1932

Abstract

A renaissance of interest in crystallographic shear structures and our recent work in this remarkable class of materials inspired this review. We first summarize the geometrical aspects of shear plane formation and possible transformations in ReO, rutile, and perovskite-based structures. Then we provide a mechanistic overview of crystallographic shear formation, plane ordering, and propagation. Next we describe the energetics of planar defect formation and interaction, equilibria between point and extended defect structures, and thermodynamic stability of shear compounds. Finally, we emphasize the remaining challenges and propose future directions in this exciting area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070720-013445
2021-07-26
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-070720-013445.html?itemId=/content/journals/10.1146/annurev-matsci-070720-013445&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hoffmann R. 1987. How chemistry and physics meet in the solid state. Angew. Chem. Int. Ed. 26:846–78
    [Google Scholar]
  2. 2. 
    Mrowec S. 1978. On the defect structure of non-stoichiometric metal oxides. Ceram. Int. 4:47–58
    [Google Scholar]
  3. 3. 
    Cormack AN, Jones RM, Tasker PW, Catlow CRA. 1982. Extended defect formation in oxides with ReO3 structure. J. Solid State Chem. 44:174–85
    [Google Scholar]
  4. 4. 
    Collongues R. 1993. Nonstoichiometry in oxides. Progr. Cryst. Growth Charact. Mater. 25:203–40
    [Google Scholar]
  5. 5. 
    Murphy DW, Greenblatt M, Cava RJ, Zahurak SM. 1981. Topotactic lithium reactions with ReO3 related shear structures. Solid State Ionics 5:327–30
    [Google Scholar]
  6. 6. 
    Cava RJ, Santoro A, Murphy DW, Zahurak SM, Roth R. 1981. Structural aspects of lithium insertion in oxides: LixReO3 and Li2FeV3O8. Solid State Ionics 5:323–26
    [Google Scholar]
  7. 7. 
    Cava RJ, Santoro A, Murphy DW, Zahurak SM, Roth R. 1982. The structure of lithium-inserted metal oxides: LiReO3 and Li2ReO3. J. Solid State Chem. 42:251–62
    [Google Scholar]
  8. 8. 
    Cava RJ, Kleinman DJ, Zahurak SM 1983. V3.2W1.8O13 and studies of the V2O5-WO3-VO2 ternary system. Mater. Res. Bull. 18:869–73
    [Google Scholar]
  9. 9. 
    Cava RJ, Murphy DW, Rietman EA, Zahurak SM, Barz H. 1983. Lithium insertion, electrical conductivity, and chemical substitution in various crystallographic shear structures. Solid State Ionics 9–10 407–12
    [Google Scholar]
  10. 10. 
    Cava RJ, Murphy DW, Zahurak SM. 1983. Secondary lithium cells employing vanadium tungsten oxide positive electrode. J. Electrochem. Soc. 130:243–45
    [Google Scholar]
  11. 11. 
    Cava RJ, Murphy DW, Zahurak SM. 1983. Lithium insertion in Wadsley-Roth phases based on niobium oxide. J. Electrochem. Soc. 130:2345–51
    [Google Scholar]
  12. 12. 
    Han J-T, Huang Y-H, Goodenough JB. 2011. New anode framework for rechargeable lithium batteries. Chem. Mater. 23:2027–29
    [Google Scholar]
  13. 13. 
    Han J-T, Goodenough JB. 2011. 3-V full cell performance of anode framework TiNb2O7/spinel LiNi0.5Mn1.5O4. Chem. Mater. 23:3404–7
    [Google Scholar]
  14. 14. 
    Griffith KJ, Senyshin A, Grey CP. 2017. Structural stability from crystallographic shear in TiO2-Nb2O5 phases: cation ordering and lithiation behavior of TiNb24O62. Inorg. Chem. 56:4002–10
    [Google Scholar]
  15. 15. 
    Griffith KJ, Wiaderek KM, Cibin J, Marbella LE, Grey CP. 2018. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559:556–63
    [Google Scholar]
  16. 16. 
    Hu L, Luo L, Tang L, Lin C, Li R, Chen Y 2018. Ti2Nb2xO4+5x anode materials for lithium-ion batteries: a comprehensive review. J. Mater. Chem. A 6:9799–815
    [Google Scholar]
  17. 17. 
    Zhu X, Xu J, Luo Y, Fu Q, Liang G et al. 2019. MoNb12O33 as a new anode material for high-capacity, safe, rapid and durable Li+ storage: structural characteristics, electrochemical properties and working mechanisms. J. Mater. Chem. A 7:6522–32
    [Google Scholar]
  18. 18. 
    Deng S, Zhang Y, Xie D, Yang L, Wang G et al. 2019. Oxygen vacancy modulated Ti2Nb10O29−x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. Nano Energy 58:355–64
    [Google Scholar]
  19. 19. 
    Kocer CP, Griffith KJ, Grey CP, Morris AJ. 2019. Cation disorder and lithium insertion mechanism of Wadsley-Roth crystallographic shear phases from first principles. J. Am. Chem. Soc. 141:15121–34
    [Google Scholar]
  20. 20. 
    Deng Q, Fu Y, Zhu C, Yu Y. 2019. Niobium-based oxides toward advanced electrochemical energy storage: recent advances and challenges. Small 15:1804884
    [Google Scholar]
  21. 21. 
    Yang Y, Zhu H, Xiao J, Geng H, Zhang Y et al. 2020. Achieving ultrahigh-rate and high-safety Li+ storage based on interconnected tunnel structure in micro-size niobium tungsten oxides. Adv. Mater. 32:1905295
    [Google Scholar]
  22. 22. 
    Griffith KJ, Grey CP. 2020. Superionic lithium intercalation through 2 × 2 nm2 columns in the crystallographic shear phase Nb18W8O69. Chem. Mater. 32:3860–68
    [Google Scholar]
  23. 23. 
    Preefer MB, Saber M, Wei Q, Bashian NH, Bocarsly JD et al. 2020. Multielectron redox and insulator-to-metal transition upon lithium insertion in the fast-charging, Wadsley-Roth phase PNb9O25. Chem. Mater. 32:4553–63
    [Google Scholar]
  24. 24. 
    Bashian NH, Preefer MB, Milam-Guerrero J, Zak JJ, Sendi C et al. 2020. Understanding the role of crystallographic shear on the electrochemical behavior of niobium oxyfluorides. J. Mater. Chem. A 8:12623–32
    [Google Scholar]
  25. 25. 
    Zhang Y, Zhang M, Liu Y, Zhu H, Wang L et al. 2020. Oxygen vacancy regulated TiNb2O7 compound with enhanced electrochemical performance used as anode material in Li-ion batteries. Electrochim. Acta 330:135299
    [Google Scholar]
  26. 26. 
    Tao R, Yang G, Self EC, Liang J, Dunlap JR et al. 2020. Ionic liquid–directed nanoporous TiNb2O7 anodes with superior performance for fast-rechargeable lithium-ion batteries. Small 16:2001884
    [Google Scholar]
  27. 27. 
    Kocer CP, Griffith KJ, Grey CP, Morris AJ. 2020. Lithium diffusion in niobium tungsten oxide shear structures. Chem. Mater. 32:3980–89
    [Google Scholar]
  28. 28. 
    Wadsley AD. 1958. Modern structural inorganic chemistry. J. Proc. R. Soc. N.S.W. 92:25–35
    [Google Scholar]
  29. 29. 
    Wadsley AD 1964. Inorganic non-stoichiometric compounds. Non-Stoichiometric Compounds, Vol. 98 L Mandelcorn 98–209 New York: Academic
    [Google Scholar]
  30. 30. 
    Anderson JS, Tilley RJD 1972. Crystallographic shear and non-stoichiometry. Surface and Defect Properties of Solids, Vol. 1 MW Roberts, JM Thomas 1–56 London: Chem. Soc.
    [Google Scholar]
  31. 31. 
    Hyde BG, Bursill LA 1970. Point, line, and planar defects in some non-stoichiometric compounds. The Chemistry of Extended Defects in Non-Metallic Solids L Eyring, M O'Keeffe 347–74 Amsterdam: North Holland
    [Google Scholar]
  32. 32. 
    Allpress JG. 1972. Crystallographic shear in WO3xNb2O5 (x = 0.03–0.09). J. Solid State Chem. 4:173–85
    [Google Scholar]
  33. 33. 
    Van Landuyt J. 1974. Shear structures and crystallographic shear propagation. J. Phys. Colloq. 35:C7–5363
    [Google Scholar]
  34. 34. 
    Anderson JS, Hyde BG. 1967. On the possible role of dislocations in generating ordered and disordered shear structures. J. Phys. Chem. Solids 28:1393–408
    [Google Scholar]
  35. 35. 
    Bursill LA, Hyde BG. 1972. CS families derived from the ReO3 structure type: an electron microscope study of reduced WO3 and related pseudobinary systems. J. Solid State Chem. 4:430–46
    [Google Scholar]
  36. 36. 
    Hyde BG, Bagshaw AN, Andersson S, O'Keefe M. 1974. Some defect structures in crystalline solids. Annu. Rev. Mater. Sci. 4:43–92
    [Google Scholar]
  37. 37. 
    Tilley RJD. 1976. The energy of crystallographic shear plane formation in reduced tungsten trioxide. J. Solid State Chem. 19:53–62
    [Google Scholar]
  38. 38. 
    Magnéli A. 1953. Structures of the ReO3-type with recurrent dislocations of atoms: ‘homologous series’ of molybdenum and tungsten oxides. Acta Crystallogr 6:495–500
    [Google Scholar]
  39. 39. 
    Hagg G, Magnéli A. 1954. Recent structure investigations of oxygen compounds of molybdenum and tungsten. Rev. Pure Appl. Chem. 4:235–49
    [Google Scholar]
  40. 40. 
    Magnéli A. 1956. Some aspects of the crystal chemistry of oxygen compounds of molybdenium and tungsten containing structural elements of ReO3 or perovskite type. J. Inorg. Nucl. Chem. 2:330–39
    [Google Scholar]
  41. 41. 
    Andersson S, Collen B, Kuylenstierna U, Magnéli A. 1957. Phase analysis studies on the titanium-oxygen system. Acta Chem. Scand. 11:1641–52
    [Google Scholar]
  42. 42. 
    Andersson S, Sundholm A, Magnéli A. 1959. A homologous series of mixed titanium chromium oxides Tin−2Cr2O2n−1 isomorphous with the series of TinO2n−1 and VnO2n−1. Acta Chem. Scand. 13:989–97
    [Google Scholar]
  43. 43. 
    Marezio M, Dernier PD. 1971. The crystal structure of Ti4O7, a member of homologous series TinO2n−1. J. Solid State Chem. 3:340–48
    [Google Scholar]
  44. 44. 
    Magnéli A. 1978. Non-stoichiometry and structural disorder in some families of inorganic compounds. Pure Appl. Chem. 50:1261–71
    [Google Scholar]
  45. 45. 
    Wadsley AD. 1955. The crystal chemistry of non-stoichiometric compounds. Rev. Pure Appl. Chem. 5:165–93
    [Google Scholar]
  46. 46. 
    Wadsley AD. 1961. Mixed oxides of titanium and niobium. II. The crystal structures of the dimorphic forms of Ti2Nb10O29. Acta Crystallogr 14:664–70
    [Google Scholar]
  47. 47. 
    Roth RS, Wadsley AD. 1965. Multiple phase formation in the binary system Nb2O5-WO3. II. The structure of the monoclinic phases WNb12O33 and W5Nb16O55. Acta Crystallogr 19:32–38
    [Google Scholar]
  48. 48. 
    Andersson S. 1967. The description of non-stoichiometric transition metal oxides. A logical extension of inorganic crystallography. Bull. Soc. Fr. Mineral. Cristallogr. 90:522–27
    [Google Scholar]
  49. 49. 
    Allpress JG, Wadsley AD. 1969. Multiple phase formation in the binary system Nb2O5-WO3. VII. Intergrowth of H-Nb2O5 and WNb12O33. J. Solid State Chem. 1:28–38
    [Google Scholar]
  50. 50. 
    Wadsley AD, Andersson S 1970. Crystallographic shear, and the niobium oxides and oxide fluorides in the composition region MXx, 2.4 < x < 2.7. Perspectives in Structural Chemistry, Vol. 3 JD Dunitz, JA Ibers 1–58 New York: Wiley
    [Google Scholar]
  51. 51. 
    Anderson JS, Browne JM, Cheetham AK, Von Dreele R, Hutchison JL et al. 1973. Point defects and extended defects in niobium oxides. Nature 243:81–83
    [Google Scholar]
  52. 52. 
    Roberts MW, Thomas JM, Anderson JS, Tilley RJD 1974. Crystallographic shear and non-stoichiometry. Surface and Defect Properties of Solids, Vol. 3 MW Roberts, JM Thomas 1–56 London: Chem. Soc.
    [Google Scholar]
  53. 53. 
    Voskanyan AA, Abramchuk M, Navrotsky A. 2020. Entropy stabilization of TiO2–Nb2O5 Wadsley–Roth shear phases and their prospects for lithium-ion battery anode materials. Chem. Mater. 32:5301–8
    [Google Scholar]
  54. 54. 
    Bursill LA, Hyde BG, Philp DK. 1971. New crystallographic shear families derived from the rutile structure, and the possibility of continuous ordered solid solution. Philos. Mag. 23:1501–13
    [Google Scholar]
  55. 55. 
    Bursill LA, Hyde BG. 1972. Crystallographic shear in the higher titanium oxides: structure, texture, mechanisms and thermodynamics. Progr. Solid State Chem. 7:177–253
    [Google Scholar]
  56. 56. 
    Navrotsky A, Jamieson JC, Kleppa OJ. 1967. Enthalpy of transformation of a high-pressure polymorph of titanium dioxide to the rutile modification. Science 158:388–89
    [Google Scholar]
  57. 57. 
    Watanabe D, Hirabayashi M, Ogawa S. 1955. On the superstructure of the alloy Cu3Pd. Acta Crystallogr 8:510–12
    [Google Scholar]
  58. 58. 
    Caro PE, Corbett JD. 1969. Rare earth metal–metal halide systems. XII. The thulium-thulium(III) chloride system. Thulium(II) chloride and a series of intermediate phases. J. Less Common Metals 18:1–10
    [Google Scholar]
  59. 59. 
    Abakumov AM, Handermann J, Bals S, Nikolaev IV, Antipov EV, Van Tendeloo 2006. Crystallographic shear structures as a route to anion-deficient perovskites. Angew. Chem. Int. Ed. 45:6697–700
    [Google Scholar]
  60. 60. 
    Abakumov AM, Handermann J, Van Tendeloo G, Antipov EV. 2008. Chemistry and structure of anion-deficient perovskites with translational interfaces. J. Am. Ceram. Soc. 91:61807–13
    [Google Scholar]
  61. 61. 
    Abakumov AM, Handermann J, Batuk M, D'Hondt H, Tyablikov OA et al. 2010. Slicing the perovskite structure with crystallographic shear planes: the AnBnO3n−2 homologous series. Inorg. Chem. 49:9508–16
    [Google Scholar]
  62. 62. 
    Abakumov AM, Batuk D, Handermann J, Rozova MG, Sheptyakov DV et al. 2011. Antiferroelectric (Pb,Bi)1−xFe1+xO3−y perovskites modulated by crystallographic shear planes. Chem. Mater. 23:255–65
    [Google Scholar]
  63. 63. 
    Batuk D, Batuk M, Abakumov AM, Tsirlin AA, McCammon C et al. 2013. Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites. Inorg. Chem. 52:10009–20
    [Google Scholar]
  64. 64. 
    Canales-Vazquez J, Smith MJ, Zhou W, Irvine JTS. 2005. Studies on the reorganization of extended defects with increasing n in the perovskite-based La4Srn–4TinO3n+2 series. Adv. Funct. Mater. 15:1000–8
    [Google Scholar]
  65. 65. 
    Ruiz-Morales JC, Canales-Vazquez J, Savaniu C, Marrero-Lopez D, Zhou W, Irvine JTS. 2006. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439:568–71
    [Google Scholar]
  66. 66. 
    Gado P. 1963. X-ray diffraction study of WO3-W20O58 shear transformation. Acta Crystallogr. A 16:182
    [Google Scholar]
  67. 67. 
    Gado P. 1965. X-ray powder diffraction study of the WO3-W20O58 shear transformation. Acta Phys. Hung. 18:111–17
    [Google Scholar]
  68. 68. 
    Anderson JS, Hyde BG. 1965. Dislocation mechanism for the production of Magnéli shear structures. Bull. Soc. Chim. Fr. 4:1215–16
    [Google Scholar]
  69. 69. 
    Bursill LA. 1969. Crystallographic shear in molybdenum trioxide. Proc. R. Soc. A 311:267–90
    [Google Scholar]
  70. 70. 
    Bursill LA, Hyde BG. 1969. Crystallographic shear in niobium oxyfluoride (NbO2F). Philos. Mag. 20:657–63
    [Google Scholar]
  71. 71. 
    Bursill LA. 1973. Direct observation of the formation of double-shear structures from Nb3O7F. J. Solid State Chem. 6:195–202
    [Google Scholar]
  72. 72. 
    Bursill LA, Smith DJ. 1984. Interaction of small and extended defects in nonstoichiometric oxides. Nature 309:319–21
    [Google Scholar]
  73. 73. 
    Andersson S, Wadsley AD. 1966. Crystallographic shear and diffusion paths in certain higher oxides of niobium, tungsten, molybdenum and titanium. Nature 211:581–83
    [Google Scholar]
  74. 74. 
    O'Keeffe M 1970. Discussion. The Chemistry of Extended Defects in Non-Metallic Solids L Eyring, M O'Keeffe 374–78 Amsterdam: North Holland
    [Google Scholar]
  75. 75. 
    Van Landuyt J, Amelinckx S 1973. On the generation mechanism for shear planes in shear structures. J. Solid State Chem. 6:222–29
    [Google Scholar]
  76. 76. 
    Merritt RR, Hyde BG. 1973. The thermodynamics of the titanium + oxygen system: an isothermal gravimetric study of the composition range Ti3O5 to TiO2 at 1304 K. Philos. Trans. R. Soc. A 274:627–61
    [Google Scholar]
  77. 77. 
    Catlow CRA. 1977. Point defect and electronic properties of uranium dioxide. Proc. R. Soc. A 353:533–61
    [Google Scholar]
  78. 78. 
    Catlow CRA, James R 1982. Disorder in TiO2−x. Proc. R. Soc. A 384:157–73
    [Google Scholar]
  79. 79. 
    Catlow CRA. 1981. Defect clustering in nonstoichiometric oxides. Nonstoichiometric Oxides OT Sorense 61–98 Orlando/London: Academic
    [Google Scholar]
  80. 80. 
    James R, Catlow CRA. 1977. The energetics of shear plane formation in reduced TiO2. J. Phys. Colloq. 38:C7–3235
    [Google Scholar]
  81. 81. 
    Catlow CRA, James R 1978. Non-stoichiometry and dielectric properties. Nature 272:603–5
    [Google Scholar]
  82. 82. 
    Tilley RJD. 1977. Correlation between dielectric constant and defect structure of non-stoichiometric solids. Nature 269:229–30
    [Google Scholar]
  83. 83. 
    Bérardan D, Franger S, Dragoe D, Meena AK, Dragoe N. 2016. Colossal dielectric constant in high entropy oxides. Phys. Status Solid. RRL 10:328–33
    [Google Scholar]
  84. 84. 
    Baumard JF, Panis D, Anthony AM. 1977. A study of Ti-O system between Ti3O5 and TiO2 at high temperature by means of electrical resistivity. J. Solid State Chem. 20:43–51
    [Google Scholar]
  85. 85. 
    Stoneham AM, Durham PJ. 1973. The ordering of crystallographic shear planes: theory of regular arrays. J. Phys. Chem. Solids 74:2127–35
    [Google Scholar]
  86. 86. 
    Iguchi E, Tilley RJD. 1977. The elastic strain energy of crystallographic shear planes in reduced tungsten trioxide. Philos. Trans. R. Soc. 286:55–85
    [Google Scholar]
  87. 87. 
    Magnéli A 1970. Structural order and disorder in oxides of transition metals of the titanium, vanadium and chromium groups. The Chemistry of Extended Defects in Non-Metallic Solids L Eyring, M O'Keeffe 148–63 Amsterdam: North Holland
    [Google Scholar]
  88. 88. 
    Cormack AN 1982. Long range order in non-stoichiometric oxides. Computer Simulation of Solids CRA Catlow, WC Mackrodt 302–11 Berlin/Heidelberg, Ger: Springer
    [Google Scholar]
  89. 89. 
    Prasanna TRS, Navrotsky A. 1994. Energetics in the brownmillerite-perovskite pseudobinary Ca2Fe2O5-CaTiO3. J. Mater. Res. 12:3121–24
    [Google Scholar]
  90. 90. 
    Cheetham AK, Von Dreele BR. 1973. Cation distributions in niobium oxide block structures. Nat. Phys. Sci. 244:139–40
    [Google Scholar]
  91. 91. 
    Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC et al. 2015. Entropy-stabilized oxides. Nat. Commun. 6:8485
    [Google Scholar]
  92. 92. 
    Sarkar A, Velasco L, Wang D, Wang Q, Talasila G et al. 2018. High entropy oxides for reversible energy storage. Nat. Commun. 9:3400
    [Google Scholar]
  93. 93. 
    Gild J, Samiee M, Braun JL, Harrington T, Vega H et al. 2018. High-entropy fluorite oxides. J. Eur. Ceram. Soc. 38:3578–84
    [Google Scholar]
  94. 94. 
    Jiang S, Hu T, Gild J, Zhou N, Nie J et al. 2018. A new class of high-entropy perovskites. Scr. Mater. 142:116–20
    [Google Scholar]
  95. 95. 
    Sarkar A, Breitung B, Hahn H. 2020. High entropy oxides: the role of entropy, enthalpy and synergy. Scr. Mater. 187:43–48
    [Google Scholar]
  96. 96. 
    Navrotsky A, Kleppa OJ. 1967. The thermodynamics of cation distributions in simple spinels. J. Inorg. Nucl. Chem. 29:2701–14
    [Google Scholar]
  97. 97. 
    Akaogi M, Navrotsky A. 1984. Calorimetric study of the stability of spinelloids in the system NiAl2O4-Ni2SiO4. Phys. Chem. Miner. 10:166–72
    [Google Scholar]
  98. 98. 
    Evans HA, Wu Y, Seshadri R, Cheetham AK. 2020. Perovskite-related ReO3-type structures. Nature 5:196–213
    [Google Scholar]
  99. 99. 
    Simonov A, De Baerdemaeker T, Bostrom HLB, Gomez MLR, Gray HJ et al. 2020. Hidden diversity of vacancy networks in Prussian blue analogues. Nature 578:256–60
    [Google Scholar]
  100. 100. 
    Jaffe A, Long JR. 2020. Ordered absences observed in porous framework materials. Nature 578:222–23
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070720-013445
Loading
/content/journals/10.1146/annurev-matsci-070720-013445
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error