1932

Abstract

Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plantmicrobiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-022620-014327
2020-09-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-022620-014327.html?itemId=/content/journals/10.1146/annurev-micro-022620-014327&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahuja I, Kissen R, Bones AM 2012. Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90
    [Google Scholar]
  2. 2. 
    Albright MBN, Chase AB, Martiny JBH 2019. Experimental evidence that stochasticity contributes to bacterial composition and functioning in a decomposer community. mBio 10:e00568–19
    [Google Scholar]
  3. 3. 
    Amend AS, Cobian GM, Laruson AJ, Remple K, Tucker SJ et al. 2019. Phytobiomes are compositionally nested from the ground up. PeerJ 7:e6609
    [Google Scholar]
  4. 4. 
    Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF 2019. A reverse ecology approach based on a biological definition of microbial populations. Cell 178:820–34.e14
    [Google Scholar]
  5. 5. 
    Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA et al. 2018. Structure and function of the global topsoil microbiome. Nature 560:233–37
    [Google Scholar]
  6. 6. 
    Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E et al. 2015. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–69
    [Google Scholar]
  7. 7. 
    Baltrus DA. 2017. Adaptation, specialization, and coevolution within phytobiomes. Curr. Opin. Plant Biol. 38:109–16
    [Google Scholar]
  8. 8. 
    Berendsen RL, Vismans G, Yu K, Song Y, De Jonge R et al. 2018. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–507
    [Google Scholar]
  9. 9. 
    Berens ML, Wolinska KW, Spaepen S, Ziegler J, Nobori T et al. 2019. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. PNAS 116:2364–73
    [Google Scholar]
  10. 10. 
    Berg M, Koskella B. 2018. Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Curr. Biol. 28:2487–92.e3
    [Google Scholar]
  11. 11. 
    Bodenhausen N, Horton MW, Bergelson J 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLOS ONE 8:e56329
    [Google Scholar]
  12. 12. 
    Bowen JL, Kearns PJ, Byrnes JEK, Wigginton S, Allen WJ et al. 2017. Lineage overwhelms environmental conditions in determining rhizosphere bacterial community structure in a cosmopolitan invasive plant. Nat. Commun. 8:433
    [Google Scholar]
  13. 13. 
    Bowsher AW, Kearns PJ, Popovic D, Lowry DB, Shade A 2020. Locally adapted Mimulus ecotypes differentially impact rhizosphere bacterial and archaeal communities in an environment-dependent manner. Phytobiomes J 4:53–63
    [Google Scholar]
  14. 14. 
    Bressan M, Roncato MA, Bellvert F, Comte G, Haichar FEZ et al. 2009. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243–57
    [Google Scholar]
  15. 15. 
    Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N et al. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95
    [Google Scholar]
  16. 16. 
    Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807–38
    [Google Scholar]
  17. 17. 
    Caddell DF, Deng S, Coleman-Derr D 2019. Role of the plant root microbiome in abiotic stress tolerance. Seed Endophytes: Biology and Biotechnology SK Verma, JF White Jr 273–311 Cham, Switz.: Springer Int.
    [Google Scholar]
  18. 18. 
    Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA 2019. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3:1445–54
    [Google Scholar]
  19. 19. 
    Carrión VJ, Cordovez V, Tyc O, Etalo DW, de Bruijn I et al. 2018. Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME J 12:2307–21
    [Google Scholar]
  20. 20. 
    Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, De Hollander M et al. 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366:606–12
    [Google Scholar]
  21. 21. 
    Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D, Kierul K et al. 2013. Linking plant nutritional status to plant-microbe interactions. PLOS ONE 8:e68555
    [Google Scholar]
  22. 22. 
    Carvalhais LC, Rincon-Florez VA, Brewer PB, Beveridge CA, Dennis PG, Schenk PM 2019. The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere 9:18–26
    [Google Scholar]
  23. 23. 
    Castrillo G, Teixeira PJPL, Herrera Paredes S, Law TF, De Lorenzo L et al. 2017. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543:513–18
    [Google Scholar]
  24. 24. 
    Chen T, Nomura K, Wang X, Sohrabi R, Xu J et al. 2020. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580:653–57
    [Google Scholar]
  25. 25. 
    Cheng YT, Zhang L, He SY 2019. Plant-microbe interactions facing environmental challenge. Cell Host Microbe 26:183–92
    [Google Scholar]
  26. 26. 
    Chewning SS, Grant DL, O'Banion BS, Gates AD, Kennedy BJ et al. 2019. Root-associated Streptomyces isolates harboring melc genes demonstrate enhanced plant colonization. Phytobiomes J 3:165–76
    [Google Scholar]
  27. 27. 
    Choi J, Summers W, Paszkowski U 2018. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu. Rev. Phytopathol. 56:135–60
    [Google Scholar]
  28. 28. 
    Choudoir MJ, Barberán A, Menninger HL, Dunn RR, Fierer N 2018. Variation in range size and dispersal capabilities of microbial taxa. Ecology 99:322–34
    [Google Scholar]
  29. 29. 
    Cole BJ, Feltcher ME, Waters RJ, Wetmore KM, Mucyn TS et al. 2017. Genome-wide identification of bacterial plant colonization genes. PLOS Biol 15:e2002860
    [Google Scholar]
  30. 30. 
    Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H et al. 2015. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front. Microbiol. 6:1081
    [Google Scholar]
  31. 31. 
    Cotton TEA, Pétriacq P, Cameron DD, Al Meselmani M, Schwarzenbacher R et al. 2019. Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME J 13:1647–58
    [Google Scholar]
  32. 32. 
    Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R et al. 2018. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6:31
    [Google Scholar]
  33. 33. 
    Crits-Christoph A, Olm M, Diamond S, Bouma-Gregson K, Banfield J 2020. Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow. ISME J 14:1834–46
    [Google Scholar]
  34. 34. 
    De Souza JT, Weller DM, Raaijmakers JM 2003. Frequency, diversity, and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology 93:54–63
    [Google Scholar]
  35. 35. 
    Donald J, Roy M, Suescun U, Iribar A, Manzi S et al. 2020. A test of community assembly rules using foliar endophytes from a tropical forest canopy. J. Ecol. 108:1605–16
    [Google Scholar]
  36. 36. 
    Donoso R, Leiva-Novoa P, Zúñiga A, Timmermann T, Recabarren-Gajardo G, González B 2017. Biochemical and genetic bases of indole-3-acetic acid (auxin phytohormone) degradation by the plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN. Appl. Environ. Microbiol. 83:e01991–16
    [Google Scholar]
  37. 37. 
    Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E et al. 2018. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175:973–83.e14
    [Google Scholar]
  38. 38. 
    Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:E911–20
    [Google Scholar]
  39. 39. 
    Espinoza C, Liang Y, Stacey G 2017. Chitin receptor CERK1 links salt stress and chitin-triggered innate immunity in Arabidopsis. Plant J 89:984–95
    [Google Scholar]
  40. 40. 
    Feng H, Zhang N, Du W, Zhang H, Liu Y et al. 2018. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol. Plant-Microbe Interact. 31:995–1005
    [Google Scholar]
  41. 41. 
    Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI 2015. Symbiotic options for the conquest of land. Trends Ecol. Evol. 30:477–86
    [Google Scholar]
  42. 42. 
    Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE et al. 2012. Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamrix trees across the Sonoran Desert. Appl. Environ. Microbiol. 78:6187–93
    [Google Scholar]
  43. 43. 
    Finkel OM, Salas-González I, Castrillo G, Conway JM, Law TF et al. 2020. A single bacterial genus maintains root development in a complex microbiome. bioRxiv 645655. https://doi.org/10.1101/645655
    [Crossref]
  44. 44. 
    Finkel OM, Salas-González I, Castrillo G, Spaepen S, Law TF et al. 2019. The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLOS Biol 17:e3000534
    [Google Scholar]
  45. 45. 
    Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ 2018. Assembly and ecological function of the root microbiome across angiosperm plant species. PNAS 115:E1157–65
    [Google Scholar]
  46. 46. 
    Gallart M, Adair KL, Love J, Meason DF, Clinton PW et al. 2018. Genotypic variation in Pinus radiata responses to nitrogen source are related to changes in the root microbiome. FEMS Microbiol. Ecol. 94:fiy071
    [Google Scholar]
  47. 47. 
    Ganin H, Kemper N, Meir S, Rogachev I, Ely S et al. 2019. Indole derivatives maintain the status quo between beneficial biofilms and their plant hosts. Mol. Plant-Microbe Interact. 32:1013–25
    [Google Scholar]
  48. 48. 
    Gao C, Montoya L, Xu L, Madera M, Hollingsworth J et al. 2020. Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nat. Commun. 11:34
    [Google Scholar]
  49. 49. 
    Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A 2018. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci 24:165–76
    [Google Scholar]
  50. 50. 
    Garrido-Oter R, Nakano RT, Dombrowski N, Ma KW, McHardy AC, Schulze-Lefert P 2018. Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24:155–67
    [Google Scholar]
  51. 51. 
    Getzke F, Thiergart T, Hacquard S 2019. Contribution of bacterial-fungal balance to plant and animal health. Curr. Opin. Microbiol. 49:66–72
    [Google Scholar]
  52. 52. 
    Gilbert B, Levine JM. 2017. Ecological drift and the distribution of species diversity. Proc. R. Soc. B 284:20170507
    [Google Scholar]
  53. 53. 
    Gilbert S, Xu J, Acosta K, Poulev A, Lebeis S, Lam E 2018. Bacterial production of indole related compounds reveals their role in association between duckweeds and endophytes. Front. Chem. 6:265
    [Google Scholar]
  54. 54. 
    Gkarmiri K, Mahmood S, Ekblad A, Alström S, Högberg N, Finlay R 2017. Identifying the active microbiome associated with roots and rhizosphere soil of oilseed rape. Appl. Environ. Microbiol. 83:e01938–17
    [Google Scholar]
  55. 55. 
    Gomez P, Paterson S, De Meester L, Liu X, Lenzi L et al. 2016. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat. Commun. 7:12453
    [Google Scholar]
  56. 56. 
    Graham LE, Graham JM, Wilcox LW, Cook ME, Arancibia-Avila P, Knack JJ 2018. Evolutionary roots of plant microbiomes and biogeochemical impacts of nonvascular autotroph-microbiome systems over deep time. Int. J. Plant Sci. 179:505–22
    [Google Scholar]
  57. 57. 
    Grainger TN, Letten AD, Gilbert B, Fukami T 2019. Applying modern coexistence theory to priority effects. PNAS 116:6205–10
    [Google Scholar]
  58. 58. 
    Grinberg M, Orevi T, Steinberg S, Kashtan N 2019. Bacterial survival in microscopic surface wetness. eLife 8:e48508
    [Google Scholar]
  59. 59. 
    Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10:497–506
    [Google Scholar]
  60. 60. 
    Hartmann A, Rothballer M, Schmid M 2008. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14
    [Google Scholar]
  61. 61. 
    Helfrich EJN, Vogel CM, Ueoka R, Schäfer M, Ryffel F et al. 2018. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat. Microbiol. 3:909–19
    [Google Scholar]
  62. 62. 
    Hendry AP. 2017. Eco-Evolutionary Dynamics Princeton, NJ: Princeton Univ. Press
  63. 63. 
    Hiruma K. 2019. Roles of plant-derived secondary metabolites during interactions with pathogenic and beneficial microbes under conditions of environmental stress. Microorganisms 7:362
    [Google Scholar]
  64. 64. 
    Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S et al. 2016. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:464–74
    [Google Scholar]
  65. 65. 
    Huang AC, Jiang T, Liu YX, Bai YC, Reed J et al. 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364:eaau6389
    [Google Scholar]
  66. 66. 
    Humphrey PT, Whiteman NK. 2019. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 26:221–29
    [Google Scholar]
  67. 67. 
    Hurtado-McCormick V, Kahlke T, Petrou K, Jeffries T, Ralph PJ, Seymour JR 2019. Regional and microenvironmental scale characterization of the Zostera muelleri seagrass microbiome. Front. Microbiol. 10:1011
    [Google Scholar]
  68. 68. 
    Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E et al. 2011. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol 156:726–40
    [Google Scholar]
  69. 69. 
    Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323–29
    [Google Scholar]
  70. 70. 
    Karasov TL, Almario J, Friedemann C, Ding W, Giolai M et al. 2018. Arabidopsis thaliana and Pseudomonas pathogens exhibit stable associations over evolutionary timescales. Cell Host Microbe 24:168–79
    [Google Scholar]
  71. 71. 
    Karasov TL, Neumann M, Duque-Jaramillo A, Kersten S, Bezrukov I et al. 2019. The relationship between microbial biomass and disease in the Arabidopsis thaliana phyllosphere. bioRxiv 828814. https://doi.org/10.1101/828814
    [Crossref]
  72. 72. 
    Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC 2012. Experimental evolution. Trends Ecol. Evol. 27:547–60
    [Google Scholar]
  73. 73. 
    Koprivova A, Schuck S, Jacoby RP, Klinkhammer I, Welter B et al. 2019. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. PNAS 116:15735–44
    [Google Scholar]
  74. 74. 
    Koskella B, Taylor TB. 2018. Multifaceted impacts of bacteriophages in the plant microbiome. Annu. Rev. Phytopathol. 56:361–80
    [Google Scholar]
  75. 75. 
    Koyama A, Maherali H, Antunes PM 2019. Plant geographic origin and phylogeny as potential drivers of community structure in root-inhabiting fungi. J. Ecol. 107:1720–36
    [Google Scholar]
  76. 76. 
    Krüger US, Bak F, Aamand J, Nybroe O, Badawi N et al. 2018. Novel method reveals a narrow phylogenetic distribution of bacterial dispersers in environmental communities exposed to low-hydration conditions. Appl. Environ. Microbiol. 84:e02857–17
    [Google Scholar]
  77. 77. 
    Kwak YS, Weller DM. 2013. Take-all of wheat and natural disease suppression: a review. Plant Pathol. J. 29:125–35
    [Google Scholar]
  78. 78. 
    Laforest-Lapointe I, Messier C, Kembel SW 2016. Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species. PeerJ 4:e2367
    [Google Scholar]
  79. 79. 
    Lebeis SL, Herrera Paredes S, Lundberg DS, Breakfield N, Gehring J et al. 2015. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–64
    [Google Scholar]
  80. 80. 
    Leveau JH. 2019. A brief from the leaf: latest research to inform our understanding of the phyllosphere microbiome. Curr. Opin. Microbiol. 49:41–49
    [Google Scholar]
  81. 81. 
    Levy A, Conway JM, Dangl JL, Woyke T 2018. Elucidating bacterial gene functions in the plant microbiome. Cell Host Microbe 24:475–85
    [Google Scholar]
  82. 82. 
    Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S et al. 2018. Genomic features of bacterial adaptation to plants. Nat. Genet. 50:138–50
    [Google Scholar]
  83. 83. 
    Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME 2019. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol 19:201
    [Google Scholar]
  84. 84. 
    Liu J, Feng L, Gu X, Deng X, Qiu Q et al. 2019. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res 29:379–90
    [Google Scholar]
  85. 85. 
    Liu Z, Beskrovnaya P, Melnyk RA, Hossain SS, Khorasani S et al. 2018. A genome-wide screen identifies genes in rhizosphere-associated Pseudomonas required to evade plant defenses. mBio 9:e00433–18
    [Google Scholar]
  86. 86. 
    Lundberg DS, Lebeis SL, Herrera Paredes S, Yourstone S, Gehring J et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90
    [Google Scholar]
  87. 87. 
    Maignien L, DeForce EA, Chafee ME, Eren AM, Simmons S 2014. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5:16–41
    [Google Scholar]
  88. 88. 
    Massalha H, Korenblum E, Tholl D, Aharoni A 2017. Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90:788–807
    [Google Scholar]
  89. 89. 
    Massoni J, Bortfeld-Miller M, Jardillier L, Salazar G, Sunagawa S, Vorholt JA 2020. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J 14:245–58
    [Google Scholar]
  90. 90. 
    Meaden S, Metcalf CJE, Koskella B 2016. The effects of host age and spatial location on bacterial community composition in the English oak tree (Quercus robur). Environ. Microbiol. Rep. 8:649–58
    [Google Scholar]
  91. 91. 
    Melnyk RA, Hossain SS, Haney CH 2019. Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated Pseudomonas. ISME J 13:1575–88
    [Google Scholar]
  92. 92. 
    Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van Der Voort M et al. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–100
    [Google Scholar]
  93. 93. 
    Metcalf CJE, Koskella B. 2019. Protective microbiomes can limit the evolution of host pathogen defense. Evol. Lett. 3:534–43
    [Google Scholar]
  94. 94. 
    Miller ET, Svanbäck R, Bohannan BJM 2018. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33:926–35
    [Google Scholar]
  95. 95. 
    Morcillo RJ, Singh SK, He D, An G, Vílchez JI et al. 2020. Rhizobacterium‐derived diacetyl modulates plant immunity in a phosphate‐dependent manner. EMBO J 39:e102602
    [Google Scholar]
  96. 96. 
    Morella NM, Gomez AL, Wang G, Leung MS, Koskella B 2018. The impact of bacteriophages on phyllosphere bacterial abundance and composition. Mol. Ecol. 27:2025–38
    [Google Scholar]
  97. 97. 
    Morella NM, Weng FCH, Joubert PM, Metcalf CJE, Lindow S, Koskella B 2020. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. PNAS 117:1148–59
    [Google Scholar]
  98. 98. 
    Morin M, Pierce EC, Dutton RJ 2018. Changes in the genetic requirements for microbial interactions with increasing community complexity. eLife 7:e37072
    [Google Scholar]
  99. 99. 
    Naylor D, DeGraaf S, Purdom E, Coleman-Derr D 2017. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J 11:2691–704
    [Google Scholar]
  100. 100. 
    Newcombe G, Harding A, Ridout M, Busby PE 2018. A hypothetical bottleneck in the plant microbiome. Front. Microbiol. 9:1645
    [Google Scholar]
  101. 101. 
    O'Banion BS, O'Neal L, Alexandre G, Lebeis SL 2020. Bridging the gap between single-strain and community-level plant-microbe chemical interactions. Mol. Plant-Microbe Interact. 33:124–34
    [Google Scholar]
  102. 102. 
    Oburger E, Jones DL. 2018. Sampling root exudates – mission impossible. Rhizosphere 6:116–33
    [Google Scholar]
  103. 103. 
    Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO 2019. Plant health: feedback effect of root exudates-rhizobiome interactions. Appl. Microbiol. Biotechnol. 103:1155–66
    [Google Scholar]
  104. 104. 
    Pascale A, Proietti S, Pantelides IS, Stringlis IA 2020. Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front. Plant Sci. 10:1741
    [Google Scholar]
  105. 105. 
    Patkar RN, Benke PI, Qu Z, Chen YYC, Yang F et al. 2015. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat. Chem. Biol. 11:733–40
    [Google Scholar]
  106. 106. 
    Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347–75
    [Google Scholar]
  107. 107. 
    Plett JM, Daguerre Y, Wittulsky S, Vayssieìes A, Deveau A et al. 2014. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. PNAS 111:8299–304
    [Google Scholar]
  108. 108. 
    Porter SS, Chang PL, Conow CA, Dunham JP, Friesen ML 2017. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J 11:248–62
    [Google Scholar]
  109. 109. 
    Raaijmakers JM, Weller DM. 1998. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol. Plant-Microbe Interact. 11:144–52
    [Google Scholar]
  110. 110. 
    Ravanbakhsh M, Sasidharan R, Voesenek LACJ, Kowalchuk GA, Jousset A 2018. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome 6:52
    [Google Scholar]
  111. 111. 
    Rebolleda Gómez M, Ashman TL 2019. Floral organs act as environmental filters and interact with pollinators to structure the yellow monkeyflower (Mimulus guttatus) floral microbiome. Mol. Ecol. 28:5155–71
    [Google Scholar]
  112. 112. 
    Rebolleda-Gómez M, Forrester NJ, Russell AL, Wei N, Fetters AM et al. 2019. Gazing into the anthosphere: considering how microbes influence floral evolution. New Phytol 224:1012–20
    [Google Scholar]
  113. 113. 
    Rochefort A, Briand M, Marais C, Wagner MH, Laperche A et al. 2019. Influence of environment and host plant genotype on the structure and diversity of the Brassica napus seed microbiota. Phytobiomes J 3:326–36
    [Google Scholar]
  114. 114. 
    Ryffel F, Helfrich EJN, Kiefer P, Peyriga L, Portais JC et al. 2016. Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J 10:632–43
    [Google Scholar]
  115. 115. 
    Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT 2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. PNAS 112:E5013–20
    [Google Scholar]
  116. 116. 
    Santhanam R, Menezes RC, Grabe V, Li D, Baldwin IT, Groten K 2019. A suite of complementary biocontrol traits allows a native consortium of root-associated bacteria to protect their host plant from a fungal sudden-wilt disease. Mol. Ecol. 28:1154–69
    [Google Scholar]
  117. 117. 
    Santos-Medellin C, Edwards J, Liechty Z, Nguyen B, Sundaresan V 2017. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio 8:e00764–17
    [Google Scholar]
  118. 118. 
    Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T 2017. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107:1284–97
    [Google Scholar]
  119. 119. 
    Shade A, Jacques MA, Barret M 2017. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37:15–22
    [Google Scholar]
  120. 120. 
    Sheth RU, Li M, Jiang W, Sims PA, Leong KW, Wang HH 2019. Spatial metagenomic characterization of microbial biogeography in the gut. Nat. Biotechnol. 37:877–83
    [Google Scholar]
  121. 121. 
    Snelders NC, Rovenich H, Petti GC, Rocafort M, Vorholt JA et al. 2020. A plant pathogen utilizes effector proteins for microbiome manipulation. bioRxiv 2020.01.30.926725. https://doi.org/10.1101/2020.01.30.926725
    [Crossref]
  122. 122. 
    Starr EP, Shi S, Blazewicz SJ, Probst AJ, Herman DJ et al. 2018. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome 6:122
    [Google Scholar]
  123. 123. 
    Stegen JC, Lin X, Fredrickson JK, Konopka AE 2015. Estimating and mapping ecological processes influencing microbial community assembly. Front. Microbiol. 6:370
    [Google Scholar]
  124. 124. 
    Stringlis IA, Proietti S, Hickman R, Van Verk MC, Zamioudis C, Pieterse CMJ 2018. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J 93:166–80
    [Google Scholar]
  125. 125. 
    Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S et al. 2018. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. PNAS 115:E5213–22
    [Google Scholar]
  126. 126. 
    Teixeira PJPL, Colaianni NR, Fitzpatrick CR, Dangl JL 2019. Beyond pathogens: microbiota interactions with the plant immune system. Curr. Opin. Microbiol. 49:7–17
    [Google Scholar]
  127. 127. 
    Thiergart T, Duran P, Ellis T, Garrido-Oter R, Kemen E et al. 2019. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat. Ecol. Evol. 4:122–31
    [Google Scholar]
  128. 128. 
    Tkacz A, Bestion E, Bo Z, Hortala M, Poole PS 2020. Influence of plant fraction, soil, and plant species on microbiota: a multikingdom comparison. mBio 11:e02785–19
    [Google Scholar]
  129. 129. 
    Uroz S, Courty PE, Oger P 2019. Plant symbionts are engineers of the plant-associated microbiome. Trends Plant Sci 24:905–16
    [Google Scholar]
  130. 130. 
    Van den Bergh B, Toon S, Maarten F, Jan M 2018. Experimental design, population dynamics, and diversity in microbial experimental evolution. Appl. Environ. Microbiol. 82:e00008–18
    [Google Scholar]
  131. 131. 
    Vannette RL, Fukami T. 2017. Dispersal enhances beta diversity in nectar microbes. Ecol. Lett. 20:901–10
    [Google Scholar]
  132. 132. 
    Veach AM, Morris R, Yip DZ, Yang ZK, Engle NL et al. 2019. Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. Microbiome 7:76
    [Google Scholar]
  133. 133. 
    Vellend M. 2010. Conceptual synthesis in community ecology. Q. Rev. Biol. 85:183–206
    [Google Scholar]
  134. 134. 
    Vogel C, Bodenhausen N, Gruissem W, Vorholt JA 2016. The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol 212:192–207
    [Google Scholar]
  135. 135. 
    Voges MJEEE, Bai Y, Schulze-Lefert P, Sattely E 2018. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. PNAS 116:12558–65
    [Google Scholar]
  136. 136. 
    Vorholt JA, Vogel C, Carlström CI, Müller DB 2017. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22:142–55
    [Google Scholar]
  137. 137. 
    Wagner MR, Busby PE, Balint‐Kurti P 2019. Analysis of leaf microbiome composition of near‐isogenic maize lines differing in broad‐spectrum disease resistance. New Phytol 225:2152–65
    [Google Scholar]
  138. 138. 
    Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J et al. 2018. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. PNAS 115:7368–73
    [Google Scholar]
  139. 139. 
    Wang W, Yang J, Zhang J, Liu YX, Tian C et al. 2020. An Arabidopsis secondary metabolite directly targets expression of the bacterial type III secretion system to inhibit bacterial virulence. Cell Host Microbe 27:601–13.e7
    [Google Scholar]
  140. 140. 
    Wang X, Wei Z, Yang K, Wang J, Jousset A et al. 2019. Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotechnol. 37:1513–20
    [Google Scholar]
  141. 141. 
    Weinhold A, Dorcheh EK, Li R, Rameshkumar N, Baldwin IT 2018. Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field. eLife 7:e28715
    [Google Scholar]
  142. 142. 
    Wolf AB, Rudnick MB, de Boer W, Kowalchuk GA 2015. Early colonizers of unoccupied habitats represent a minority of the soil bacterial community. FEMS Microbiol. Ecol. 91:fiv024
    [Google Scholar]
  143. 143. 
    Xu L, Naylor D, Dong Z, Simmons T, Pierroz G et al. 2018. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. PNAS 115:E4284–93
    [Google Scholar]
  144. 144. 
    Yu K, Liu Y, Tichelaar R, Savant N, Lagendijk E et al. 2019. Rhizosphere-associated Pseudomonas suppress local root immune responses by gluconic acid-mediated lowering of environmental pH. Curr. Biol. 29:3913–20
    [Google Scholar]
  145. 145. 
    Yu K, Pieterse CMJ, Bakker PAHM, Berendsen RL 2019. Beneficial microbes going underground of root immunity. Plant Cell Environ 42:2860–70
    [Google Scholar]
  146. 146. 
    Zengler K, Hofmockel K, Baliga NS, Behie SW, Bernstein HC et al. 2019. EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat. Methods 16:567–71
    [Google Scholar]
  147. 147. 
    Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN et al. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3:470–80
    [Google Scholar]
  148. 148. 
    Zhao XF, Hao YQ, Zhang DY, Zhang QG 2019. Local biotic interactions drive species-specific divergence in soil bacterial communities. ISME J 13:2846–55
    [Google Scholar]
  149. 149. 
    Zhou F, Emonet A, Dénervaud Tendon V, Marhavy P, Wu D et al. 2020. Co-incidence of damage and microbial patterns controls localized immune responses in roots. Cell 180:440–53
    [Google Scholar]
  150. 150. 
    Zhou J, Ning D. 2017. Stochastic community assembly: Does it matter in microbial ecology. Microbiol. Mol. Biol. Rev. 81:e00002–17
    [Google Scholar]
/content/journals/10.1146/annurev-micro-022620-014327
Loading
/content/journals/10.1146/annurev-micro-022620-014327
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error