1932

Abstract

Many materials crystallize in structure types that feature a square net of atoms. While these compounds can exhibit many different properties, some members of this family are topological materials. Within the square-net-based topological materials, the observed properties are rich, ranging, for example, from nodal-line semimetals to a bulk half-integer quantum Hall effect. Hence, the potential for guided design of topological properties is enormous. Here we provide an overview of the crystallographic and electronic properties of these phases and show how they are linked, with the goal of understanding which square-net materials can be topological, and predict additional examples. We close the review by discussing the experimentally observed electronic properties in this family.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-010114
2019-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/matsci/49/1/annurev-matsci-070218-010114.html?itemId=/content/journals/10.1146/annurev-matsci-070218-010114&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Cava R. 2000. Oxide superconductors. J. Am. Ceram. Soc. 83:5–28
    [Google Scholar]
  2. 2.
    Shaked H. 1994. Crystal Structures of the High-T Superconducting Copper-Oxides Amsterdam: Elsevier Sci.
  3. 3.
    Mazin I. 2010. Superconductivity gets an iron boost. Nature 464:183–86
    [Google Scholar]
  4. 4.
    Paglione J, Greene R. 2010. High-temperature superconductivity in iron-based materials. Nat. Phys. 6:645–58
    [Google Scholar]
  5. 5.
    Kramers H, Wannier G. 1941. Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60:252–62
    [Google Scholar]
  6. 6.
    Malliakas C, Billinge S, Kim H, Kanatzidis M. 2005. Square nets of tellurium: rare-earth dependent variation in the charge-density wave of RETe3 (RE = rare-earth element). J. Am. Chem. Soc. 127:6510–11
    [Google Scholar]
  7. 7.
    Park J, Lee G, Wolff-Fabris F, Koh Y, Eom M et al. 2011. Anisotropic Dirac fermions in a Bi square net of SrMnBi2. Phys. Rev. Lett. 107:126402
    [Google Scholar]
  8. 8.
    Xu Q, Song Z, Nie S, Weng H, Fang Z, Dai X. 2015. Two-dimensional oxide topological insulator with iron-pnictide superconductor LiFeAs structure. Phys. Rev. B 92:205310
    [Google Scholar]
  9. 9.
    Schoop L, Ali M, Straßer C, Topp A, Varykhalov A et al. 2016. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7:11696
    [Google Scholar]
  10. 10.
    Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Kim T 2015. Time-reversal symmetry breaking Weyl state in YbMnBi2. arXiv:1507.04847 [cond-mat.mes-hall]
    [Google Scholar]
  11. 11.
    Masuda H, Sakai H, Tokunaga M, Yamasaki Y, Miyake A et al. 2016. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv. 2:e1501117
    [Google Scholar]
  12. 12.
    Hu J, Tang Z, Liu J, Liu X, Zhu Y et al. 2016. Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe. Phys. Rev. Lett. 117:016602
    [Google Scholar]
  13. 13.
    Huang S, Kim J, Shelton WA, Plummer EW, Jin R. 2017. Nontrivial Berry phase in magnetic BaMnSb2 semimetal. PNAS 114:6256–61
    [Google Scholar]
  14. 14.
    Bradlyn B, Elcoro L, Cano J, Vergniory M, Wang Z et al. 2017. Topological quantum chemistry. Nature 557:298–305
    [Google Scholar]
  15. 15.
    Liu J, Hu J, Zhang Q, Graf D, Cao H et al. 2017. Magnetic topological semimetal SrMnSb2 (y, z 0.1). Nat. Mater. 16:905–10
    [Google Scholar]
  16. 16.
    Schoop L, Topp A, Lippmann J, Orlandi F, Muechler L et al. 2018. Tunable Weyl and Dirac states in the nonsymmorphic compound CeSbTe. Sci. Adv. 4:eaar2317
    [Google Scholar]
  17. 17.
    Kealhofer R, Jang S, Griffin S, John C, Benavides K et al. 2018. Observation of a two-dimensional Fermi surface and Dirac dispersion in YbMnSb2. Phys. Rev. B 97:045109
    [Google Scholar]
  18. 18.
    Vafek O, Vishwanath A. 2014. Dirac fermions in solids: from high-T cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5:83–112
    [Google Scholar]
  19. 19.
    Xu S, Belopolski I, Alidoust N, Neupane M, Bian G et al. 2015. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349:613–17
    [Google Scholar]
  20. 20.
    Schoop L, Pielnhofer F, Lotsch B. 2018. Chemical principles of topological semimetals. Chem. Mater. 30:3155–76
    [Google Scholar]
  21. 21.
    Wallace P. 1947. The band theory of graphite. Phys. Rev. 71:622–34
    [Google Scholar]
  22. 22.
    Wang Z, Sun Y, Chen X, Franchini C, Xu G et al. 2012. Dirac semimetal and topological phase transitions in A3Bi (A Na, K, Rb). Phys. Rev. B 85:195320
    [Google Scholar]
  23. 23.
    Wang Z, Weng H, Wu Q, Dai X, Fang Z. 2013. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88:125427
    [Google Scholar]
  24. 24.
    Wang Z, Alexandradinata A, Cava R, Bernevig B. 2016. Hourglass fermions. Nature 532:189–94
    [Google Scholar]
  25. 25.
    Hoffmann R. 1987. How chemistry and physics meet in the solid state. Angew. Chem. Int. Ed. 26:846–78
    [Google Scholar]
  26. 26.
    Schoop L, Hirai D, Felser C, Cava R. 2013. Superconductivity in HfCuGe2: a non-magnetic analog of the 1111 iron pnictides. Europhys. Lett. 101:67001
    [Google Scholar]
  27. 27.
    Cordier G, Schäfer H. 1977. Darstellung und Kristallstruktur von BaMnSb2, SrMnBi2 und BaMnBi2 [Preparation and crystal structure of BaMnSb2, SrMnBi2 and BaMnBi2]. Z. Naturforsch. B 32:383–86
    [Google Scholar]
  28. 28.
    Brechtel E, Cordier G, Schäfer H. 1980. Zur Darstellung und Struktur von CaMnBi2 [On the preparation and crystal structure of CaMnBi2]. Z. Naturforsch. B 35:1–3
    [Google Scholar]
  29. 29.
    Lee G, Farhan M, Kim J, Shim J. 2013. Anisotropic Dirac electronic structures of AMnBi2 (A = Sr,Ca). Phys. Rev. B 87:245104
    [Google Scholar]
  30. 30.
    Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C, Fabian J. 2009. Band-structure topologies of graphene: spin-orbit coupling effects from first principles. Phys. Rev. B 80:235431
    [Google Scholar]
  31. 31.
    Schilling M, Schoop L, Lotsch B, Dressel M, Pronin A. 2017. Flat optical conductivity in ZrSiS due to two-dimensional Dirac bands. Phys. Rev. Lett. 119:187401
    [Google Scholar]
  32. 32.
    Benavides K, Oswald I, Chan J. 2017. Casting a wider net: rational synthesis design of low-dimensional bulk materials. Acc. Chem. Res. 51:12–20
    [Google Scholar]
  33. 33.
    Phelan W, Menard M, Kangas M, McCandless G, Drake B, Chan J. 2011. Adventures in crystal growth: synthesis and characterization of single crystals of complex intermetallic compounds. Chem. Mater. 24:409–20
    [Google Scholar]
  34. 34.
    Tremel W, Hoffmann R. 1987. Square nets of main-group elements in solid-state materials. J. Am. Chem. Soc. 109:124–40
    [Google Scholar]
  35. 35.
    Young S, Kane C. 2015. Dirac semimetals in two dimensions. Phys. Rev. Lett. 115:126803
    [Google Scholar]
  36. 36.
    Topp A, Lippmann J, Varykhalov A, Duppel V, Lotsch B et al. 2016. Non-symmorphic band degeneracy at the Fermi level in ZrSiTe. New J. Phys. 18:125014
    [Google Scholar]
  37. 37.
    Topp A, Queiroz R, Grüneis A, Müchler L, Rost A et al. 2017. Surface floating 2D bands in layered nonsymmorphic semimetals: ZrSiS and related compounds. Phys. Rev. X 7:041073
    [Google Scholar]
  38. 38.
    Topp A, Vergniory M, Krivenkov M, Varykhalov A, Rodolakis F 2017. The effect of spin-orbit coupling on nonsymmorphic square-net compounds. J. Phys. Chem. Solids In press. https://doi.org/10.1016/j.jpcs.2017.12.035
    [Crossref] [Google Scholar]
  39. 39.
    Guan S, Liu Y, Yu ZM, Wang SS, Yao Y, Yang S. 2017. Two-dimensional spin-orbit Dirac point in monolayer HfGeTe. Phys. Rev. Mater. 1:054003
    [Google Scholar]
  40. 40.
    Chen C, Xu X, Jiang J, Wu SC, Qi Y et al. 2017. Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS (M = Hf, Zr). Phys. Rev. B 95:125126
    [Google Scholar]
  41. 41.
    Habe T. 2017. Tunneling conductance in a two-dimensional Dirac semimetal protected by nonsymmorphic symmetry. Phys. Rev. B 95:115405
    [Google Scholar]
  42. 42.
    Nuss J, Wedig U, Jansen M. 2006. Geometric variations and electron localizations in intermetallics: PbFCl type compounds. Z. Kristallogr. Cryst. Mater. 221:554–62
    [Google Scholar]
  43. 43.
    Kauzlarich SM ed. 1996. Chemistry, Structure, and Bonding of Zintl Phases and Ions Vol. 6. New York: Wiley
  44. 44.
    Charkin D, Zolotova X 2007. A crystallographic re-investigation of Cu2Sb-related binary, ternary, and quaternary structures: How many structure types can exist upon the same topology of a unit cell. Crystallogr. Rev. 13:20145
    [Google Scholar]
  45. 45.
    Belsky A, Hellenbrandt M, Karen V, Luksch P. 2002. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. B Struct. Sci. 58:364–69
    [Google Scholar]
  46. 46.
    Jain A, Ong S, Hautier G, Chen W, Richards W et al. 2013. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1:011002
    [Google Scholar]
  47. 47.
    Le C, Qin S, Wu X, Dai X, Fu P et al. 2017. Three-dimensional topological critical Dirac semimetal in K, Rb, Cs). Phys. Rev. B 96:115121
    [Google Scholar]
  48. 48.
    Neupane M, Belopolski I, Hosen M, Sanchez D, Sankar R et al. 2016. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys. Rev. B 93:201104
    [Google Scholar]
  49. 49.
    Wang X, Pan X, Gao M, Yu J, Jiang J et al. 2016. Evidence of both surface and bulk Dirac bands and anisotropic nonsaturating magnetoresistance in ZrSiS. Adv. Electron. Mater. 2:1600228
    [Google Scholar]
  50. 50.
    Sankar R, Peramaiyan G, Muthuselvam I, Butler C, Dimitri K et al. 2017. Crystal growth of Dirac semimetal ZrSiS with high magnetoresistance and mobility. Sci. Rep. 7:40603
    [Google Scholar]
  51. 51.
    Fu B, Yi C, Zhang T, Caputo M, Ma J 2017. Observation of bulk nodal lines in topological semimetal ZrSiS. arXiv:1712.00782 [cond-mat.mtrl-sci]
    [Google Scholar]
  52. 52.
    Lodge M, Chang G, Huang CY, Singh B, Hellerstedt J et al. 2017. Observation of effective pseudospin scattering in ZrSiS. Nano Lett. 17:7213–17
    [Google Scholar]
  53. 53.
    Butler C, Wu YM, Hsing CR, Tseng Y, Sankar R et al. 2017. Quasiparticle interference in ZrSiS: strongly band-selective scattering depending on impurity lattice site. Phys. Rev. B 96:195125
    [Google Scholar]
  54. 54.
    Takane D, Wang Z, Souma S, Nakayama K, Trang C et al. 2016. Dirac-node arc in the topological line-node semimetal HfSiS. Phys. Rev. B 94:121108
    [Google Scholar]
  55. 55.
    Ali M, Schoop L, Garg C, Lippmann J, Lara E et al. 2016. Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS. Sci. Adv. 2:e1601742
    [Google Scholar]
  56. 56.
    Lv YY, Zhang BB, Li X, Yao SH, Chen Y et al. 2016. Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals. Appl. Phys. Lett. 108:244101
    [Google Scholar]
  57. 57.
    Matusiak M, Cooper J, Kaczorowski D. 2017. Thermoelectric quantum oscillations in ZrSiS. Nat. Commun. 8:15219
    [Google Scholar]
  58. 58.
    Hu J, Tang Z, Liu J, Zhu Y, Wei J, Mao Z. 2017. Nearly massless Dirac fermions and strong Zeeman splitting in the nodal-line semimetal ZrSiS probed by de Haas–van Alphen quantum oscillations. Phys. Rev. B 96:045127
    [Google Scholar]
  59. 59.
    Singha R, Pariari A, Satpati B, Mandal P. 2017. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS. PNAS 114:2468–73
    [Google Scholar]
  60. 60.
    Pezzini S, van Delft M, Schoop L, Lotsch B, Carrington A et al. 2018. Unconventional mass enhancement around the Dirac nodal loop in ZrSiS. Nat. Phys. 14:178–83
    [Google Scholar]
  61. 61.
    Zhang J, Gao M, Zhang J, Wang X, Zhang X et al. 2018. Transport evidence of 3D topological nodal-line semimetal phase in ZrSiS. Front. Phys. 13:137201
    [Google Scholar]
  62. 62.
    Weber C, Berggran B, Masten M, Ogloza T, Deckhoff-Jones S et al. 2017. Similar ultrafast dynamics of several dissimilar Dirac and Weyl semimetals. J. Appl. Phys. 122:223102
    [Google Scholar]
  63. 63.
    Zhou W, Gao H, Zhang J, Fang R, Song H et al. 2017. Lattice dynamics of Dirac node-line semimetal ZrSiS. Phys. Rev. B 96:064103
    [Google Scholar]
  64. 64.
    Singha R, Samanta S, Chatterjee S, Pariari A, Majumdar D et al. 2018. Probing lattice dynamics and electron-phonon coupling in the topological nodal-line semimetal ZrSiS. Phys. Rev. B 97:094112
    [Google Scholar]
  65. 65.
    Pan H, Tong B, Yu J, Wang J, Fu D et al. 2018. Three-dimensional anisotropic magnetoresistance in the Dirac node-line material ZrSiSe. Sci. Rep. 8:9340
    [Google Scholar]
  66. 66.
    Bu K, Fei Y, Zhang W, Zheng Y, Wu J 2018. Visualization of electronic topology in ZrSiSe by scanning tunneling microscopy. arXiv:1801.09979 [cond-mat.mtrl-sci]
    [Google Scholar]
  67. 67.
    Kumar N, Manna K, Qi Y, Wu SC, Wang L et al. 2017. Unusual magnetotransport from Si-square nets in topological semimetal HfSiS. Phys. Rev. B 95:121109
    [Google Scholar]
  68. 68.
    van Delft M, Pezzini S, Khouri T, Mueller C, Breitkreiz M 2018. Electron-hole tunneling revealed by quantum oscillations in the nodal-line semimetal HfSiS. arXiv:1806.10592 [cond-mat.mtrl-sci]
    [Google Scholar]
  69. 69.
    Hu J, Zhu YL, Graf D, Tang ZJ, Liu JY, Mao ZQ. 2017. Quantum oscillation studies of the topological semimetal candidate . Phys. Rev. B 95:205134
    [Google Scholar]
  70. 70.
    Hosen M, Dimitri K, Aperis A, Maldonado P, Belopolski I et al. 2018. Observation of gapless Dirac surface states in ZrGeTe. Phys. Rev. B 97:121103
    [Google Scholar]
  71. 71.
    Lou R, Ma JZ, Xu QN, Fu BB, Kong LY et al. 2016. Emergence of topological bands on the surface of ZrSnTe crystal. Phys. Rev. B 93:241104
    [Google Scholar]
  72. 72.
    Hu J, Zhu Y, Gui X, Graf D, Tang Z et al. 2018. Quantum oscillation evidence for a topological semimetal phase in ZrSnTe. Phys. Rev. B 97:155101
    [Google Scholar]
  73. 73.
    Bradlyn B, Cano J, Wang Z, Vergniory M, Felser C et al. 2016. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353:aaf5037
    [Google Scholar]
  74. 74.
    Jia LL, Liu ZH, Cai YP, Qian T, Wang XP et al. 2014. Observation of well-defined quasiparticles at a wide energy range in a quasi-two-dimensional system. Phys. Rev. B 90:035133
    [Google Scholar]
  75. 75.
    Feng Y, Wang Z, Chen C, Shi Y, Xie Z et al. 2014. Strong anisotropy of Dirac cones in SrMnBi2 and CaMnBi2 revealed by angle-resolved photoemission spectroscopy. Sci. Rep. 4:5385
    [Google Scholar]
  76. 76.
    Wang K, Graf D, Lei H, Tozer S, Petrovic C. 2011. Quantum transport of two-dimensional Dirac fermions in SrMnBi2. Phys. Rev. B 84:220401
    [Google Scholar]
  77. 77.
    Wang K, Wang L, Petrovic C. 2012. Large magnetothermopower effect in Dirac materials (Sr/Ca)MnBi2. Appl. Phys. Lett. 100:112111
    [Google Scholar]
  78. 78.
    He J, Wang D, Chen G. 2012. Giant magnetoresistance in layered manganese pnictide CaMnBi2. Appl. Phys. Lett. 100:112405
    [Google Scholar]
  79. 79.
    Jo Y, Park J, Lee G, Eom M, Choi E et al. 2014. Valley-polarized interlayer conduction of anisotropic Dirac fermions in SrMnBi2. Phys. Rev. Lett. 113:156602
    [Google Scholar]
  80. 80.
    Guo Y, Princep A, Zhang X, Manuel P, Khalyavin D et al. 2014. Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A = Sr, Ca). Phys. Rev. B 90:075120
    [Google Scholar]
  81. 81.
    Rahn M, Princep A, Piovano A, Kulda J, Guo Y et al. 2017. Spin dynamics in the antiferromagnetic phases of the Dirac metals AMnBi2 (A = Sr, Ca). Phys. Rev. B 95:134405
    [Google Scholar]
  82. 82.
    Park H, Park B, Lee MC, Jeong D, Park J et al. 2017. Electrodynamic properties of the semimetallic Dirac material SrMnBi2: two-carrier-model analysis. Phys. Rev. B 96:155139
    [Google Scholar]
  83. 83.
    Ishida Y, Masuda H, Sakai H, Ishiwata S, Shin S. 2016. Revealing the ultrafast light-to-matter energy conversion before heat diffusion in a layered Dirac semimetal. Phys. Rev. B 93:100302
    [Google Scholar]
  84. 84.
    Zhang A, Liu C, Yi C, Zhao G, Xia T et al. 2016. Interplay of Dirac electrons and magnetism in CaMnBi2 and SrMnBi2. Nat. Commun. 7:13833
    [Google Scholar]
  85. 85.
    Wang K, Graf D, Wang L, Lei H, Tozer S, Petrovic C. 2012. Two-dimensional Dirac fermions and quantum magnetoresistance in CaMnBi2. Phys. Rev. B 85:041101
    [Google Scholar]
  86. 86.
    Wang A, Graf D, Wu L, Wang K, Bozin E et al. 2016. Interlayer electronic transport in CaMnBi2 antiferromagnet. Phys. Rev. B 94:125118
    [Google Scholar]
  87. 87.
    May A, McGuire M, Sales B. 2014. Effect of Eu magnetism on the electronic properties of the candidate Dirac material EuMnBi2. Phys. Rev. B 90:075109
    [Google Scholar]
  88. 88.
    Wang A, Zaliznyak I, Ren W, Wu L, Graf D et al. 2016. Magnetotransport study of Dirac fermions in YbMnBi2 antiferromagnet. Phys. Rev. B 94:165161
    [Google Scholar]
  89. 89.
    Liu J, Hu J, Graf D, Zou T, Zhu M et al. 2017. Unusual interlayer quantum transport behavior caused by the zeroth Landau level in YbMnBi2. Nat. Commun. 8:646
    [Google Scholar]
  90. 90.
    Chinotti M, Pal A, Ren W, Petrovic C, Degiorgi L. 2016. Electrodynamic response of the type-II Weyl semimetal YbMnBi2. Phys. Rev. B 94:245101
    [Google Scholar]
  91. 91.
    Chaudhuri D, Cheng B, Yaresko A, Gibson Q, Cava R, Armitage N. 2017. Optical investigation of the strong spin-orbit-coupled magnetic semimetal YbMnBi2. Phys. Rev. B 96:075151
    [Google Scholar]
  92. 92.
    Wang YY, Xu S, Sun LL, Xia TL. 2018. Quantum oscillations and coherent interlayer transport in a new topological Dirac semimetal candidate YbMnSb2. Phys. Rev. Mater. 2:021201
    [Google Scholar]
  93. 93.
    Li L, Wang K, Graf D, Wang L, Wang A, Petrovic C. 2016. Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi2. Phys. Rev. B 93:115141
    [Google Scholar]
  94. 94.
    Wang YY, Yu QH, Xia TL. 2016. Large linear magnetoresistance in a new Dirac material BaMnBi2. Chin. Phys. B 25:107503
    [Google Scholar]
  95. 95.
    Liu J, Hu J, Cao H, Zhu Y, Chuang A et al. 2016. Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2. Sci. Rep. 6:30525
    [Google Scholar]
  96. 96.
    Shi X, Richard P, Wang K, Liu M, Matt C et al. 2016. Observation of Dirac-like band dispersion in LaAgSb2. Phys. Rev. B 93:081105
    [Google Scholar]
  97. 97.
    Arakane T, Sato T, Souma S, Takahashi T, Watanabe Y, Inada Y. 2007. Electronic structure of LaAgSb2 and CeAgSb2 studied by high-resolution angle-resolved photoemission spectroscopy. J. Magn. Magn. Mater. 310:396–98
    [Google Scholar]
  98. 98.
    Myers K, Bud'ko S, Fisher I, Islam Z, Kleinke H et al. 1999. Systematic study of anisotropic transport and magnetic properties of RAgSb2 (R = Y, La-Nd, Sm, Gd-Tm). J. Magn. Magn. Mater. 205:27–52
    [Google Scholar]
  99. 99.
    Myers K, Bud'ko S, Antropov V, Harmon B, Canfield P, Lacerda A. 1999. de Haas–van Alphen and Shubnikov–de Haas oscillations in RAgSb2 (R = Y, La-Nd, Sm). Phys. Rev. B 60:13371
    [Google Scholar]
  100. 100.
    Wang K, Petrovic C. 2012. Multiband effects and possible Dirac states in LaAgSb2. Phys. Rev. B 86:155213
    [Google Scholar]
  101. 101.
    Mun E, Bud'ko S, Canfield P. 2011. Thermoelectric power of RAgSb2 (R = Y, La, Ce, and Dy) in zero and applied magnetic fields. J. Phys. Condens. Matter 23:476001
    [Google Scholar]
  102. 102.
    Bud'ko S, Law S, Canfield P, Samolyuk G, Torikachvili M, Schmiedeshoff G. 2008. Thermal expansion and magnetostriction of pure and doped RAgSb2 (R = Y, Sm, La) single crystals. J. Phys. Condens. Matter 20:115210
    [Google Scholar]
  103. 103.
    Chen R, Zhang S, Zhang M, Dong T, Wang N. 2017. Revealing extremely low energy amplitude modes in the charge-density-wave compound LaAgSb2. Phys. Rev. Lett. 118:107402
    [Google Scholar]
  104. 104.
    Wang K, Graf D, Petrovic C. 2013. Quasi-two-dimensional Dirac fermions and quantum magnetoresistance in LaAgBi2. Phys. Rev. B 87:235101
    [Google Scholar]
  105. 105.
    Thirupathaiah S, Efremov D, Kushnirenko Y, Haubold E, Kim TK 2018. Massive Dirac fermions in layered BaZnBi2. arXiv:1808.07640 [cond-mat.mtrl-sci]
    [Google Scholar]
  106. 106.
    Zhao K, Golias E, Zhang Q, Krivenkov M, Jesche A et al. 2018. Quantum oscillations and Dirac dispersion in the BaZnBi2 semimetal guaranteed by local Zn vacancy order. Phys. Rev. B 97:115166
    [Google Scholar]
  107. 107.
    Ren W, Wang A, Graf D, Liu Y, Zhang Z et al. 2018. Absence of Dirac states in BaZnBi2 induced by spin-orbit coupling. Phys. Rev. B 97:035147
    [Google Scholar]
  108. 108.
    Wang YY, Guo PJ, Yu QH, Xu S, Liu K, Xia TL. 2017. Magneto-transport and electronic structures of BaZnBi2. New J. Phys. 19:123044
    [Google Scholar]
  109. 109.
    He J, Fu Y, Zhao L, Liang H, Chen D et al. 2017. Quasi-two-dimensional massless Dirac fermions in CaMnSb2. Phys. Rev. B 95:045128
    [Google Scholar]
  110. 110.
    Wang K, Petrovic C. 2012. Large linear magnetoresistance and magnetothermopower in layered SrZnSb2. Appl. Phys. Lett. 101:152102
    [Google Scholar]
  111. 111.
    Liu J, Emmanouilidou E, Xing J, Graf D, Ni N 2018. Quantum oscillation studies of the Dirac fermions hosted by distorted Sb square net in SrZnSb2 single crystals. arXiv:1807.02546 [cond-mat.mtrl-sci]
    [Google Scholar]
  112. 112.
    Wang J, Zhao L, Yin Q, Kotliar G, Kim M et al. 2011. Layered transition-metal pnictide SrMnBi2 with metallic blocking layer. Phys. Rev. B 84:064428
    [Google Scholar]
  113. 113.
    Ando Y. 2013. Topological insulator materials. J. Phys. Soc. Jpn. 82:102001
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070218-010114
Loading
/content/journals/10.1146/annurev-matsci-070218-010114
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error