1932

Abstract

has emerged as an important nosocomial pathogen, particularly for patients in intensive care units and with invasive indwelling devices. The most recent clinical isolates are resistant to several classes of clinically important antibiotics, greatly restricting the ability to effectively treat critically ill patients. The bacterial envelope is an important driver of disease, both at the level of battling against antibiotic therapy and at the level of protecting from host innate immune function. This review provides a comprehensive overview of key features of the envelope that interface with both the host and antimicrobial therapies. Carbohydrate structures that contribute to protecting from the host are detailed, and mutations that alter these structures, resulting in increased antimicrobial resistance, are explored. In addition, protein complexes involved in both intermicrobial and host-microbe interactions are described. Finally we discuss regulatory mechanisms that control the nature of the cell envelope and its impact on host innate immune function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115714
2019-09-08
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-115714.html?itemId=/content/journals/10.1146/annurev-micro-020518-115714&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abellon-Ruiz J, Zahn M, Basle A, van den Berg B 2018. Crystal structure of the Acinetobacter baumannii outer membrane protein Omp33. Acta Crystallogr. D Struct. Biol. 74:852–60
    [Google Scholar]
  2. 2. 
    Abreu AG, Barbosa AS. 2017. How Escherichia coli circumvent complement-mediated killing. Front. Immunol. 8:452
    [Google Scholar]
  3. 3. 
    Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR et al. 2009. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob. Agents Chemother. 53:3628–34
    [Google Scholar]
  4. 4. 
    Alarcon I, Evans DJ, Fleiszig SM 2009. The role of twitching motility in Pseudomonas aeruginosa exit from and translocation of corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 50:2237–44
    [Google Scholar]
  5. 5. 
    Amin IM, Richmond GE, Sen P, Koh TH, Piddock LJ, Chua KL 2013. A method for generating marker-less gene deletions in multidrug-resistant Acinetobacter baumannii. BMC Microbiol 13:158
    [Google Scholar]
  6. 6. 
    Arroyo LA, Herrera CM, Fernandez L, Hankins JV, Trent MS, Hancock RE 2011. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob. Agents Chemother. 55:3743–51
    [Google Scholar]
  7. 7. 
    Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ 2012. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:182–86
    [Google Scholar]
  8. 8. 
    Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M et al. 2011. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob. Agents Chemother. 55:3370–79
    [Google Scholar]
  9. 9. 
    Beceiro A, Moreno A, Fernandez N, Vallejo JA, Aranda J et al. 2014. Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob. Agents Chemother 58:518–26
    [Google Scholar]
  10. 10. 
    Bentancor LV, O'Malley JM, Bozkurt-Guzel C, Pier GB, Maira-Litran T 2012. Poly-N-acetyl-β-(1-6)-glucosamine is a target for protective immunity against Acinetobacter baumannii infections. Infect. Immun. 80:651–56
    [Google Scholar]
  11. 11. 
    Bingle LE, Bailey CM, Pallen MJ 2008. Type VI secretion: a beginner's guide. Curr. Opin. Microbiol. 11:3–8
    [Google Scholar]
  12. 12. 
    Bishop RE. 2005. The lipid A palmitoyltransferase PagP: molecular mechanisms and role in bacterial pathogenesis. Mol. Microbiol. 57:900–12
    [Google Scholar]
  13. 13. 
    Bist P, Dikshit N, Koh TH, Mortellaro A, Tan TT, Sukumaran B 2014. The Nod1, Nod2, and Rip2 axis contributes to host immune defense against intracellular Acinetobacter baumannii infection. Infect. Immunity 82:1112–22
    [Google Scholar]
  14. 14. 
    Bojkovic J, Richie DL, Six DA, Rath CM, Sawyer WS et al. 2015. Characterization of an Acinetobacter baumannii lptD deletion strain: permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. J. Bacteriol. 198:731–41
    [Google Scholar]
  15. 15. 
    Boll JM, Crofts AA, Peters K, Cattoir V, Vollmer W et al. 2016. A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii. PNAS 113:E6228–37
    [Google Scholar]
  16. 16. 
    Boll JM, Tucker AT, Klein DR, Beltran AM, Brodbelt JS et al. 2015. Reinforcing lipid A acylation on the cell surface of Acinetobacter baumannii promotes cationic antimicrobial peptide resistance and desiccation survival. mBio 6:e00478–15
    [Google Scholar]
  17. 17. 
    Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I 2009. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: What can be learned from available microbial genomic resources?. BMC Genom 10:104
    [Google Scholar]
  18. 18. 
    Brubaker SW, Bonham KS, Zanoni I, Kagan JC 2015. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33:257–90
    [Google Scholar]
  19. 19. 
    Bushell SR, Mainprize IL, Wear MA, Lou H, Whitfield C, Naismith JH 2013. Wzi is an outer membrane lectin that underpins group 1 capsule assembly in Escherichia coli. Structure 21:844–53
    [Google Scholar]
  20. 20. 
    Caruso R, Warner N, Inohara N, Nunez G 2014. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41:898–908
    [Google Scholar]
  21. 21. 
    Casella LG, Weiss A, Perez-Rueda E, Ibarra JA, Shaw LN 2017. Towards the complete proteinaceous regulome of Acinetobacter baumannii. Microb. Genom 3:mgen000107
    [Google Scholar]
  22. 22. 
    Catel-Ferreira M, Nehme R, Molle V, Aranda J, Bouffartigues E et al. 2012. Deciphering the function of the outer membrane protein OprD homologue of Acinetobacter baumannii. Antimicrob. Agents Chemother 56:3826–32
    [Google Scholar]
  23. 23. 
    Chang YW, Rettberg LA, Ortega DR, Jensen GJ 2017. In vivo structures of an intact type VI secretion system revealed by electron cryotomography. EMBO Rep 18:1090–99
    [Google Scholar]
  24. 24. 
    Chin CY, Gregg KA, Napier BA, Ernst RK, Weiss DS 2015. A PmrB-regulated deacetylase required for lipid A modification and polymyxin resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother 59:7911–14
    [Google Scholar]
  25. 25. 
    Chin CY, Tipton KA, Farokhyfar M, Burd EM, Weiss DS, Rather PN 2018. A high-frequency phenotypic switch links bacterial virulence and environmental survival in Acinetobacter baumannii. Nat. Microbiol 3:563–69
    [Google Scholar]
  26. 26. 
    Choi AH, Slamti L, Avci FY, Pier GB, Maira-Litran T 2009. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-β-1-6-N-acetylglucosamine, which is critical for biofilm formation. J. Bacteriol. 191:5953–63
    [Google Scholar]
  27. 27. 
    Choi CH, Lee JS, Lee YC, Park TI, Lee JC 2008. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol 8:216
    [Google Scholar]
  28. 28. 
    Cianciotto NP, White RC. 2017. Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect. Immun. 85:e00014–17
    [Google Scholar]
  29. 29. 
    Clark NM, Zhanel GG, Lynch JP 3rd 2016. Emergence of antimicrobial resistance among Acinetobacter species: a global threat. Curr. Opin. Crit. Care 22:491–99
    [Google Scholar]
  30. 30. 
    Clark RB. 1996. Imipenem resistance among Acinetobacter baumannii: association with reduced expression of a 33–36 kDa outer membrane protein. J. Antimicrob. Chemother. 38:245–51
    [Google Scholar]
  31. 31. 
    Collins RF, Beis K, Dong C, Botting CH, McDonnell C et al. 2007. The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli. PNAS 104:2390–95
    [Google Scholar]
  32. 32. 
    Confer AW, Ayalew S. 2013. The OmpA family of proteins: roles in bacterial pathogenesis and immunity. Vet. Microbiol. 163:207–22
    [Google Scholar]
  33. 33. 
    Coyne S, Rosenfeld N, Lambert T, Courvalin P, Perichon B 2010. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother 54:4389–93
    [Google Scholar]
  34. 34. 
    Craig L, Pique ME, Tainer JA 2004. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol. 2:363–78
    [Google Scholar]
  35. 35. 
    Cress BF, Englaender JA, He W, Kasper D, Linhardt RJ, Koffas MA 2014. Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. FEMS Microbiol. Rev. 38:660–97
    [Google Scholar]
  36. 36. 
    Dalebroux ZD, Matamouros S, Whittington D, Bishop RE, Miller SI 2014. PhoPQ regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer membrane. PNAS 111:1963–68
    [Google Scholar]
  37. 37. 
    de Berardinis V, Vallenet D, Castelli V, Besnard M, Pinet A et al. 2008. A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol. Syst. Biol. 4:174
    [Google Scholar]
  38. 38. 
    de Breij A, Gaddy J, van der Meer J, Koning R, Koster A et al. 2009. CsuA/BABCDE-dependent pili are not involved in the adherence of Acinetobacter baumannii ATCC19606T to human airway epithelial cells and their inflammatory response. Res. Microbiol. 160:213–18
    [Google Scholar]
  39. 39. 
    Deveson Lucas D, Crane B, Wright A, Han ML, Moffatt J et al. 2018. Emergence of high-level colistin resistance in an Acinetobacter baumannii clinical isolate mediated by inactivation of the global regulator H-NS. Antimicrob. Agents Chemother. 62:e02442–17
    [Google Scholar]
  40. 40. 
    Dexter C, Murray GL, Paulsen IT, Peleg AY 2015. Community-acquired Acinetobacter baumannii: clinical characteristics, epidemiology and pathogenesis. Expert Rev. Anti. Infect. Ther. 13:567–73
    [Google Scholar]
  41. 41. 
    Doi Y, Husain S, Potoski BA, McCurry KR, Paterson DL 2009. Extensively drug-resistant Acinetobacter baumannii. Emerg. Infect. Dis 15:980–82
    [Google Scholar]
  42. 42. 
    Draughn GL, Milton ME, Feldmann EA, Bobay BG, Roth BM et al. 2018. The structure of the biofilm-controlling response regulator BfmR from Acinetobacter baumannii reveals details of its DNA-binding mechanism. J. Mol. Biol. 430:806–21
    [Google Scholar]
  43. 43. 
    Eijkelkamp BA, Stroeher UH, Hassan KA, Papadimitrious MS, Paulsen IT, Brown MH 2011. Adherence and motility characteristics of clinical Acinetobacter baumannii isolates. FEMS Microbiol. Lett. 323:44–51
    [Google Scholar]
  44. 44. 
    Eijkelkamp BA, Stroeher UH, Hassan KA, Paulsen IT, Brown MH 2014. Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genom 15:1020
    [Google Scholar]
  45. 45. 
    Elhosseiny NM, Elhezawy NB, Attia AS 2018. Comparative proteomics analyses of Acinetobacter baumannii strains ATCC 17978 and AB5075 reveal the differential role of type II secretion system secretomes in lung colonization and ciprofloxacin resistance. Microb. Pathog. 128:20–27
    [Google Scholar]
  46. 46. 
    Erickson KD, Detweiler CS. 2006. The Rcs phosphorelay system is specific to enteric pathogens/commensals and activates ydeI, a gene important for persistent Salmonella infection of mice. Mol. Microbiol. 62:883–94
    [Google Scholar]
  47. 47. 
    Erridge C, Moncayo-Nieto OL, Morgan R, Young M, Poxton IR 2007. Acinetobacter baumannii lipopolysaccharides are potent stimulators of human monocyte activation via Toll-like receptor 4 signalling. J. Med. Microbiol. 56:165–71
    [Google Scholar]
  48. 48. 
    Fernando D, Zhanel G, Kumar A 2013. Antibiotic resistance and expression of resistance-nodulation-division pump- and outer membrane porin-encoding genes in Acinetobacter species isolated from Canadian hospitals. Can. J. Infect. Dis. Med. Microbiol. 24:17–21
    [Google Scholar]
  49. 49. 
    Fitzsimons TC, Lewis JM, Wright A, Kleifeld O, Schittenhelm RB et al. 2018. Identification of novel Acinetobacter baumannii type VI secretion system antibacterial effector and immunity pairs. Infect. Immun. 86:e00297–18
    [Google Scholar]
  50. 50. 
    Gaddy JA, Tomaras AP, Actis LA 2009. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect. Immun. 77:3150–60
    [Google Scholar]
  51. 51. 
    Gallagher LA, Ramage E, Weiss EJ, Radey M, Hayden HS et al. 2015. Resources for genetic and genomic analysis of emerging pathogen Acinetobacter baumannii. J. Bacteriol 197:2027–35
    [Google Scholar]
  52. 52. 
    Garcia-Quintanilla M, Carretero-Ledesma M, Moreno-Martinez P, Martin-Pena R, Pachon J, McConnell MJ 2015. Lipopolysaccharide loss produces partial colistin dependence and collateral sensitivity to azithromycin, rifampicin and vancomycin in Acinetobacter baumannii. Int. J. Antimicrob. Agents 46:696–702
    [Google Scholar]
  53. 53. 
    Garcia-Quintanilla M, Pulido MR, Moreno-Martinez P, Martin-Pena R, Lopez-Rojas R et al. 2014. Activity of host antimicrobials against multidrug-resistant Acinetobacter baumannii acquiring colistin resistance through loss of lipopolysaccharide. Antimicrob. Agents Chemother. 58:2972–75
    [Google Scholar]
  54. 54. 
    Gebhardt MJ, Gallagher LA, Jacobson RK, Usacheva EA, Peterson LR et al. 2015. Joint transcriptional control of virulence and resistance to antibiotic and environmental stress in Acinetobacter baumannii. mBio 6:e01660–15
    [Google Scholar]
  55. 55. 
    Geisinger E, Isberg RR. 2015. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLOS Pathog 11:e1004691
    [Google Scholar]
  56. 56. 
    Geisinger E, Mortman NJ, Vargas-Cuebas G, Tai AK, Isberg RR 2018. A global regulatory system links virulence and antibiotic resistance to envelope homeostasis in Acinetobacter baumannii. PLOS Pathog 14:e1007030
    [Google Scholar]
  57. 57. 
    Gerson S, Nowak J, Zander E, Ertel J, Wen Y et al. 2018. Diversity of mutations in regulatory genes of resistance-nodulation-cell division efflux pumps in association with tigecycline resistance in Acinetobacter baumannii. J. Antimicrob. Chemother 73:1501–8
    [Google Scholar]
  58. 58. 
    Giguere D. 2015. Surface polysaccharides from Acinetobacter baumannii: structures and syntheses. Carbohydr. Res. 418:29–43
    [Google Scholar]
  59. 59. 
    Grabowicz M, Silhavy TJ. 2017. Envelope stress responses: an interconnected safety net. Trends Biochem. Sci. 42:232–42
    [Google Scholar]
  60. 60. 
    Gribun A, Nitzan Y, Pechatnikov I, Hershkovits G, Katcoff DJ 2003. Molecular and structural characterization of the HMP-AB gene encoding a pore-forming protein from a clinical isolate of Acinetobacter baumannii. Curr. Microbiol 47:434–43
    [Google Scholar]
  61. 61. 
    Guo B, Abdelraouf K, Ledesma KR, Chang KT, Nikolaou M, Tam VH 2011. Quantitative impact of neutrophils on bacterial clearance in a murine pneumonia model. Antimicrob. Agents Chemother. 55:4601–5
    [Google Scholar]
  62. 62. 
    Han X, Kennan RM, Davies JK, Reddacliff LA, Dhungyel OP et al. 2008. Twitching motility is essential for virulence in Dichelobacter nodosus. J. Bacteriol 190:3323–35
    [Google Scholar]
  63. 63. 
    Harding CM, Haurat MF, Vinogradov E, Feldman MF 2018. Distinct amino acid residues confer one of three UDP-sugar substrate specificities in Acinetobacter baumannii PglC phosphoglycosyltransferases. Glycobiology 28:522–33
    [Google Scholar]
  64. 64. 
    Harding CM, Kinsella RL, Palmer LD, Skaar EP, Feldman MF 2016. Medically relevant Acinetobacter species require a type II secretion system and specific membrane-associated chaperones for the export of multiple substrates and full virulence. PLOS Pathog 12:e1005391
    [Google Scholar]
  65. 65. 
    Harding CM, Nasr MA, Kinsella RL, Scott NE, Foster LJ et al. 2015. Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin, and the other one dedicated to O-glycosylation of multiple proteins. Mol. Microbiol. 96:1023–41
    [Google Scholar]
  66. 66. 
    Harding CM, Tracy EN, Carruthers MD, Rather PN, Actis LA, Munson RS Jr 2013. Acinetobacter baumannii strain M2 produces type IV pili which play a role in natural transformation and twitching motility but not surface-associated motility. mBio 4:e00360–13
    [Google Scholar]
  67. 67. 
    Hassan KA, Cain AK, Huang T, Liu Q, Elbourne LD et al. 2016. Fluorescence-based flow sorting in parallel with transposon insertion site sequencing identifies multidrug efflux systems in Acinetobacter baumannii. mBio 7:e01200–16
    [Google Scholar]
  68. 68. 
    Hawley JS, Murray CK, Jorgensen JH 2007. Development of colistin-dependent Acinetobacter baumannii-Acinetobacter calcoaceticus complex. Antimicrob. Agents Chemother. 51:4529–30
    [Google Scholar]
  69. 69. 
    He X, Lu F, Yuan F, Jiang D, Zhao P et al. 2015. Biofilm formation caused by clinical Acinetobacter baumannii isolates is associated with overexpression of the AdeFGH efflux pump. Antimicrob. Agents Chemother. 59:4817–25
    [Google Scholar]
  70. 70. 
    Henry R, Crane B, Powell D, Deveson Lucas D, Li Z et al. 2015. The transcriptomic response of Acinetobacter baumannii to colistin and doripenem alone and in combination in an in vitro pharmacokinetics/pharmacodynamics model. J. Antimicrob. Chemother. 70:1303–13
    [Google Scholar]
  71. 71. 
    Henry R, Vithanage N, Harrison P, Seemann T, Coutts S et al. 2012. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1,6-N-acetylglucosamine. Antimicrob. Agents Chemother. 56:59–69
    [Google Scholar]
  72. 72. 
    Hood MI, Becker KW, Roux CM, Dunman PM, Skaar EP 2013. genetic determinants of intrinsic colistin tolerance in Acinetobacter baumannii. Infect. Immun 81:542–51
    [Google Scholar]
  73. 73. 
    Hospenthal DR, Crouch HK, English JF, Leach F, Pool J et al. 2011. Multidrug-resistant bacterial colonization of combat-injured personnel at admission to medical centers after evacuation from Afghanistan and Iraq. J. Trauma 71:S52–57
    [Google Scholar]
  74. 74. 
    Hospenthal MK, Costa TRD, Waksman G 2017. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol. 15:365–79
    [Google Scholar]
  75. 75. 
    Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ 2005. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310:670–74
    [Google Scholar]
  76. 76. 
    Isabella VM, Campbell AJ, Manchester J, Sylvester M, Nayar AS et al. 2015. Toward the rational design of carbapenem uptake in Pseudomonas aeruginosa. Chem. Biol 22:535–47
    [Google Scholar]
  77. 77. 
    Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E et al. 2012. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLOS Pathog 8:e1002758
    [Google Scholar]
  78. 78. 
    Iyer R, Moussa SH, Durand-Reville TF, Tommasi R, Miller A 2018. Acinetobacter baumannii OmpA is a selective antibiotic permeant porin. ACS Infect. Dis. 4:373–81
    [Google Scholar]
  79. 79. 
    Joly-Guillou ML, Wolff M, Pocidalo JJ, Walker F, Carbon C 1997. Use of a new mouse model of Acinetobacter baumannii pneumonia to evaluate the postantibiotic effect of imipenem. Antimicrob. Agents Chemother. 41:345–51
    [Google Scholar]
  80. 80. 
    Jorgenson MA, Young KD. 2016. Interrupting biosynthesis of O antigen or the lipopolysaccharide core produces morphological defects in Escherichia coli by sequestering undecaprenyl phosphate. J. Bacteriol. 198:3070–79
    [Google Scholar]
  81. 81. 
    Kale SD, Dikshit N, Kumar P, Balamuralidhar V, Khameneh HJ et al. 2017. Nod2 is required for the early innate immune clearance of Acinetobacter baumannii from the lungs. Sci. Rep. 7:17429
    [Google Scholar]
  82. 82. 
    Karalewitz AP, Miller SI. 2018. Multidrug-resistant Acinetobacter baumannii chloramphenicol resistance requires an inner membrane permease. Antimicrob. Agents Chemother. 62:e00513–18
    [Google Scholar]
  83. 83. 
    Kasimova AA, Kenyon JJ, Arbatsky NP, Shashkov AS, Popova AV et al. 2018. Structure of the K82 capsular polysaccharide from Acinetobacter baumannii LUH5534 containing a d-galactose 4,6-pyruvic acid acetal. Biochemistry 83:831–35
    [Google Scholar]
  84. 84. 
    Kenyon JJ, Hall RM. 2013. Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes. PLOS ONE 8:e62160
    [Google Scholar]
  85. 85. 
    Kenyon JJ, Nigro SJ, Hall RM 2014. Variation in the OC locus of Acinetobacter baumannii genomes predicts extensive structural diversity in the lipooligosaccharide. PLOS ONE 9:e107833
    [Google Scholar]
  86. 86. 
    Kenyon JJ, Notaro A, Hsu LY, De Castro C, Hall RM 2017. 5,7-di-N-acetyl-8-epiacinetaminic acid: a new non-2-ulosonic acid found in the K73 capsule produced by an Acinetobacter baumannii isolate from Singapore. Sci. Rep. 7:11357
    [Google Scholar]
  87. 87. 
    Kim CH, Jeong YJ, Lee J, Jeon SJ, Park SR et al. 2013. Essential role of Toll-like receptor 4 in Acinetobacter baumannii-induced immune responses in immune cells. Microbial Pathog 54:20–25
    [Google Scholar]
  88. 88. 
    Kim CH, Kim DJ, Lee SJ, Jeong YJ, Kang MJ et al. 2014. Toll-like receptor 2 promotes bacterial clearance during the initial stage of pulmonary infection with Acinetobacter baumannii. Mol. Med. Rep 9:1410–14
    [Google Scholar]
  89. 89. 
    Kim J, Lee JY, Lee H, Choi JY, Kim DH et al. 2017. Microbiological features and clinical impact of the type VI secretion system (T6SS) in Acinetobacter baumannii isolates causing bacteremia. Virulence 8:1378–89
    [Google Scholar]
  90. 90. 
    King LB, Pangburn MK, McDaniel LS 2013. Serine protease PKF of Acinetobacter baumannii results in serum resistance and suppression of biofilm formation. J. Infect. Dis. 207:1128–34
    [Google Scholar]
  91. 91. 
    Kinsella RL, Lopez J, Palmer LD, Salinas ND, Skaar EP et al. 2017. Defining the interaction of the protease CpaA with its type II secretion chaperone CpaB and its contribution to virulence in Acinetobacter species. J. Biol. Chem. 292:19628–38
    [Google Scholar]
  92. 92. 
    Knapp S, Wieland CW, Florquin S, Pantophlet R, Dijkshoorn L et al. 2006. Differential roles of CD14 and Toll-like receptors 4 and 2 in murine Acinetobacter pneumonia. Am. J. Respir. Crit. Care Med. 173:122–29
    [Google Scholar]
  93. 93. 
    Koenigs A, Stahl J, Averhoff B, Gottig S, Wichelhaus TA et al. 2016. CipA of Acinetobacter baumannii is a novel plasminogen binding and complement inhibitory protein. J. Infect. Dis. 213:1388–99
    [Google Scholar]
  94. 94. 
    Kong L, Harrington L, Li Q, Cheley S, Davis BG, Bayley H 2013. Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor. Nat. Chem. 5:651–59
    [Google Scholar]
  95. 95. 
    Korneev KV, Arbatsky NP, Molinaro A, Palmigiano A, Shaikhutdinova RZ et al. 2015. Structural relationship of the lipid A acyl groups to activation of murine Toll-like receptor 4 by lipopolysaccharides from pathogenic strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa. Front. Immunol 6:595
    [Google Scholar]
  96. 96. 
    Korotkov KV, Sandkvist M, Hol WG 2012. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10:336–51
    [Google Scholar]
  97. 97. 
    Krizova L, Dijkshoorn L, Nemec A 2011. Diversity and evolution of AbaR genomic resistance islands in Acinetobacter baumannii strains of European clone I. Antimicrob. Agents Chemother. 55:3201–6
    [Google Scholar]
  98. 98. 
    Lannan FM, O'Conor DK, Broderick JC, Tate JF, Scoggin JT et al. 2016. Evaluation of virulence gene expression patterns in Acinetobacter baumannii using quantitative real-time polymerase chain reaction array. Mil. Med. 181:1108–13
    [Google Scholar]
  99. 99. 
    Lazzaro M, Feldman MF, Garcia Vescovi E 2017. A transcriptional regulatory mechanism finely tunes the firing of type VI secretion system in response to bacterial enemies. mBio 8:e00559–17
    [Google Scholar]
  100. 100. 
    Lee JY, Chung ES, Ko KS 2017. Transition of colistin dependence into colistin resistance in Acinetobacter baumannii. Sci. Rep 7:14216
    [Google Scholar]
  101. 101. 
    Lee S, Hinz A, Bauerle E, Angermeyer A, Juhaszova K et al. 2009. Targeting a bacterial stress response to enhance antibiotic action. PNAS 106:14570–75
    [Google Scholar]
  102. 102. 
    Lees-Miller RG, Iwashkiw JA, Scott NE, Seper A, Vinogradov E et al. 2013. A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol. Microbiol 89:816–30
    [Google Scholar]
  103. 103. 
    Leus IV, Weeks JW, Bonifay V, Smith L, Richardson S, Zgurskaya HI 2018. Substrate specificities and efflux efficiencies of RND efflux pumps of Acinetobacter baumannii. J. Bacteriol 200:e00049–18
    [Google Scholar]
  104. 104. 
    Limansky AS, Mussi MA, Viale AM 2002. Loss of a 29-kilodalton outer membrane protein in Acinetobacter baumannii is associated with imipenem resistance. J. Clin. Microbiol. 40:4776–78
    [Google Scholar]
  105. 105. 
    Lin L, Tan B, Pantapalangkoor P, Ho T, Baquir B et al. 2012. Inhibition of LpxC protects mice from resistant Acinetobacter baumannii by modulating inflammation and enhancing phagocytosis. mBio 3:e00312–12
    [Google Scholar]
  106. 106. 
    Lin MF, Lin YY, Lan CY 2015. The role of the two-component system BaeSR in disposing chemicals through regulating transporter systems in Acinetobacter baumannii. PLOS ONE 10:e0132843
    [Google Scholar]
  107. 107. 
    Lin MF, Lin YY, Yeh HW, Lan CY 2014. Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol 14:119
    [Google Scholar]
  108. 108. 
    Lopalco P, Stahl J, Annese C, Averhoff B, Corcelli A 2017. Identification of unique cardiolipin and monolysocardiolipin species in Acinetobacter baumannii. Sci. Rep 7:2972
    [Google Scholar]
  109. 109. 
    Low KE, Howell PL. 2018. Gram-negative synthase-dependent exopolysaccharide biosynthetic machines. Curr. Opin. Struct. Biol. 53:32–44
    [Google Scholar]
  110. 110. 
    Luke NR, Sauberan SL, Russo TA, Beanan JM, Olson R et al. 2010. Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis. Infect. Immun. 78:2017–23
    [Google Scholar]
  111. 111. 
    Marchand I, Damier-Piolle L, Courvalin P, Lambert T 2004. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob. Agents Chemother. 48:3298–304
    [Google Scholar]
  112. 112. 
    Merz AJ, So M, Sheetz MP 2000. Pilus retraction powers bacterial twitching motility. Nature 407:98–102
    [Google Scholar]
  113. 113. 
    Moffatt JH, Harper M, Adler B, Nation RL, Li J, Boyce JD 2011. Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob. Agents Chemother 55:3022–24
    [Google Scholar]
  114. 114. 
    Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E et al. 2010. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 54:4971–77
    [Google Scholar]
  115. 115. 
    Moffatt JH, Harper M, Mansell A, Crane B, Fitzsimons TC et al. 2013. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infect. Immunity 81:684–89
    [Google Scholar]
  116. 116. 
    Moon KH, Weber BS, Feldman MF 2017. Subinhibitory concentrations of trimethoprim and sulfamethoxazole prevent biofilm formation by Acinetobacter baumannii through inhibition of Csu pilus expression. Antimicrob. Agents Chemother. 61:e00778–17
    [Google Scholar]
  117. 117. 
    Mussi MA, Limansky AS, Viale AM 2005. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins. Antimicrob. Agents Chemother. 49:1432–40
    [Google Scholar]
  118. 118. 
    Nait Chabane Y, Mlouka MB, Alexandre S, Nicol M, Marti S et al. 2014. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiol 14:62
    [Google Scholar]
  119. 119. 
    Nguyen BD, Cunningham D, Liang X, Chen X, Toone EJ et al. 2011. Lipooligosaccharide is required for the generation of infectious elementary bodies in Chlamydia trachomatis. PNAS 108:10284–89
    [Google Scholar]
  120. 120. 
    Ohneck EJ, Arivett BA, Fiester SE, Wood CR, Metz ML et al. 2018. Mucin acts as a nutrient source and a signal for the differential expression of genes coding for cellular processes and virulence factors in Acinetobacter baumannii. PLOS ONE 13:e0190599
    [Google Scholar]
  121. 121. 
    Pakharukova N, Tuittila M, Paavilainen S, Malmi H, Parilova O et al. 2018. Structural basis for Acinetobacter baumannii biofilm formation. PNAS 115:5558–63
    [Google Scholar]
  122. 122. 
    Park JS, Lee WC, Yeo KJ, Ryu KS, Kumarasiri M et al. 2012. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane. FASEB J 26:219–28
    [Google Scholar]
  123. 123. 
    Pelletier MR, Casella LG, Jones JW, Adams MD, Zurawski DV et al. 2013. Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob. Agents Chemother 57:4831–40
    [Google Scholar]
  124. 124. 
    Piepenbrink KH, Lillehoj E, Harding CM, Labonte JW, Zuo X et al. 2016. Structural diversity in the type IV pili of multidrug-resistant Acinetobacter. J. Biol. Chem 291:22924–35
    [Google Scholar]
  125. 125. 
    Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C et al. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–88
    [Google Scholar]
  126. 126. 
    Powers MJ, Trent MS. 2018. Expanding the paradigm for the outer membrane: Acinetobacter baumannii in the absence of endotoxin. Mol. Microbiol. 107:47–56
    [Google Scholar]
  127. 127. 
    Prasadarao NV, Wass CA, Weiser JN, Stins MF, Huang SH, Kim KS 1996. Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect. Immun. 64:146–53
    [Google Scholar]
  128. 128. 
    Quale J, Bratu S, Landman D, Heddurshetti R 2003. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin. Infect. Dis. 37:214–20
    [Google Scholar]
  129. 129. 
    Quinn B, Rodman N, Jara E, Fernandez JS, Martinez J et al. 2018. Human serum albumin alters specific genes that can play a role in survival and persistence in Acinetobacter baumannii. Sci. Rep 8:14741
    [Google Scholar]
  130. 130. 
    Rajamohan G, Srinivasan VB, Gebreyes WA 2010. Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii. J. Antimicrob. Chemother 65:1919–25
    [Google Scholar]
  131. 131. 
    Ranjit DK, Young KD. 2016. Colanic acid intermediates prevent de novo shape recovery of Escherichia coli spheroplasts, calling into question biological roles previously attributed to colanic acid. J. Bacteriol. 198:1230–40
    [Google Scholar]
  132. 132. 
    Reffuveille F, Nicol M, E, Thebault P 2016. Design of an anti-adhesive surface by a pilicide strategy. Colloids Surf. B Biointerfaces 146:895–901
    [Google Scholar]
  133. 133. 
    Repizo GD, Gagne S, Foucault-Grunenwald ML, Borges V, Charpentier X et al. 2015. Differential role of the T6SS in Acinetobacter baumannii virulence. PLOS ONE 10:e0138265
    [Google Scholar]
  134. 134. 
    Richie DL, Takeoka KT, Bojkovic J, Metzger LE 4th, Rath CM et al. 2016. Toxic accumulation of LPS pathway intermediates underlies the requirement of LpxH for growth of Acinetobacter baumannii ATCC 19606. PLOS ONE 11:e0160918
    [Google Scholar]
  135. 135. 
    Roca I, Marti S, Espinal P, Martinez P, Gibert I, Vila J 2009. CraA, a major facilitator superfamily efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother 53:4013–14
    [Google Scholar]
  136. 136. 
    Ronish LA, Lillehoj E, Fields JK, Sundberg EJ, Piepenbrink KH 2019. The structure of PilA from Acinetobacter baumannii AB5075 suggests a mechanism for functional specialization in Acinetobacter type IV pili. J. Biol. Chem. 294:218–30
    [Google Scholar]
  137. 137. 
    Rosenfeld N, Bouchier C, Courvalin P, Perichon B 2012. Expression of the resistance-nodulation-cell division pump AdeIJK in Acinetobacter baumannii is regulated by AdeN, a TetR-type regulator. Antimicrob. Agents Chemother. 56:2504–10
    [Google Scholar]
  138. 138. 
    Rumbo C, Gato E, Lopez M, Ruiz de Alegria C, Fernandez-Cuenca F et al. 2013. Contribution of efflux pumps, porins, and beta-lactamases to multidrug resistance in clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother 57:5247–57
    [Google Scholar]
  139. 139. 
    Russo TA, Beanan JM, Olson R, MacDonald U, Cox AD et al. 2013. The K1 capsular polysaccharide from Acinetobacter baumannii is a potential therapeutic target via passive immunization. Infect. Immun. 81:915–22
    [Google Scholar]
  140. 140. 
    Russo TA, Manohar A, Beanan JM, Olson R, MacDonald U et al. 2016. The response regulator BfmR is a potential drug target for Acinetobacter baumannii. mSphere 1:e00082–16
    [Google Scholar]
  141. 141. 
    Sachdeva S, Palur RV, Sudhakar KU, Rathinavelan T 2017. E. coli group 1 capsular polysaccharide exportation nanomachinary as a plausible antivirulence target in the perspective of emerging antimicrobial resistance. Front. Microbiol. 8:70
    [Google Scholar]
  142. 142. 
    Samsudin F, Ortiz-Suarez ML, Piggot TJ, Bond PJ, Khalid S 2016. OmpA: a flexible clamp for bacterial cell wall attachment. Structure 24:2227–35
    [Google Scholar]
  143. 143. 
    Sanchez-Encinales V, Alvarez-Marin R, Pachon-Ibanez ME, Fernandez-Cuenca F, Pascual A et al. 2017. Overproduction of outer membrane protein A by Acinetobacter baumannii as a risk factor for nosocomial pneumonia, bacteremia, and mortality rate increase. J. Infect. Dis. 215:966–74
    [Google Scholar]
  144. 144. 
    Sanchez-Larrayoz AF, Elhosseiny NM, Chevrette MG, Fu Y, Giunta P et al. 2017. Complexity of complement resistance factors expressed by Acinetobacter baumannii needed for survival in human serum. J. Immunol. 199:2803–14
    [Google Scholar]
  145. 145. 
    Sandkvist M. 2001. Biology of type II secretion. Mol. Microbiol. 40:271–83
    [Google Scholar]
  146. 146. 
    Schweppe DK, Harding C, Chavez JD, Wu X, Ramage E et al. 2015. Host-microbe protein interactions during bacterial infection. Chem. Biol. 22:1521–30
    [Google Scholar]
  147. 147. 
    Scott NE, Kinsella RL, Edwards AV, Larsen MR, Dutta S et al. 2014. Diversity within the O-linked protein glycosylation systems of Acinetobacter species. Mol. Cell Proteom. 13:2354–70
    [Google Scholar]
  148. 148. 
    Sharma A, Sharma R, Bhattacharyya T, Bhando T, Pathania R 2017. Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) transporter-AbaF. J. Antimicrob. Chemother. 72:68–74
    [Google Scholar]
  149. 149. 
    Shields RK, Kwak EJ, Potoski BA, Doi Y, Adams-Haduch JM et al. 2011. High mortality rates among solid organ transplant recipients infected with extensively drug-resistant Acinetobacter baumannii: using in vitro antibiotic combination testing to identify the combination of a carbapenem and colistin as an effective treatment regimen. Diagn. Microbiol. Infect. Dis. 70:246–52
    [Google Scholar]
  150. 150. 
    Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J et al. 2013. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect. Control. Hosp. Epidemiol. 34:1–14
    [Google Scholar]
  151. 151. 
    Smani Y, Fabrega A, Roca I, Sanchez-Encinales V, Vila J, Pachon J 2014. Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii. Antimicrob. Agents Chemother 58:1806–8
    [Google Scholar]
  152. 152. 
    Smani Y, Pachon J. 2013. Loss of the OprD homologue protein in Acinetobacter baumannii: impact on carbapenem susceptibility. Antimicrob. Agents Chemother. 57:677
    [Google Scholar]
  153. 153. 
    Snitkin ES, Zelazny AM, Gupta J, NISC Comp. Seq. Program, Palmore TN et al. 2013. Genomic insights into the fate of colistin resistance and Acinetobacter baumannii during patient treatment. Genome Res 23:1155–62
    [Google Scholar]
  154. 154. 
    Srinivasan VB, Rajamohan G, Gebreyes WA 2009. Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii. Antimicrob. Agents Chemother 53:5312–16
    [Google Scholar]
  155. 155. 
    Steeghs L, den Hartog R, den Boer A, Zomer B, Roholl P, van der Ley P 1998. Meningitis bacterium is viable without endotoxin. Nature 392:449–50
    [Google Scholar]
  156. 156. 
    Su XZ, Chen J, Mizushima T, Kuroda T, Tsuchiya T 2005. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob. Agents Chemother. 49:4362–64
    [Google Scholar]
  157. 157. 
    Sugawara E, Nagano K, Nikaido H 2010. Factors affecting the folding of Pseudomonas aeruginosa OprF porin into the one-domain open conformer. mBio 1:e00228–10
    [Google Scholar]
  158. 158. 
    Sugawara E, Nestorovich EM, Bezrukov SM, Nikaido H 2006. Pseudomonas aeruginosa porin OprF exists in two different conformations. J. Biol. Chem. 281:16220–29
    [Google Scholar]
  159. 159. 
    Sugawara E, Nikaido H. 2012. OmpA is the principal nonspecific slow porin of Acinetobacter baumannii. J. Bacteriol 194:4089–96
    [Google Scholar]
  160. 160. 
    Sugawara E, Nikaido H. 2014. Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob. Agents Chemother 58:7250–57
    [Google Scholar]
  161. 161. 
    Tilley D, Law R, Warren S, Samis JA, Kumar A 2014. CpaA a novel protease from Acinetobacter baumannii clinical isolates deregulates blood coagulation. FEMS Microbiol. Lett. 356:53–61
    [Google Scholar]
  162. 162. 
    Tipton KA, Chin CY, Farokhyfar M, Weiss DS, Rather PN 2018. Role of capsule in resistance to disinfectants, host antimicrobials, and desiccation in Acinetobacter baumannii. Antimicrob. Agents Chemother 62:e01188–18
    [Google Scholar]
  163. 163. 
    Tipton KA, Dimitrova D, Rather PN 2015. Phase-variable control of multiple phenotypes in Acinetobacter baumannii strain AB5075. J. Bacteriol. 197:2593–99
    [Google Scholar]
  164. 164. 
    Tipton KA, Farokhyfar M, Rather PN 2017. Multiple roles for a novel RND-type efflux system in Acinetobacter baumannii AB5075. MicrobiologyOpen 6:e00418
    [Google Scholar]
  165. 165. 
    Tipton KA, Rather PN. 2017. An ompR-envZ two-component system ortholog regulates phase variation, osmotic tolerance, motility, and virulence in Acinetobacter baumannii strain AB5075. J. Bacteriol. 199:e00705–16
    [Google Scholar]
  166. 166. 
    Tomaras AP, Flagler MJ, Dorsey CW, Gaddy JA, Actis LA 2008. Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology. Microbiology 154:3398–409
    [Google Scholar]
  167. 167. 
    Torres AG, Kaper JB. 2003. Multiple elements controlling adherence of enterohemorrhagic Escherichia coli O157:H7 to HeLa cells. Infect. Immun. 71:4985–95
    [Google Scholar]
  168. 168. 
    Trias J, Nikaido H. 1990. Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J. Biol. Chem. 265:15680–84
    [Google Scholar]
  169. 169. 
    Tucker AT, Nowicki EM, Boll JM, Knauf GA, Burdis NC et al. 2014. Defining gene-phenotype relationships in Acinetobacter baumannii through one-step chromosomal gene inactivation. mBio 5:e01313–14
    [Google Scholar]
  170. 170. 
    Umland TC, Schultz LW, MacDonald U, Beanan JM, Olson R, Russo TA 2012. In vivo-validated essential genes identified in Acinetobacter baumannii by using human ascites overlap poorly with essential genes detected on laboratory media. mBio 3:e00113–12
    [Google Scholar]
  171. 171. 
    van Bergenhenegouwen J, Plantinga TS, Joosten LA, Netea MG, Folkerts G et al. 2013. TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors. J. Leukoc. Biol. 94:885–902
    [Google Scholar]
  172. 172. 
    van Faassen H, KuoLee R, Harris G, Zhao X, Conlan JW, Chen W 2007. Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infect. Immun. 75:5597–608
    [Google Scholar]
  173. 173. 
    Vinogradov EV, Duus JO, Brade H, Holst O 2002. The structure of the carbohydrate backbone of the lipopolysaccharide from Acinetobacter baumannii strain ATCC 19606. Eur. J. Biochem. 269:422–30
    [Google Scholar]
  174. 174. 
    Waack U, Johnson TL, Chedid K, Xi C, Simmons LA et al. 2017. Targeting the type II secretion system: development, optimization, and validation of a high-throughput screen for the identification of small molecule inhibitors. Front. Cell Infect. Microbiol. 7:380
    [Google Scholar]
  175. 175. 
    Wang J, Brackmann M, Castano-Diez D, Kudryashev M, Goldie KN et al. 2017. Cryo-EM structure of the extended type VI secretion system sheath-tube complex. Nat. Microbiol. 2:1507–12
    [Google Scholar]
  176. 176. 
    Wang J, Zhou Z, He F, Ruan Z, Jiang Y et al. 2018. The role of the type VI secretion system vgrG gene in the virulence and antimicrobial resistance of Acinetobacter baumannii ATCC 19606. PLOS ONE 13:e0192288
    [Google Scholar]
  177. 177. 
    Wang N, Ozer EA, Mandel MJ, Hauser AR 2014. Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. mBio 5:e01163–14
    [Google Scholar]
  178. 178. 
    Weber BS, Harding CM, Feldman MF 2015. Pathogenic Acinetobacter: from the cell surface to infinity and beyond. J. Bacteriol. 198:880–87
    [Google Scholar]
  179. 179. 
    Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V et al. 2016. Genetic dissection of the type VI secretion system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, required for its biogenesis. mBio 7:e01253–16
    [Google Scholar]
  180. 180. 
    Weber BS, Kinsella RL, Harding CM, Feldman MF 2017. The secrets of Acinetobacter secretion. Trends Microbiol 25:532–45
    [Google Scholar]
  181. 181. 
    Weber BS, Ly PM, Irwin JN, Pukatzki S, Feldman MF 2015. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. PNAS 112:9442–47
    [Google Scholar]
  182. 182. 
    Weber BS, Miyata ST, Iwashkiw JA, Mortensen BL, Skaar EP et al. 2013. Genomic and functional analysis of the type VI secretion system in Acinetobacter. PLOS ONE 8:e55142
    [Google Scholar]
  183. 183. 
    Wei JR, Richie DL, Mostafavi M, Metzger LE 4th, Rath CM et al. 2017. LpxK is essential for growth of Acinetobacter baumannii ATCC 19606: relationship to toxic accumulation of lipid A pathway intermediates. mSphere 2:e00199–17
    [Google Scholar]
  184. 184. 
    Whitfield C, Trent MS. 2014. Biosynthesis and export of bacterial lipopolysaccharides. Annu. Rev. Biochem. 83:99–128
    [Google Scholar]
  185. 185. 
    Wilharm G, Piesker J, Laue M, Skiebe E 2013. DNA uptake by the nosocomial pathogen Acinetobacter baumannii occurs during movement along wet surfaces. J. Bacteriol. 195:4146–53
    [Google Scholar]
  186. 186. 
    Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B 2017. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin. Microbiol. Rev. 30:409–47
    [Google Scholar]
  187. 187. 
    Wretlind B, Pavlovskis OR. 1984. Genetic mapping and characterization of Pseudomonas aeruginosa mutants defective in the formation of extracellular proteins. J. Bacteriol. 158:801–8
    [Google Scholar]
  188. 188. 
    Wright MS, Jacobs MR, Bonomo RA, Adams MD 2017. Transcriptome remodeling of Acinetobacter baumannii during infection and treatment. mBio 8:e02193–16
    [Google Scholar]
  189. 189. 
    Wu X, Chavez JD, Schweppe DK, Zheng C, Weisbrod CR et al. 2016. In vivo protein interaction network analysis reveals porin-localized antibiotic inactivation in Acinetobacter baumannii strain AB5075. Nat. Commun. 7:13414
    [Google Scholar]
  190. 190. 
    Yoon EJ, Balloy V, Fiette L, Chignard M, Courvalin P, Grillot-Courvalin C 2016. Contribution of the Ade resistance-nodulation-cell division-type efflux pumps to fitness and pathogenesis of Acinetobacter baumannii. mBio 7:e00697–16
    [Google Scholar]
  191. 191. 
    Yoon EJ, Chabane YN, Goussard S, Snesrud E, Courvalin P et al. 2015. Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. mBio 6:e00309–15
    [Google Scholar]
  192. 192. 
    Yoon EJ, Courvalin P, Grillot-Courvalin C 2013. RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations. Antimicrob. Agents Chemother. 57:2989–95
    [Google Scholar]
  193. 193. 
    Yother J. 2011. Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Annu. Rev. Microbiol. 65:563–81
    [Google Scholar]
  194. 194. 
    Zahn M, Bhamidimarri SP, Basle A, Winterhalter M, van den Berg B 2016. Structural insights into outer membrane permeability of Acinetobacter baumannii. Structure 24:221–31
    [Google Scholar]
  195. 195. 
    Zahn M, D'Agostino T, Eren E, Basle A, Ceccarelli M, van den Berg B 2015. Small-molecule transport by CarO, an abundant eight-stranded beta-barrel outer membrane protein from Acinetobacter baumannii. J. Mol. Biol 427:2329–39
    [Google Scholar]
  196. 196. 
    Zhang G, Baidin V, Pahil KS, Moison E, Tomasek D et al. 2018. Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors. PNAS 115:6834–39
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115714
Loading
/content/journals/10.1146/annurev-micro-020518-115714
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error