1932

Abstract

Perovskite O oxides that have Bi and Pb at the site and transition metals at the site, when stabilized by high-pressure synthesis at several gigapascals, provide a rich parameter space of fascinating properties. Stereochemical 62 lone pairs of Bi3+ and Pb2+ induce polar or antipolar distortions. 62 and 60 (Bi5+ and Pb4+) charge degree of freedom enable intermetallic charge transfer transitions. The structural distortion and the charge degree of freedom are coupled with magnetism of transition metals, resulting in various functionalities. In particular, we highlight magnetization reversal by electric field and polarization rotation in BiFeCoO, negative thermal expansion in modified BiNiO and PbVO, and systematic charge distribution changes in PbO ( = 3 transition metal).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-011831
2021-07-26
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080819-011831.html?itemId=/content/journals/10.1146/annurev-matsci-080819-011831&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Jaffe B, Cook WR, Jaffe H. 1971. Piezoelectric Ceramics London/New York: Academic Press
  2. 2. 
    Cox DE, Sleight AW. 1976. Crystal structure of Ba2Bi3+Bi5+O6. Solid State Commun. 19:969–73
    [Google Scholar]
  3. 3. 
    Varma CM. 1988. Missing valence states, diamagnetic insulators, and superconductors. Phys. Rev. Lett. 61:2713–16
    [Google Scholar]
  4. 4. 
    Azuma M, Sakai Y, Nishikubo T, Mizumaki M, Watanuki T et al. 2018. Systematic charge distribution changes in Bi- and Pb-3d transition metal perovskites. Dalton Trans 47:1371–77
    [Google Scholar]
  5. 5. 
    Sugawara F, Iida S, Syono Y, Akimoto S-i. 1965. New magnetic perovskites BiMnO3 and BiCrO3. J. Phys. Soc. Jpn. 20:1529
    [Google Scholar]
  6. 6. 
    Tomashpol'skii YY, Zubova EV, Burdina KP, Venevtse YN. 1969. X-ray investigation of new perovskites formed at high pressures. Sov. Phys. Crystallogr. 13:859–61
    [Google Scholar]
  7. 7. 
    Bokov VA, Myl'nikova IE, Kizhaev SA, Bryzhina MF, Grigoryan NA 1966. Structure and magnetic properties of BiMnO3. Sov. Phys. Solid State 7:2993–94
    [Google Scholar]
  8. 8. 
    Roth WL, Devries RC. 1967. Crystal and magnetic structure of PbCrO3. J. Appl. Phys. 38:951–52
    [Google Scholar]
  9. 9. 
    Atou T, Chiba H, Ohoyama K, Yamaguchi Y, Syono Y. 1999. Structure determination of ferromagnetic perovskite BiMnO3. J. Solid State Chem. 145:639–42
    [Google Scholar]
  10. 10. 
    Klein RA, Altman AB, Saballos RJ, Walsh JPS, Tamerius AD et al. 2019. High-pressure synthesis of the BiVO3 perovskite. Phys. Rev. Mater. 3:064411
    [Google Scholar]
  11. 11. 
    Belik AA, Iikubo S, Kodama K, Igawa N, Shamoto S et al. 2006. BiScO3: centrosymmetric BiMnO3-type oxide. J. Am. Chem. Soc. 128:706–7
    [Google Scholar]
  12. 12. 
    Belik AA. 2012. Polar and nonpolar phases of BiMO3: a review. J. Solid State Chem. 195:32–40
    [Google Scholar]
  13. 13. 
    Sugawara F, Iida S, Syono Y, Akimoto S-i. 1968. Magnetic properties and crystal distortions of BiMnO3 and BiCrO3. J. Phys. Soc. Jpn. 25:1553–58
    [Google Scholar]
  14. 14. 
    Niitaka S, Azuma M, Takano M, Nishibori E, Takata M, Sakata M. 2004. Crystal structure and dielectric and magnetic properties of BiCrO3 as a ferroelectromagnet. Solid State Ionics 172:557–59
    [Google Scholar]
  15. 15. 
    Yokosawa T, Belik AA, Asaka T, Kimoto K, Takayama-Muromachi E, Matsui Y. 2008. Crystal symmetry of BiMnO3: electron diffraction study. Phys. Rev. B 77:024111
    [Google Scholar]
  16. 16. 
    Belik AA, Iikubo S, Kodama K, Igawa N, Shamoto S, Takayama-Muromachi E. 2008. Neutron powder diffraction study on the crystal and magnetic structures of BiCrO3. Chem. Mater. 20:3765–69
    [Google Scholar]
  17. 17. 
    Kim DH, Lee HN, Varela M, Christen HM. 2006. Antiferroelectricity in multiferroic BiCrO3 epitaxial films. Appl. Phys. Lett. 89:162904
    [Google Scholar]
  18. 18. 
    Moreira Dos Santos A, Cheetham AK, Atou T, Syono Y, Yamaguchi Y et al. 2002. Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO3. Phys. Rev. B 66:064425
    [Google Scholar]
  19. 19. 
    Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y. 2003. Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67:180401(R)
    [Google Scholar]
  20. 20. 
    Belik A, Iikubo S, Yokosawa T, Kodama K, Igawa N et al. 2007. Origin of the monoclinic-to-monoclinic phase transition and evidence for the centrosymmetric crystal structure of BiMnO3. J. Am. Chem. Soc. 129:971–77
    [Google Scholar]
  21. 21. 
    Royen P, Swars K. 1957. Das System Wismutoxyd-Eisenoxyd im Bereich von 0 bis 55 Mol-Percent Eisenoxyd. Angew. Chem. 69:779–79
    [Google Scholar]
  22. 22. 
    Teague JR, Gerson R, James WJ. 1970. Dielectric hysteresis in single crystal BiFeO3. Solid State Commun 8:1073–74
    [Google Scholar]
  23. 23. 
    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB et al. 2003. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–22
    [Google Scholar]
  24. 24. 
    Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM. 2005. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71:014113
    [Google Scholar]
  25. 25. 
    Kiselev SV, Ozerov RP, Zhdanov GS. 1963. Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov. Phys. Dokl. 7:742
    [Google Scholar]
  26. 26. 
    Sosnowska I, Peterlinneumaier T, Steichele E. 1982. Spiral magnetic-ordering in bismuth ferrite. J. Phys. C Solid State Phys. 15:4835–46
    [Google Scholar]
  27. 27. 
    Ramazanoglu M, Laver M, Ratcliff W 2nd, Watson SM, Chen WC et al. 2011. Local weak ferromagnetism in single-crystalline ferroelectric BiFeO3. Phys. Rev. Lett. 107:207206
    [Google Scholar]
  28. 28. 
    Kadomtseva AM, Zvezdin AK, Popov YF, Pyatakov AP, Vorob'ev GP 2004. Space-time parity violation and magnetoelectric interactions in antiferromagnets. JETP Lett 79:571–81
    [Google Scholar]
  29. 29. 
    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. 2003. Magnetic control of ferroelectric polarization. Nature 426:55–58
    [Google Scholar]
  30. 30. 
    Tokunaga M, Azuma M, Shimakawa Y. 2010. High-field study of strong magnetoelectric coupling in single-domain crystals of BiFeO3. J. Phys. Soc. Jpn. 79:064713
    [Google Scholar]
  31. 31. 
    Ohoyama K, Lee S, Yoshii S, Narumi Y, Morioka T et al. 2011. High field neutron diffraction studies on metamagnetic transition of multiferroic BiFeO3. J. Phys. Soc. Jpn. 80:125001
    [Google Scholar]
  32. 32. 
    Tokunaga M, Akaki M, Ito T, Miyahara S, Miyake A et al. 2015. Magnetic control of transverse electric polarization in BiFeO3. Nat. Commun. 6:5878
    [Google Scholar]
  33. 33. 
    Sando D, Agbelele A, Rahmedov D, Liu J, Rovillain P et al. 2013. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12:641–46
    [Google Scholar]
  34. 34. 
    Heron JT, Bosse JL, He Q, Gao Y, Trassin M et al. 2014. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516:370–73
    [Google Scholar]
  35. 35. 
    Lee YH, Wu JM, Lai CH. 2006. Influence of La doping in multiferroic properties of BiFeO3 thin films. Appl. Phys. Lett. 88:042903
    [Google Scholar]
  36. 36. 
    Yuan GL, Or SW. 2006. Multiferroicity in polarized single-phase Bi0.875Sm0.125FeO3 ceramics. J. Appl. Phys. 100:024109
    [Google Scholar]
  37. 37. 
    Naganuma H, Miura J, Nakajima M, Shima H, Okamura S et al. 2008. Annealing temperature dependences of ferroelectric and magnetic properties in polycrystalline Co-substituted BiFeO3 films. Jpn. J. Appl. Phys. 47:7574–78
    [Google Scholar]
  38. 38. 
    Begum HA, Naganuma H, Oogane M, Ando Y. 2011. Fabrication of multiferroic Co-substituted BiFeO3 epitaxial films on SrTiO3 (100) substrates by radio frequency magnetron sputtering. Materials 4:1087–95
    [Google Scholar]
  39. 39. 
    Bea H, Bibes M, Barthelemy A, Bouzehouane K, Jacquet E et al. 2005. Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl. Phys. Lett. 87:072508
    [Google Scholar]
  40. 40. 
    Bea H, Bibes M, Fusil S, Bouzehouane K, Jacquet E et al. 2006. Investigation on the origin of the magnetic moment of BiFeO3 thin films by advanced X-ray characterizations. Phys. Rev. B 74:020101
    [Google Scholar]
  41. 41. 
    Singh VR, Verma VK, Ishigami K, Shibata G, Yamazaki Y et al. 2013. Enhanced ferromagnetic moment in Co-doped BiFeO3 thin films studied by soft X-ray circular dichroism. J. Appl. Phys. 114:103905
    [Google Scholar]
  42. 42. 
    Sosnowska I, Azuma M, Przenioslo R, Wardecki D, Chen W-T et al. 2013. Crystal and magnetic structure in Co-substituted BiFeO3. Inorg. Chem. 52:13269–77
    [Google Scholar]
  43. 43. 
    Yamamoto H, Kihara T, Oka K, Tokunaga M, Mibu K, Azuma M. 2016. Spin structure change in Co-substituted BiFeO3. J. Phys. Soc. Jpn. 85:064704
    [Google Scholar]
  44. 44. 
    Ederer C, Spaldin NA. 2005. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71:060401
    [Google Scholar]
  45. 45. 
    Hojo H, Kawabe R, Shimizu K, Yamamoto H, Mibu K et al. 2017. Ferromagnetism at room temperature induced by spin structure change in BiFe1−xCoxO3 thin films. Adv. Mater. 29:1603131
    [Google Scholar]
  46. 46. 
    Yamamoto H, Sakai Y, Shigematsu K, Aoyama T, Kimura T, Azuma M. 2017. Electric-field-induced reorientation of the magnetic easy plane in a Co-substituted BiFeO3 single crystal. Inorg. Chem. 56:15171–77
    [Google Scholar]
  47. 47. 
    Shimizu K, Kawabe R, Hojo H, Shimizu H, Yamamoto H et al. 2019. Direct observation of magnetization reversal by electric field at room temperature in Co-substituted bismuth ferrite thin film. Nano Lett 19:1767–73
    [Google Scholar]
  48. 48. 
    Azuma M, Niitaka S, Hayashi N, Oka K, Takano M et al. 2008. Rhombohedral-tetragonal phase boundary with high Curie temperature in (1−x)BiCoO3-xBiFeO3 solid solution. Jpn. J. Appl. Phys. 47:7579–81
    [Google Scholar]
  49. 49. 
    Oka K, Koyama T, Ozaaki T, Mori S, Shimakawa Y, Azuma M. 2012. Polarization rotation in the monoclinic perovskite BiCo1−xFexO3. Angew. Chem. Int. Ed. 51:7977–80
    [Google Scholar]
  50. 50. 
    Shimizu K, Hojo H, Ikuhara Y, Azuma M. 2016. Enhanced piezoelectric response due to polarization rotation in cobalt-substituted BiFeO3 epitaxial thin films. Adv. Mater. 28:8639–44
    [Google Scholar]
  51. 51. 
    Belik A, Iikubo S, Kodama K, Igawa N, Shamoto S et al. 2006. Neutron powder diffraction study on the crystal and magnetic structures of BiCoO3. Chem. Mater. 18:798–803
    [Google Scholar]
  52. 52. 
    Oka K, Azuma M, Chen WT, Yusa H, Belik AA et al. 2010. Pressure-induced spin-state transition in BiCoO3. J. Am. Chem. Soc. 132:9438–43
    [Google Scholar]
  53. 53. 
    Ishiwata S, Azuma M, Takano M, Nishibori E, Takata M et al. 2002. High pressure synthesis, crystal structure and physical properties of a new Ni(II) perovskite BiNiO3. J. Mater. Chem. 12:3733–37
    [Google Scholar]
  54. 54. 
    Azuma M, Carlsson S, Rodgers J, Tucker M, Tsujimoto M et al. 2007. Pressure-induced intermetallic valence transition in BiNiO3. J. Am. Chem. Soc. 129:14433–36
    [Google Scholar]
  55. 55. 
    Mizumaki M, Ishimatsu N, Kawamura N, Azuma M, Shimakawa Y et al. 2009. Direct observation of the pressure-induced charge redistribution in BiNiO3 by X-ray absorption spectroscopy. Phys. Rev. B 80:233104
    [Google Scholar]
  56. 56. 
    Azuma M, Chen WT, Seki H, Czapski M, Olga S et al. 2011. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer. Nat. Commun. 2:347
    [Google Scholar]
  57. 57. 
    Oka K, Nabetani K, Sakaguchi C, Seki H, Czapski M et al. 2013. Tuning negative thermal expansion in Bi1−xLnxNiO3 (Ln = La, Nd, Eu, Dy). Appl. Phys. Lett. 103:061909
    [Google Scholar]
  58. 58. 
    Nishikubo T, Sakai Y, Oka K, Mizumaki M, Watanuki T et al. 2018. Optimized negative thermal expansion induced by gradual intermetallic charge transfer in Bi1−xSbxNiO3. Appl. Phys. Express 11:061102
    [Google Scholar]
  59. 59. 
    Nakano K, Oka K, Watanuki T, Mizumaki M, Machida A et al. 2016. Glassy distribution of Bi3+/Bi5+ in Bi1−xPbxNiO3 and negative thermal expansion induced by intermetallic charge transfer. Chem. Mater. 28:6062–67
    [Google Scholar]
  60. 60. 
    Takenaka K, Takagi H. 2005. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 87:261902
    [Google Scholar]
  61. 61. 
    Nabetani K, Muramatsu Y, Oka K, Nakano K, Hojo H et al. 2015. Suppression of temperature hysteresis in negative thermal expansion compound BiNi1−xFexO3 and zero-thermal expansion composite. Appl. Phys. Lett. 106:061912
    [Google Scholar]
  62. 62. 
    Oka K, Mizumaki M, Sakaguchi C, Sinclair A, Ritter C et al. 2013. Intermetallic charge-transfer transition in Bi1−xLaxNiO3 as the origin of the colossal negative thermal expansion. Phys. Rev. B 88:014112
    [Google Scholar]
  63. 63. 
    Nishikubo T, Sakai Y, Oka K, Watanuki T, Machida A et al. 2019. Enhanced negative thermal expansion induced by simultaneous charge transfer and polar-nonpolar transitions. J. Am. Chem. Soc. 141:19397–403
    [Google Scholar]
  64. 64. 
    Naka M, Seo H, Motome Y. 2016. Theory of valence transition in BiNiO3. Phys. Rev. Lett. 116:056402
    [Google Scholar]
  65. 65. 
    Shpanchenko RV, Chernaya VV, Tsirlin AA, Chizhov PS, Sklovsky DE et al. 2004. Synthesis, structure, and properties of new perovskite PbVO3. Chem. Mater. 16:3267–73
    [Google Scholar]
  66. 66. 
    Belik A, Azuma M, Saito T, Shimakawa Y, Takano M. 2005. Crystallographic features and tetragonal phase stability of PbVO3, a new member of PbTiO3 family. Chem. Mater. 17:269–73
    [Google Scholar]
  67. 67. 
    Oka K, Yamada I, Azuma M, Takeshita S, Satoh K et al. 2008. Magnetic ground-state of perovskite PbVO3 with large tetragonal distortion. Inorg. Chem. 47:7355–59
    [Google Scholar]
  68. 68. 
    Oka K, Yamauchi T, Kanungo S, Shimazu T, Oh-ishi K et al. 2018. Experimental and theoretical studies of the metallic conductivity in cubic PbVO3 under high pressure. J. Phys. Soc. Jpn. 87:024801
    [Google Scholar]
  69. 69. 
    Yamamoto H, Imai T, Sakai Y, Azuma M. 2018. Colossal negative thermal expansion in electron-doped PbVO3 perovskites. Angew. Chem. Int. Ed. 57:8170–73
    [Google Scholar]
  70. 70. 
    Ogata T, Oka K, Azuma M. 2019. Negative thermal expansion in electron doped PbVO3−xFx. Appl. Phys. Express 12:023005
    [Google Scholar]
  71. 71. 
    Ogata T, Sakai Y, Yamamoto H, Patel S, Keil P et al. 2019. Melting of dxy orbital ordering accompanied by suppression of giant tetragonal distortion and insulator-to-metal transition in Cr-substituted PbVO3. Chem. Mater. 31:1352–58
    [Google Scholar]
  72. 72. 
    Yu RZ, Hojo H, Watanuki T, Mizumaki M, Mizokawa T et al. 2015. Melting of Pb charge glass and simultaneous Pb-Cr charge transfer in PbCrO3 as the origin of volume collapse. J. Am. Chem. Soc. 137:12719–28
    [Google Scholar]
  73. 73. 
    Sakai Y, Yang J, Yu R, Hojo H, Yamada I et al. 2017. A-site and B-site charge orderings in an s-d level controlled perovskite oxide PbCoO3. J. Am. Chem. Soc. 139:4574–81
    [Google Scholar]
  74. 74. 
    Inaguma Y, Tanaka K, Tsuchiya T, Mori D, Katsumata T et al. 2011. Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures. J. Am. Chem. Soc. 133:16920–29
    [Google Scholar]
  75. 75. 
    Arévalo-López ÁM, Alario-Franco MÁ. 2007. On the structure and microstructure of “PbCrO3.. J. Solid State Chem. 180:3271–79
    [Google Scholar]
  76. 76. 
    Xiao W, Tan D, Xiong X, Liu J, Xu J 2010. Large volume collapse observed in the phase transition in cubic PbCrO3 perovskite. PNAS 107:14026–29
    [Google Scholar]
  77. 77. 
    Oka K, Azuma M, Hirai S, Belik A, Kojitani H et al. 2009. Pressure-induced transformation of 6H hexagonal to 3C perovskite structure in PbMnO3. Inorg. Chem. 48:2285–88
    [Google Scholar]
  78. 78. 
    Tsuchiya T, Saito H, Yoshida M, Katsumata T, Ohba T et al. 2007. High-pressure synthesis of a novel PbFeO3. Mater. Res. Soc. Symp. Proc. 988:0988–QQ09-16
    [Google Scholar]
  79. 79. 
    Yamada I, Takata K, Hayashi N, Shinohara S, Azuma M et al. 2008. A perovskite containing quadrivalent iron as a charge-disproportionated ferrimagnet. Angew. Chem. Int. Ed. 47:7032–35
    [Google Scholar]
  80. 80. 
    Liu Z, Sakai Y, Yang J, Li W, Liu Y et al. 2020. Sequential spin state transition and intermetallic charge transfer in PbCoO3. J. Am. Chem. Soc. 142:5731–41
    [Google Scholar]
  81. 81. 
    Sakai Y, Nishikubo T, Ogata T, Ishizaki H, Imai T et al. 2019. Polar-nonpolar phase transition accompanied by negative thermal expansion in perovskite-type Bi1−xPbxNiO3. Chem. Mater. 31:4748–58
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-011831
Loading
/content/journals/10.1146/annurev-matsci-080819-011831
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error