD, Boyd T, Kosro PM. 2004. Convectively-driven mixing in the bottom boundary layer over the continental shelf during downwelling. J. Phys. Oceanogr. 34:2189–202 [Google Scholar]
  91. Nayak AR, Li C, Kiani BT, Katz J. 2015. On the wave and current interaction with a rippled seabed in the coastal ocean bottom boundary layer. J. Geophys. Res. 120:4595–624 [Google Scholar]
  92. Nelson TR, Voulgaris G, Traykovski P. 2013. Predicting wave-induced ripple equilibrium geometry. J. Geophys. Res. 118:3202–20 [Google Scholar]
  93. Nichols CS, Foster DL. 2007. Full-scale observations of wave-induced vortex generation over a rippled bed. J. Geophys. Res. 112:C10015 [Google Scholar]
  94. Nichols CS, Foster DL. 2009. Observations of bed form evolution with field-scale oscillatory hydrodynamic forcing. J. Geophys. Res. 114:C08010 [Google Scholar]
  95. Nielsen P. 1992. Coastal Bottom Boundary Layers and Sediment Transport New York: World Sci.
  96. Nienhuis JH, Perron JT, Kao JCT, Myrow PM. 2014. Wavelength selection and symmetry breaking in orbital wave ripples. J. Geophys. Res. 119:2239–57 [Google Scholar]
  97. Nimmo Smith WAM, Atsavapranee P, Katz J, Osborn T. 2002. PIV measurements in the bottom boundary layer of the coastal ocean. Exp. Fluids 33:962–71 [Google Scholar]
  98. Pickart RS. 2000. Bottom boundary layer structure and detachment in the shelfbreak jet of the Middle Atlantic Bight. J. Phys. Oceanogr. 30:2668–86 [Google Scholar]
  99. Romanou A, Weatherly GL. 2001. Numerical simulations of buoyant Ekman layers in the presence of variable stratification. Part I: constant interior forcing. J. Phys. Oceanogr. 31:3096–120 [Google Scholar]
  100. Rosman JH, Gerbi GP. 2017. Interpreting fixed-location observations of turbulence advected by waves: insights from spectral models. J. Phys. Oceanogr. 47:909–31 [Google Scholar]
  101. Ruessink G, Brinkkemper JA, Kleinhans MG. 2015. Geometry of wave-formed orbital ripples in coarse sand. J. Mar. Sci. Eng. 3:1568–94 [Google Scholar]
  102. Rypina II, Scott SE, Pratt LJ, Brown MG. 2011. Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures. Nonlinear Process. Geophys. 18:977–87 [Google Scholar]
  103. Sanford TB, Lien RC. 1999. Turbulent properties in a homogeneous tidal bottom boundary layer. J. Geophys. Res. 104:1245–57 [Google Scholar]
  104. Scandura P, Vittori G, Blondeaux P. 2000. Three-dimensional oscillatory flow over steep ripples. J. Fluid Mech. 412:355–78 [Google Scholar]
  105. Schlichting H, Gersten K. 2000. Boundary Layer Theory New York: Springer-Verlag
  106. Scully ME, Geyer WR, Trowbridge JH. 2011. The influence of stratification and non-local turbulent production on estuarine turbulence: an assessment of turbulence closure with field observations. J. Phys. Oceanogr. 41:166–85 [Google Scholar]
  107. Scully ME, Trowbridge JH, Fisher AW. 2016. Observations of the transfer of energy and momentum to the oceanic surface boundary layer beneath breaking waves. J. Phys. Oceanogr. 46:1823–37 [Google Scholar]
  108. Scully ME, Trowbridge JH, Sherwood CR. 2018. Direct-covariance measurements of turbulent Reynolds shear stresses over erodible sand beds in the presence of energetic forcing by surface waves. J. Geophys. Res. In press
  109. Shaw WJ, Trowbridge JH. 2001. The direct estimation of near-bottom turbulent fluxes in the presence of energetic wave motions. J. Atmos. Ocean. Technol. 18:1540–57 [Google Scholar]
  110. Shaw WJ, Trowbridge JH, Williams AJ. 2001. Budgets of turbulent kinetic energy and scalar variance in the continental shelf bottom boundary layer. J. Geophys. Res. 106:9551–64 [Google Scholar]
  111. Signell RP, Geyer WR. 1991. Transient eddy formation around headlands. J. Geophys. Res. 96:2561–75 [Google Scholar]
  112. Smyth WD, Skyllingstad ED, Crawford GB, Wijesekera H. 2002. Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dyn 52:104–15 [Google Scholar]
  113. Soulsby RL. 1997. Dynamics of Marine Sands: A Manual for Practical Applications London: Telford
  114. Soulsby RL, Hamm L, Klopman G, Myrhaug D, Simons RR, Thomas GP. 1993. Wave-current interaction within and outside the wave-current boundary layer. Coast. Eng. 21:41–69 [Google Scholar]
  115. Soulsby RL, Whitehouse RJS, Marten KV. 2012. Prediction of time-evolving sand ripples in shelf seas. Cont. Shelf Res. 38:47–62 [Google Scholar]
  116. Sreenivasan KR. 1995. On the universality of the Kolmogorov constant. Phys. Fluids 7:2778–84 [Google Scholar]
  117. Stacey MT, Monismith SG, Burau JR. 1999. Measurements of Reynolds stress profiles in unstratified tidal flow. J. Geophys. Res. 104:10933–49 [Google Scholar]
  118. Stahr FR, Sanford TB. 1999. Transport and bottom boundary layer observations of the North Atlantic Deep Western Boundary Current at the Blake Outer Ridge. Deep-Sea Res. II 46:205–43 [Google Scholar]
  119. Sternberg RW, Berhane I, Ogston AS. 1999. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf. Mar. Geol. 154:43–53 [Google Scholar]
  120. Styles R, Glenn SM. 2000. Modeling stratified wave and current bottom boundary layers on the continental shelf. J. Geophys. Res. 105:24119–39 [Google Scholar]
  121. Tejada-Martinez AE, Grosch CE, Sinha N, Akan C, Martinat G. 2012. Disruption of the bottom log layer in large-eddy simulations of full-depth Langmuir circulation. J. Fluid Mech. 699:79–93 [Google Scholar]
  122. Tennekes H, Lumley JL. 1972. A First Course in Turbulence Cambridge, MA: MIT Press
  123. Terray EA, Donelan MA, Agrawal YC, Drennan WM, Kahma KK. et al. 1996. Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr. 26:792–807 [Google Scholar]
  124. Thorpe SA. 1987. Current and temperature variability on the continental slope. Philos. Trans. R. Soc. Lond. A 323:471–517 [Google Scholar]
  125. Thorpe SA. 2007. Ocean Turbulence New York: Cambridge Univ. Press
  126. Townsend AA. 1980. The Structure of Turbulent Shear Flow New York: Cambridge Univ. Press
  127. Traykovski P. 2007. Observations of wave orbital scale ripples and a nonequilibrium time-dependent model. J. Geophys. Res. 112:C06026 [Google Scholar]
  128. Trowbridge JH. 1998. On a technique for measurement of turbulent shear stress in the presence of surface waves. J. Atmos. Ocean. Technol. 15:290–98 [Google Scholar]
  129. Trowbridge JH, Agrawal YC. 1995. Glimpses of a wave boundary layer. J. Geophys. Res. 100:20729–44 [Google Scholar]
  130. Trowbridge JH, Elgar S. 2001. Turbulence measurements in the surf zone. J. Phys. Oceanogr. 31:2403–17 [Google Scholar]
  131. Trowbridge JH, Elgar S. 2003. Spatial scales of stress-carrying nearshore turbulence. J. Phys. Oceanogr. 33:1122–28 [Google Scholar]
  132. Trowbridge JH, Geyer WR, Bowen MM, Williams AJ. 1999. Near-bottom turbulence measurements in a partially mixed estuary: turbulent energy balance, velocity structure, and along-channel momentum balance. J. Phys. Oceanogr. 29:3056–72 [Google Scholar]
  133. Trowbridge JH, Lentz SJ. 1998. Dynamics of the bottom boundary layer on the northern California shelf. J. Phys. Oceanogr. 28:2075–93 [Google Scholar]
  134. Trowbridge JH, Madsen OS. 1984. Turbulent wave boundary layers 2. Second-order theory and mass transport. J. Geophys. Res. 89:7999–8007 [Google Scholar]
  135. Trowbridge JH, Scully ME, Sherwood CR. 2017. The cospectrum of stress-carrying turbulence in the presence of surface gravity waves. J. Phys. Oceanogr. https://doi.org/10.1175/JPO-D-17-0016.1
  136. Turner JS. 1973. Buoyancy Effects in Fluids New York: Cambridge Univ. Press
  137. Uchiyama Y, McWilliams JC, Shchepetkin AF. 2010. Wave-current interaction in an oceanic circulation model with a vortex-force formalism: application to the surf zone. Ocean Model 34:16–35 [Google Scholar]
  138. van der Werf JJ, Doucette JS, O'Donoghue T, Ribberink JS. 2007. Detailed measurements of velocities and suspended sand concentrations over full-scale ripples in regular oscillatory flow. J. Geophys. Res. Earth Surf. 112:F02012 [Google Scholar]
  139. Veron F, Melville WK. 1999. Pulse-to-pulse coherent Doppler measurements of waves and turbulence. J. Atmos. Ocean. Technol. 16:1580–97 [Google Scholar]
  140. Warner JC, Geyer WR, Lerczak JA. 2004. Numerical modeling of an estuary: a comprehensive skill assessment. J. Geophys. Res. 110:C05001 [Google Scholar]
  141. Weatherly GL, Martin PJ. 1978. On the structure and dynamics of the oceanic bottom boundary layer. J. Phys. Oceanogr. 8:557–70 [Google Scholar]
  142. Wiberg PL, Harris CK. 1994. Ripple geometry in wave-dominated environments. J. Geophys. Res. 99:775–89 [Google Scholar]
  143. Wijesekera HW, Allen JS, Newberger PA. 2003. Modeling study of turbulent mixing over the continental shelf: comparison of turbulent closure schemes. J. Geophys. Res. 108:3103 [Google Scholar]
  144. Wilson GW, Hay AE, Bowen AJ. 2014. Observations of wave shear stress on a steep beach. J. Geophys. Res. 119:7827–39 [Google Scholar]
  145. Wyngaard JC. 1992. Atmospheric turbulence. Annu. Rev. Fluid Mech. 24:205–33 [Google Scholar]
  146. Yuan J, Madsen OS. 2015. Experimental and theoretical study of wave-current turbulent boundary layers. J. Fluid Mech. 765:480–523 [Google Scholar]
  147. Zhang GW, Gawarkiewicz GG, McGillicuddy DJ, Wilkin JL. 2011. Climatological mean circulation at the New England shelf break. J. Phys. Oceanogr. 41:1874–93 [Google Scholar]
  148. Zou Q, Bowen AJ, Hay AE. 2006. Vertical distribution of wave shear stress in variable water depth: theory and field observations. J. Geophys. Res. 111:C09032 [Google Scholar]
/content/journals/10.1146/annurev-marine-121916-063351
Loading
/content/journals/10.1146/annurev-marine-121916-063351
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error