1932

Abstract

Polymeric mixed ionic-electronic conductors (MIECs) combine aspects of conjugated polymers, polymer electrolytes, and polyelectrolytes to simultaneously transport and couple ionic and electronic charges, opening exciting new applications in energy storage and conversion, bioelectronics, and display technologies. The many applications of polymeric MIECs lead to a wide range of transport conditions. Ionic and electronic transport are directly coupled through electrochemical doping, while the mechanisms of ionic and electronic transport depend on distinctly different chemical functionality, (macro)molecular structure, and morphology. Despite this, ionic and electronic transport are surprisingly tunable, independent of one another. We review the various types of polymeric MIECs, the mechanisms of ionic and electronic charge transport across conditions, and the interrelations between the two, with special emphasis on the unique aspects of polymeric MIEC transport phenomena.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080619-101319
2021-07-26
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080619-101319.html?itemId=/content/journals/10.1146/annurev-matsci-080619-101319&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bolto BA, McNeill R, Weiss DE. 1963. Electronic conduction in polymers. III. Electronic properties of polypyrrole. Aust. J. Chem. 16:61090–103
    [Google Scholar]
  2. 2. 
    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. 1977. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977:16578–80
    [Google Scholar]
  3. 3. 
    Fenton DE, Parker JM, Wright PV. 1973. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:11589
    [Google Scholar]
  4. 4. 
    Wright PV. 1975. Electrical conductivity in ionic complexes of poly(ethylene oxide). Br. Polym. J. 7:5319–27
    [Google Scholar]
  5. 5. 
    Minett MG, Owen JR. 1988. Polymeric insertion electrodes. Solid State Ion. 28–30:1192–96
    [Google Scholar]
  6. 6. 
    Paulsen BD, Tybrandt K, Stavrinidou E, Rivnay J. 2020. Organic mixed ionic-electronic conductors. Nat. Mater. 19:113–26
    [Google Scholar]
  7. 7. 
    Costa RD 2017. Light-Emitting Electrochemical Cells: Concepts, Advances and Challenges Cham, Switz: Springer Int. Publ.
  8. 8. 
    Melling D, Martinez JG, Jager EWH. 2019. Conjugated polymer actuators and devices: progress and opportunities. Adv. Mater. 31:221808210
    [Google Scholar]
  9. 9. 
    van de Burgt Y, Melianas A, Keene ST, Malliaras G, Salleo A. 2018. Organic electronics for neuromorphic computing. Nat. Electron. 1:7386–97
    [Google Scholar]
  10. 10. 
    Zeglio E, Rutz AL, Winkler TE, Malliaras GG, Herland A. 2019. Conjugated polymers for assessing and controlling biological functions. Adv. Mater. 31:221806712
    [Google Scholar]
  11. 11. 
    Rivnay J, Inal S, Salleo A, Owens RM, Berggren M, Malliaras GG. 2018. Organic electrochemical transistors. Nat. Rev. Mater. 3:217086
    [Google Scholar]
  12. 12. 
    Sjöström TA, Berggren M, Gabrielsson EO, Janson P, Poxson DJ et al. 2018. A decade of iontronic delivery devices. Adv. Mater. Technol. 3:51700360
    [Google Scholar]
  13. 13. 
    Peterson KA, Thomas EM, Chabinyc ML. 2020. Thermoelectric properties of semiconducting polymers. Annu. Rev. Mater. Res. 50:551–74
    [Google Scholar]
  14. 14. 
    Meng Q, Cai K, Chen Y, Chen L 2017. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–85
    [Google Scholar]
  15. 15. 
    Xie J, Gu P, Zhang Q. 2017. Nanostructured conjugated polymers: toward high-performance organic electrodes for rechargeable batteries. ACS Energy Lett 2:91985–96
    [Google Scholar]
  16. 16. 
    Neo WT, Ye Q, Chua S-J, Xu J. 2016. Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. J. Mater. Chem. C 4:317364–76
    [Google Scholar]
  17. 17. 
    Ratner MA, Shriver DF. 1988. Ion transport in solvent-free polymers. Chem. Rev. 88:1109–24
    [Google Scholar]
  18. 18. 
    Bruce PG 1994. Solid State Electrochemistry Cambridge, UK: Cambridge Univ. Press
  19. 19. 
    Hallinan DT, Balsara NP. 2013. Polymer electrolytes. Annu. Rev. Mater. Res. 43:503–25
    [Google Scholar]
  20. 20. 
    Choo Y, Halat DM, Villaluenga I, Timachova K, Balsara NP. 2020. Diffusion and migration in polymer electrolytes. Prog. Polym. Sci. 103:101220
    [Google Scholar]
  21. 21. 
    Pace G, Friend R 2013. Optical processes in conjugated polyelectrolytes dependence on chain conformation and film morphology. Conjugated Polyelectrolytes: Fundamentals and Applications B Liu, GC Bazan 389–410 Weinheim, Ger: Wiley-VCH Verlag
    [Google Scholar]
  22. 22. 
    Mai C-K, Schlitz RA, Su GM, Spitzer D, Wang X et al. 2014. Side-chain effects on the conductivity, morphology, and thermoelectric properties of self-doped narrow-band-gap conjugated polyelectrolytes. J. Am. Chem. Soc. 136:3913478–81
    [Google Scholar]
  23. 23. 
    Kee S, Haque MA, Lee Y, Nguyen TL, Rosas Villalva D et al. 2020. A highly conductive conjugated polyelectrolyte for flexible organic thermoelectrics. ACS Appl. Energy Mater. 3:98667–75
    [Google Scholar]
  24. 24. 
    Chevrier M, Kesters J, Houston JE, Van den Brande N, Chambon S et al. 2021. Phosphonium-based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self-assembly and photovoltaic performances. Polym. Int. 70:45766
    [Google Scholar]
  25. 25. 
    Thomas EM, Brady MA, Nakayama H, Popere BC, Segalman RA, Chabinyc ML. 2018. X-ray scattering reveals ion-induced microstructural changes during electrochemical gating of poly(3-hexylthiophene). Adv. Funct. Mater. 28:441803687
    [Google Scholar]
  26. 26. 
    Bischak CG, Flagg LQ, Yan K, Rehman T, Davies DW et al. 2020. A reversible structural phase transition by electrochemically-driven ion injection into a conjugated polymer. J. Am. Chem. Soc. 142:167434–42
    [Google Scholar]
  27. 27. 
    Matta M, Wu R, Paulsen BD, Petty AJ II, Sheelamanthula R et al. 2020. Ion coordination and chelation in a glycolated polymer semiconductor: molecular dynamics and X-ray fluorescence study. Chem. Mater. 32:177301–8
    [Google Scholar]
  28. 28. 
    Wang S, Ha M, Manno M, Frisbie CD, Leighton C. 2012. Hopping transport and the Hall effect near the insulator-metal transition in electrochemically gated poly(3-hexylthiophene) transistors. Nat. Commun. 3:11210
    [Google Scholar]
  29. 29. 
    Volkov AV, Wijeratne K, Mitraka E, Ail U, Zhao D et al. 2017. Understanding the capacitance of PEDOT:PSS. Adv. Funct. Mater. 27:281700329
    [Google Scholar]
  30. 30. 
    Tybrandt K, Zozoulenko IV, Berggren M. 2017. Chemical potential-electric double layer coupling in conjugated polymer-polyelectrolyte blends. Sci. Adv. 3:12eaao3659
    [Google Scholar]
  31. 31. 
    Riess I. 2000. Polymeric mixed ionic electronic conductors. Solid State Ionics 136–137:1–21119–30
    [Google Scholar]
  32. 32. 
    van Reenen S, Kemerink M. 2017. Light-emitting electrochemical cells: mechanisms and formal description. Light-Emitting Electrochemical Cells: Concepts, Advances and Challenges RD Costa 3–45 Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  33. 33. 
    Hiemenz PC, Lodge TP. 2007. Polymer Chemistry Boca Raton, FL: CRC Press. , 2nd ed..
  34. 34. 
    Lee H, Venable RM, MacKerell AD, Pastor RW. 2008. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys. J. 95:41590–99
    [Google Scholar]
  35. 35. 
    Weill G, Maret G. 1982. Magnetic birefringence of polystyrene sulphonate: molecular weight and concentration dependence. Polymer 23:131990–93
    [Google Scholar]
  36. 36. 
    McCulloch B, Ho V, Hoarfrost M, Stanley C, Do C et al. 2013. Polymer chain shape of poly(3-alkylthiophenes) in solution using small-angle neutron scattering. Macromolecules 46:51899–907
    [Google Scholar]
  37. 37. 
    Alexiadis O, Mavrantzas VG. 2013. All-atom molecular dynamics simulation of temperature effects on the structural, thermodynamic, and packing properties of the pure amorphous and pure crystalline phases of regioregular P3HT. Macromolecules 46:62450–67
    [Google Scholar]
  38. 38. 
    Mirsakiyeva A, Hugosson HW, Crispin X, Delin A. 2017. Quantum molecular dynamical calculations of PEDOT 12-oligomer and its selenium and tellurium derivatives. J. Electron. Mater. 46:53071–75
    [Google Scholar]
  39. 39. 
    Franco-Gonzalez JF, Zozoulenko IV. 2017. Molecular dynamics study of morphology of doped PEDOT: from solution to dry phase. J. Phys. Chem. B 121:164299–307
    [Google Scholar]
  40. 40. 
    Patel SN, Javier AE, Stone GM, Mullin SA, Balsara NP. 2012. Simultaneous conduction of electronic charge and lithium ions in block copolymers. ACS Nano 6:21589–600
    [Google Scholar]
  41. 41. 
    Merkle R, Gutbrod P, Reinold P, Katzmaier M, Tkachov R et al. 2017. Mixed conductivity of polythiophene-based ionic polymers under controlled conditions. Polymer 132:216–26
    [Google Scholar]
  42. 42. 
    Shiri P, Dacanay EJS, Hagen B, Kaake LG. 2019. Vogel-Tammann-Fulcher model for charging dynamics in an organic electrochemical transistor. J. Mater. Chem. C 7:4112935–41
    [Google Scholar]
  43. 43. 
    Finn PA, Jacobs IE, Armitage J, Wu R, Paulsen BD et al. 2020. Effect of polar side chains on neutral and p-doped polythiophene. J. Mater. Chem. C 8:16216–23
    [Google Scholar]
  44. 44. 
    Dong BX, Nowak C, Onorato JW, Strzalka J, Escobedo FA et al. 2019. Influence of side-chain chemistry on structure and ionic conduction characteristics of polythiophene derivatives: a computational and experimental study. Chem. Mater. 31:41418–29
    [Google Scholar]
  45. 45. 
    Chee KJ, Kumar V, Nguyen CV, Wang J, Lee PS 2016. Polymer light-emitting electrochemical cell blends based on selection of lithium salts, LiX [X = trifluoromethanesulfonate, hexafluorophosphate, and bis(trifluoromethylsulfonyl)imide] with low turn-on voltage. J. Phys. Chem. C 120:2111324–30
    [Google Scholar]
  46. 46. 
    Javier AE, Patel SN, Hallinan DT, Srinivasan V, Balsara NP. 2011. Simultaneous electronic and ionic conduction in a block copolymer: application in lithium battery electrodes. Angew. Chem. Int. Ed. 50:429848–51
    [Google Scholar]
  47. 47. 
    Bhatt MP, Thelen JL, Balsara NP. 2015. Effect of copolymer composition on electronic conductivity of electrochemically oxidized poly(3-hexylthiophene)-b-poly(ethylene oxide) block copolymers. Chem. Mater. 27:145141–48
    [Google Scholar]
  48. 48. 
    Miller TF, Wang Z-G, Coates GW, Balsara NP. 2017. Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries. Acc. Chem. Res. 50:3590–93
    [Google Scholar]
  49. 49. 
    Lévesque I, Bazinet P, Roovers J. 2000. Optical properties and dual electrical and ionic conductivity in poly(3-methylhexa(oxyethylene)oxy-4-methylthiophene). Macromolecules 33:82952–57
    [Google Scholar]
  50. 50. 
    Lin F, Wang Y, Lonergan M. 2008. Ion transport in polyacetylene ionomers. J Appl. Phys. 104:10103517
    [Google Scholar]
  51. 51. 
    Collins SD, Mikhnenko OV, Nguyen TL, Rengert ZD, Bazan GC et al. 2017. Observing ion motion in conjugated polyelectrolytes with Kelvin probe force microscopy. Adv. Electron. Mater. 3:31700005
    [Google Scholar]
  52. 52. 
    Wieland M, Dingler C, Merkle R, Maier J, Ludwigs S. 2020. Humidity-controlled water uptake and conductivities in ion and electron mixed conducting polythiophene films. ACS Appl. Mater. Interfaces 12:56742–51
    [Google Scholar]
  53. 53. 
    Xue Z, He D, Xie X. 2015. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3:3819218–53
    [Google Scholar]
  54. 54. 
    Yang C, Sun Q, Qiao J, Li Y. 2003. Ionic liquid doped polymer light-emitting electrochemical cells. J. Phys. Chem. B 107:4712981–88
    [Google Scholar]
  55. 55. 
    Armel V, Rivnay J, Malliaras G, Winther-Jensen B. 2013. Unexpected interaction between PEDOT and phosphonium ionic liquids. J. Am. Chem. Soc. 135:3011309–13
    [Google Scholar]
  56. 56. 
    Nardes AM, Kemerink M, de Kok MM, Vinken E, Maturova K, Janssen RAJ. 2008. Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org. Electron. 9:5727–34
    [Google Scholar]
  57. 57. 
    Spyropoulos GD, Gelinas JN, Khodagholy D. 2019. Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics. Sci. Adv. 5:2eaau7378
    [Google Scholar]
  58. 58. 
    Cao Y, Pei Q, Andersson MR, Yu G, Heeger AJ. 1997. Light-emitting electrochemical cells with crown ether as solid electrolyte. J. Electrochem. Soc. 144:12L317
    [Google Scholar]
  59. 59. 
    Chang WB, Fang H, Liu J, Evans CM, Russ B et al. 2016. Electrochemical effects in thermoelectric polymers. ACS Macro Lett 5:4455–59
    [Google Scholar]
  60. 60. 
    Wang H, Ail U, Gabrielsson R, Berggren M, Crispin X. 2015. Ionic Seebeck effect in conducting polymers. Adv. Energy Mater. 5:111500044
    [Google Scholar]
  61. 61. 
    Malti A, Edberg J, Granberg H, Khan ZU, Andreasen JW et al. 2016. An organic mixed ion-electron conductor for power electronics. Adv. Sci. 3:21500305
    [Google Scholar]
  62. 62. 
    Amdursky N, Głowacki ED, Meredith P. 2019. Macroscale biomolecular electronics and ionics. Adv. Mater. 31:31802221
    [Google Scholar]
  63. 63. 
    Savva A, Cendra C, Giugni A, Torre B, Surgailis J et al. 2019. Influence of water on the performance of organic electrochemical transistors. Chem. Mater. 31:3927–37
    [Google Scholar]
  64. 64. 
    Gladisch J, Stavrinidou E, Ghosh S, Giovannitti A, Moser M et al. 2020. Reversible electronic solid-gel switching of a conjugated polymer. Adv. Sci. 7:21901144
    [Google Scholar]
  65. 65. 
    Flagg LQ, Giridharagopal R, Guo J, Ginger DS. 2018. Anion-dependent doping and charge transport in organic electrochemical transistors. Chem. Mater. 30:155380–89
    [Google Scholar]
  66. 66. 
    Surgailis J, Savva A, Druet V, Paulsen BD, Wu R et al. 2021. Mixed conduction in an n-type organic semiconductor in the absence of hydrophilic side-chains. Adv. Funct. Mater. In press . https://doi.org/10.1002/adfm.202010165
    [Crossref] [Google Scholar]
  67. 67. 
    Berry GC. 1978. Properties of an optically anisotropic heterocyclic ladder polymer (BBL) in dilute solution. J. Polym. Sci. Polym. Symp. 65:1143–72
    [Google Scholar]
  68. 68. 
    Li G, Pickup PG. 2000. Ion transport in poly(3,4-ethylenedioxythiophene)-poly(styrene-4-sulfonate) composites. Phys. Chem. Chem. Phys. 2:61255–60
    [Google Scholar]
  69. 69. 
    Stavrinidou E, Leleux P, Rajaona H, Khodagholy D, Rivnay J et al. 2013. Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 25:324488–93
    [Google Scholar]
  70. 70. 
    McFarlane SL, Day BA, McEleney K, Freund MS, Lewis NS. 2011. Designing electronic/ionic conducting membranes for artificial photosynthesis. Energy Environ. Sci. 4:51700–3
    [Google Scholar]
  71. 71. 
    Liu J, Davis NR, Liu DS, Hammond PT. 2012. Highly transparent mixed electron and proton conducting polymer membranes. J. Mater. Chem. 22:3115534–39
    [Google Scholar]
  72. 72. 
    Ispas A, Peipmann R, Bund A, Efimov I. 2009. On the p-doping of PEDOT layers in various ionic liquids studied by EQCM and acoustic impedance. Electrochim. Acta 54:204668–75
    [Google Scholar]
  73. 73. 
    Wang S, Li F, Easley AD, Lutkenhaus JL. 2019. Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat. Mater. 18:169–75
    [Google Scholar]
  74. 74. 
    Flagg LQ, Bischak CG, Quezada RJ, Onorato JW, Luscombe CK, Ginger DS. 2020. P-type electrochemical doping can occur by cation expulsion in a high-performing polymer for organic electrochemical transistors. ACS Mater. Lett. 2:3254–60
    [Google Scholar]
  75. 75. 
    Ghosh S, Inganäs O. 1999. Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors. Adv. Mater. 11:141214–18
    [Google Scholar]
  76. 76. 
    Dai T, Qing X, Lu Y, Xia Y. 2009. Conducting hydrogels with enhanced mechanical strength. Polymer 50:225236–41
    [Google Scholar]
  77. 77. 
    Yao B, Wang H, Zhou Q, Wu M, Zhang M et al. 2017. Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv. Mater. 29:281700974
    [Google Scholar]
  78. 78. 
    Lu B, Yuk H, Lin S, Jian N, Qu K et al. 2019. Pure PEDOT:PSS hydrogels. Nat. Commun. 10:11043
    [Google Scholar]
  79. 79. 
    Wilcox DA, Agarkar V, Mukherjee S, Boudouris BW. 2018. Stable radical materials for energy applications. Annu. Rev. Chem. Biomol. Eng. 9:83–103
    [Google Scholar]
  80. 80. 
    Sato K, Ichinoi R, Mizukami R, Serikawa T, Sasaki Y et al. 2018. Diffusion-cooperative model for charge transport by redox-active nonconjugated polymers. J. Am. Chem. Soc. 140:31049–56
    [Google Scholar]
  81. 81. 
    Yu I, Jeon D, Boudouris B, Joo Y. 2020. Mixed ionic and electronic conduction in radical polymers. Macromolecules 53:114435–41
    [Google Scholar]
  82. 82. 
    Xu K, Sun H, Ruoko T-P, Wang G, Kroon R et al. 2020. Ground-state electron transfer in all-polymer donor-acceptor heterojunctions. Nat. Mater. 19:7738–44
    [Google Scholar]
  83. 83. 
    Sun H, Gerasimov J, Berggren M, Fabiano S. 2018. n-Type organic electrochemical transistors: materials and challenges. J. Mater. Chem. C 6:4411778–84
    [Google Scholar]
  84. 84. 
    Giovannitti A, Rashid RB, Thiburce Q, Paulsen BD, Cendra C et al. 2020. Energetic control of redox-active polymers toward safe organic bioelectronic materials. Adv. Mater. 32:161908047
    [Google Scholar]
  85. 85. 
    Zozoulenko I, Singh A, Singh SK, Gueskine V, Crispin X, Berggren M. 2019. Polarons, bipolarons, and absorption spectroscopy of PEDOT. ACS Appl. Polym. Mater. 1:183–94
    [Google Scholar]
  86. 86. 
    Kroon R, Kiefer D, Stegerer D, Yu L, Sommer M, Müller C. 2017. Polar side chains enhance processability, electrical conductivity, and thermal stability of a molecularly p-doped polythiophene. Adv. Mater. 29:241700930
    [Google Scholar]
  87. 87. 
    Kiefer D, Kroon R, Hofmann AI, Sun H, Liu X et al. 2019. Double doping of conjugated polymers with monomer molecular dopants. Nat. Mater. 18:2149–55
    [Google Scholar]
  88. 88. 
    Shi H, Liu C, Jiang Q, Xu J. 2015. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv. Electron. Mater. 1:41500017
    [Google Scholar]
  89. 89. 
    Kang K, Watanabe S, Broch K, Sepe A, Brown A et al. 2016. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15:8896–902
    [Google Scholar]
  90. 90. 
    Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H. 2020. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19:5491–502
    [Google Scholar]
  91. 91. 
    Xia Y, Cho JH, Lee J, Ruden PP, Frisbie CD. 2009. Comparison of the mobility-carrier density relation in polymer and single-crystal organic transistors employing vacuum and liquid gate dielectrics. Adv. Mater. 21:212174–79
    [Google Scholar]
  92. 92. 
    Paulsen BD, Frisbie CD. 2012. Dependence of conductivity on charge density and electrochemical potential in polymer semiconductors gated with ionic liquids. J. Phys. Chem. C 116:43132–41
    [Google Scholar]
  93. 93. 
    Stevens DM, Qin Y, Hillmyer MA, Frisbie CD. 2009. Enhancement of the morphology and open circuit voltage in bilayer polymer/fullerene solar cells. J. Phys. Chem. C 113:2611408–15
    [Google Scholar]
  94. 94. 
    Jiang X, Harima Y, Yamashita K, Tada Y, Ohshita J, Kunai A. 2002. Doping-induced change of carrier mobilities in poly(3-hexylthiophene) films with different stacking structures. Chem. Phys. Lett. 364:5616–20
    [Google Scholar]
  95. 95. 
    Kuroda S, Marumoto K, Sakanaka T, Takeuchi N, Shimoi Y et al. 2007. Electron-nuclear double-resonance observation of spatial extent of polarons in polythiophene and poly(3-alkylthiophene). Chem. Phys. Lett. 435:4273–77
    [Google Scholar]
  96. 96. 
    Trefz D, Ruff A, Tkachov R, Wieland M, Goll M et al. 2015. Electrochemical investigations of the n-type semiconducting polymer P(NDI2OD-T2) and its monomer: new insights in the reduction behavior. J. Phys. Chem. C 119:4022760–71
    [Google Scholar]
  97. 97. 
    Wang S, Sun H, Ail U, Vagin M, POÅ Persson et al. 2016. Thermoelectric properties of solution-processed n-doped ladder-type conducting polymers. Adv. Mater. 28:4810764–71
    [Google Scholar]
  98. 98. 
    Ghosh R, Pochas CM, Spano FC. 2016. Polaron delocalization in conjugated polymer films. J. Phys. Chem. C 120:2111394–406
    [Google Scholar]
  99. 99. 
    Thomas TH, Harkin DJ, Gillett AJ, Lemaur V, Nikolka M et al. 2019. Short contacts between chains enhancing luminescence quantum yields and carrier mobilities in conjugated copolymers. Nat. Commun. 10:12614
    [Google Scholar]
  100. 100. 
    Bucella SG, Luzio A, Gann E, Thomsen L, McNeill CR et al. 2015. Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics. Nat. Commun. 6:18394
    [Google Scholar]
  101. 101. 
    Himmelberger S, Vandewal K, Fei Z, Heeney M, Salleo A. 2014. Role of molecular weight distribution on charge transport in semiconducting polymers. Macromolecules 47:207151–57
    [Google Scholar]
  102. 102. 
    Gu K, Snyder CR, Onorato J, Luscombe CK, Bosse AW, Loo Y-L. 2018. Assessing the Huang-Brown description of tie chains for charge transport in conjugated polymers. ACS Macro Lett 7:111333–38
    [Google Scholar]
  103. 103. 
    Dong BX, Liu Z, Misra M, Strzalka J, Niklas J et al. 2019. Structure control of a π-conjugated oligothiophene-based liquid crystal for enhanced mixed ion/electron transport characteristics. ACS Nano 13:77665–75
    [Google Scholar]
  104. 104. 
    Parr ZS, Rashid RB, Paulsen BD, Poggi B, Tan E et al. 2020. Semiconducting small molecules as active materials for p-type accumulation mode organic electrochemical transistors. Adv. Electron. Mater. 6:62000215
    [Google Scholar]
  105. 105. 
    Harima Y, Eguchi T, Yamashita K. 1998. Enhancement of carrier mobilities in poly(3-methylthiophene) by an electrochemical doping. Synth. Met. 95:169–74
    [Google Scholar]
  106. 106. 
    Hulea IN, Brom HB, Houtepen AJ, Vanmaekelbergh D, Kelly JJ, Meulenkamp EA. 2004. Wide energy-window view on the density of states and hole mobility in poly(ρ-phenylene vinylene). Phys. Rev. Lett. 93:16166601
    [Google Scholar]
  107. 107. 
    Rivnay J, Inal S, Collins BA, Sessolo M, Stavrinidou E et al. 2016. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7:11287
    [Google Scholar]
  108. 108. 
    Kim S-M, Kim C-H, Kim Y, Kim N, Lee W-J et al. 2018. Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat. Commun. 9:13858
    [Google Scholar]
  109. 109. 
    Tordera D, Kuik M, Rengert ZD, Bandiello E, Bolink HJ et al. 2014. Operational mechanism of conjugated polyelectrolytes. J. Am. Chem. Soc. 136:248500–3
    [Google Scholar]
  110. 110. 
    Patel SN, Javier AE, Balsara NP. 2013. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes. ACS Nano 7:76056–68
    [Google Scholar]
  111. 111. 
    Kim N, Kee S, Lee SH, Lee BH, Kahng YH et al. 2014. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26:142268–72
    [Google Scholar]
  112. 112. 
    Nikolka M, Broch K, Armitage J, Hanifi D, Nowack PJ et al. 2019. High-mobility, trap-free charge transport in conjugated polymer diodes. Nat. Commun. 10:12122
    [Google Scholar]
  113. 113. 
    Kergoat L, Piro B, Berggren M, Horowitz G, Pham M-C. 2012. Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Anal. Bioanal. Chem. 402:51813–26
    [Google Scholar]
  114. 114. 
    Kim SH, Hong K, Xie W, Lee KH, Zhang S et al. 2013. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 25:131822–46
    [Google Scholar]
  115. 115. 
    Zeglio E, Inganäs O. 2018. Active materials for organic electrochemical transistors. Adv. Mater. 30:441800941
    [Google Scholar]
  116. 116. 
    Moser M, Ponder JF, Wadsworth A, Giovannitti A, McCulloch I. 2019. Materials in organic electrochemical transistors for bioelectronic applications: past, present, and future. Adv. Funct. Mater. 29:211807033
    [Google Scholar]
  117. 117. 
    Inal S, Malliaras GG, Rivnay J. 2017. Benchmarking organic mixed conductors for transistors. Nat. Commun. 8:11767
    [Google Scholar]
  118. 118. 
    Friedlein JT, McLeod RR, Rivnay J. 2018. Device physics of organic electrochemical transistors. Org. Electron. 63:398–414
    [Google Scholar]
  119. 119. 
    Lin P, Yan F, Chan HLW 2010. Ion-sensitive properties of organic electrochemical transistors. ACS Appl. Mater. Interfaces 2:61637–41
    [Google Scholar]
  120. 120. 
    Romele P, Ghittorelli M, Kovács-Vajna ZM, Torricelli F. 2019. Ion buffering and interface charge enable high performance electronics with organic electrochemical transistors. Nat. Commun. 10:13044
    [Google Scholar]
  121. 121. 
    Mochizuki Y, Horii T, Okuzaki H. 2012. Effect of pH on structure and conductivity of PEDOT/PSS. Trans. Mater. Res. Soc. Jpn. 37:2307–10
    [Google Scholar]
  122. 122. 
    Savva A, Wustoni S, Inal S. 2018. Ionic-to-electronic coupling efficiency in PEDOT:PSS films operated in aqueous electrolytes. J. Mater. Chem. C 6:4412023–30
    [Google Scholar]
  123. 123. 
    Paulsen BD, Wu R, Takacs CJ, Steinrück H-G, Strzalka J et al. 2020. Time-resolved structural kinetics of an organic mixed ionic-electronic conductor. Adv. Mater. 32:402003404
    [Google Scholar]
  124. 124. 
    Giovannitti A, Maria IP, Hanifi D, Donahue MJ, Bryant D et al. 2018. The role of the side chain on the performance of n-type conjugated polymers in aqueous electrolytes. Chem. Mater. 30:92945–53
    [Google Scholar]
  125. 125. 
    Savva A, Hallani R, Cendra C, Surgailis J, Hidalgo TC et al. 2020. Balancing ionic and electronic conduction for high-performance organic electrochemical transistors. Adv. Funct. Mater. 30:111907657
    [Google Scholar]
  126. 126. 
    Moser M, Hidalgo TC, Surgailis J, Gladisch J, Ghosh S et al. 2020. Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability. Adv. Mater. 32:372002748
    [Google Scholar]
  127. 127. 
    Yuk H, Lu B, Zhao X. 2019. Hydrogel bioelectronics. Chem. Soc. Rev. 48:61642–67
    [Google Scholar]
  128. 128. 
    Zhang W, Feng P, Chen J, Sun Z, Zhao B. 2019. Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 88:220–40
    [Google Scholar]
  129. 129. 
    Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G 2020. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 120:157642–707
    [Google Scholar]
  130. 130. 
    Naficy S, Razal JM, Spinks GM, Wallace GG, Whitten PG. 2012. Electrically conductive, tough hydrogels with pH sensitivity. Chem. Mater. 24:173425–33
    [Google Scholar]
  131. 131. 
    Newbloom GM, Weigandt KM, Pozzo DC. 2012. Electrical, mechanical, and structural characterization of self-assembly in poly(3-hexylthiophene) organogel networks. Macromolecules 45:83452–62
    [Google Scholar]
  132. 132. 
    Danielsen SPO, Sanoja GE, McCuskey SR, Hammouda B, Bazan GC et al. 2018. Mixed conductive soft solids by electrostatically driven network formation of a conjugated polyelectrolyte. Chem. Mater. 30:41417–26
    [Google Scholar]
  133. 133. 
    Garcia A, Bakus RC II, Zalar P, Hoven CV, Brzezinski JZ, Nguyen T-Q. 2011. Controlling ion motion in polymer light-emitting diodes containing conjugated polyelectrolyte electron injection layers. J. Am. Chem. Soc. 133:82492–98
    [Google Scholar]
  134. 134. 
    Ji X, Paulsen B, Chik G, Wu R, Yin Y et al. 2021. Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat. Commun. 12:2480
    [Google Scholar]
  135. 135. 
    Jiang Q, Sun H, Zhao D, Zhang F, Hu D et al. 2020. High thermoelectric performance in n-type perylene bisimide induced by the Soret effect. Adv. Mater. 32:452002752
    [Google Scholar]
  136. 136. 
    Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M et al. 2011. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 10:6429–33
    [Google Scholar]
  137. 137. 
    Patel SN, Glaudell AM, Peterson KA, Thomas EM, O'Hara KA et al. 2017. Morphology controls the thermoelectric power factor of a doped semiconducting polymer. Sci. Adv. 3:6e1700434
    [Google Scholar]
  138. 138. 
    Ail U, Jafari MJ, Wang H, Ederth T, Berggren M, Crispin X. 2016. Thermoelectric properties of polymeric mixed conductors. Adv. Funct. Mater. 26:346288–96
    [Google Scholar]
  139. 139. 
    Zhao D, Fabiano S, Berggren M, Crispin X. 2017. Ionic thermoelectric gating organic transistors. Nat. Commun. 8:14214
    [Google Scholar]
  140. 140. 
    Li T, Zhang X, Lacey SD, Mi R, Zhao X et al. 2019. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18:6608–13
    [Google Scholar]
  141. 141. 
    Han C-G, Qian X, Li Q, Deng B, Zhu Y et al. 2020. Giant thermopower of ionic gelatin near room temperature. Science 368:64951091–98
    [Google Scholar]
  142. 142. 
    Kim B, Na J, Lim H, Kim Y, Kim J, Kim E 2019. Robust high thermoelectric harvesting under a self-humidifying bilayer of metal organic framework and hydrogel layer. Adv. Funct. Mater. 29:71807549
    [Google Scholar]
  143. 143. 
    Zhao D, Martinelli A, Willfahrt A, Fischer T, Bernin D et al. 2019. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles. Nat. Commun. 10:11093
    [Google Scholar]
  144. 144. 
    Kim B, Hwang JU, Kim E 2020. Chloride transport in conductive polymer films for an n-type thermoelectric platform. Energy Environ. Sci. 13:3859–67
    [Google Scholar]
  145. 145. 
    Glaudell AM, Cochran JE, Patel SN, Chabinyc ML. 2015. Impact of the doping method on conductivity and thermopower in semiconducting polythiophenes. Adv. Energy Mater. 5:41401072
    [Google Scholar]
  146. 146. 
    Kang SD, Snyder GJ. 2017. Charge-transport model for conducting polymers. Nat. Mater. 16:2252–57
    [Google Scholar]
  147. 147. 
    Abdalla H, Zuo G, Kemerink M. 2017. Range and energetics of charge hopping in organic semiconductors. Phys. Rev. B 96:24241202
    [Google Scholar]
  148. 148. 
    Scheunemann D, Vijayakumar V, Zeng H, Durand P, Leclerc N et al. 2020. Rubbing and drawing: generic ways to improve the thermoelectric power factor of organic semiconductors?. Adv. Electron. Mater. 6:82000218
    [Google Scholar]
  149. 149. 
    Wang H, Zhao D, Khan ZU, Puzinas S, Jonsson MP et al. 2017. Ionic thermoelectric figure of merit for charging of supercapacitors. Adv. Electron. Mater. 3:41700013
    [Google Scholar]
  150. 150. 
    Håkansson A, Shahi M, Brill JW, Fabiano S, Crispin X. 2019. Conducting-polymer bolometers for low-cost IR-detection systems. Adv. Electron. Mater. 5:61800975
    [Google Scholar]
  151. 151. 
    Weathers A, Khan ZU, Brooke R, Evans D, Pettes MT et al. 2015. Significant electronic thermal transport in the conducting polymer poly(3,4-ethylenedioxythiophene). Adv. Mater. 27:122101–6
    [Google Scholar]
  152. 152. 
    Liu J, Wang X, Li D, Coates NE, Segalman RA, Cahill DG. 2015. Thermal conductivity and elastic constants of PEDOT:PSS with high electrical conductivity. Macromolecules 48:3585–91
    [Google Scholar]
  153. 153. 
    Wei Q, Mukaida M, Kirihara K, Ishida T. 2014. Experimental studies on the anisotropic thermoelectric properties of conducting polymer films. ACS Macro Lett 3:9948–52
    [Google Scholar]
  154. 154. 
    Kim G-H, Kim J, Pipe KP 2016. Humidity-dependent thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate). Appl. Phys. Lett. 108:9093301
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080619-101319
Loading
/content/journals/10.1146/annurev-matsci-080619-101319
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error