1932

Abstract

—Jonas Salk

Ecology as a science evolved from natural history, the observational study of the interactions of plants and animals with each other and their environments. As natural history matured, it became increasingly quantitative, experimental, and taxonomically broad. Focus diversified beyond the to include the hidden world of microbial life. Microbes, particularly viruses, were shown to exist in unfathomable numbers, affecting every living organism. Slowly viruses came to be viewed in an ecological context rather than as abstract, disease-causing agents. This shift is exemplified by an increasing tendency to refer to viruses as living organisms instead of inert particles. In recent years, researchers have recognized the critical contributions of viruses to fundamental ecological processes such as biogeochemical cycling, competition, community structuring, and horizontal gene transfer. This review describes virus ecology from a virus's perspective. If we are, like Jonas Salk, to imagine ourselves as a virus, what kind of world would we experience?

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091313-103436
2014-09-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/68/1/annurev-micro-091313-103436.html?itemId=/content/journals/10.1146/annurev-micro-091313-103436&mimeType=html&fmt=ahah

Literature Cited

  1. Abedon ST. 1.  2011. Envisaging bacteria as phage targets. Bacteriophage 1:228–30 [Google Scholar]
  2. Abedon ST, Herschler TD, Stopar D. 2.  2001. Bacteriophage latent-period evolution as a response to resource availability. Appl. Environ. Microbiol. 67:4233–41 [Google Scholar]
  3. Alizon S, Hurford A, Mideo N, van Baalen M. 3.  2009. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22:245–59 [Google Scholar]
  4. Allen HK, Bunge J, Foster JA, Bayles DO, Stanton TB. 4.  2013. Estimation of viral richness from shotgun metagenomes using a frequency count approach. Microbiome 1:5 [Google Scholar]
  5. Anderson RM, May RM. 5.  1982. Coevolution of hosts and parasites. Parasitology 85:411–26 [Google Scholar]
  6. Andersson JO. 6.  2009. Gene transfer and diversification of microbial eukaryotes. Annu. Rev. Microbiol. 63:177–93 [Google Scholar]
  7. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA. 7.  et al. 2006. The marine viromes of four oceanic regions. PLoS Biol. 4:2121–31 [Google Scholar]
  8. Apanius V, Penn D, Slev PR, Ruff LR, Potts WK. 8.  1997. The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 17:179–224 [Google Scholar]
  9. Baas Becking LGM. 9.  1934. Geobiologie of Inleiding Tot de Milieukunde Hague, Neth: Van Stockum & Zoon
  10. Bao X, Roossinck MJ. 10.  2013. A life history view of mutualistic viral symbioses: quantity or quality for cooperation?. Curr. Opin. Microbiol. 16:514–18 [Google Scholar]
  11. Barondess JJ, Beckwith J. 11.  1995. bor gene of phage λ, involved in serum resistance, encodes a widely conserved outer-membrane lipoprotein. J. Bact. 177:1247–53 [Google Scholar]
  12. Beutler B, Eidenschenk C, Crozat K, Imler J-L, Takeuchi O. 12.  et al. 2007. Genetic analysis of resistance to viral infection. Nat. Rev. Immunol. 7:753–66 [Google Scholar]
  13. Bézier A, Annaheim M, Herbiniere J, Wetterwald C, Gyapay G. 13.  et al. 2009. Polydnaviruses of Braconid wasps derive from an ancestral nudivirus. Science 323:926–30In a twist, a parasitic wasp hijacks virus genes to silence its lepidopteran host's immune system. [Google Scholar]
  14. Blackard JT, Cohen DE, Mayer KH. 14.  2002. Human immunodeficiency virus superinfection and recombination: current state of knowledge and potential clinical consequences. Clin. Infect. Dis. 34:1108–14 [Google Scholar]
  15. Boyd EF. 15.  2012. Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv. Virus Res. 82:91–118 [Google Scholar]
  16. Breitbart M, Miyake JH, Rohwer F. 16.  2004. Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol. Lett. 236:249–56 [Google Scholar]
  17. Breitbart M, Rohwer F. 17.  2005. Here a virus, there a virus, everywhere the same virus?. Trends Microbiol. 13:278–84 [Google Scholar]
  18. Bronstein JL. 18.  2001. The exploitation of mutualisms. Ecol. Lett. 4:277–87 [Google Scholar]
  19. Campbell A, Botstein D. 19.  1983. Evolution of the lambdoid phages. Lambda II RW Hendrix 365–80 Cold Spring Harbor: Cold Spring Harbor Laboratory Press [Google Scholar]
  20. Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H. 20.  2003. Prophage genomics. Microbiol. Mol. Biol. Rev. 67:238–76 [Google Scholar]
  21. Casas V, Maloy S. 21.  2011. Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol. 6:1461–73 [Google Scholar]
  22. Casjens SR, Thuman-Commike PA. 22.  2011. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 411:393–415 [Google Scholar]
  23. Chantranupong L, Heineman RH. 23.  2012. A common, non-optimal phenotypic endpoint in experimental adaptations of bacteriophage lysis time. BMC Evol. Biol. 12:37 [Google Scholar]
  24. Chao L. 24.  1992. Evolution of sex in RNA viruses. Trends Ecol. Evol. 7:147–51 [Google Scholar]
  25. Christie GE, Dokland T. 25.  2012. Pirates of the Caudovirales. Virology 434:210–21 [Google Scholar]
  26. Conley MP, Wood WB. 26.  1975. Bacteriophage T4 whiskers: a rudimentary environment-sensing device. Proc. Natl. Acad. Sci. USA 72:3701–5 [Google Scholar]
  27. Crill WD, Wichman HA, Bull JJ. 27.  2000. Evolutionary reversals during viral adaptation to alternating hosts. Genetics 154:27–37 [Google Scholar]
  28. Damania B, Blackbourn DJ. 28.  2012. Innate barriers to viral infection. Future Microbiol. 7:815–22 [Google Scholar]
  29. Dawkins R. 29.  1976. The Selfish Gene Oxford: Oxford, UK: Univ. Press
  30. Day T. 30.  2003. Virulence evolution and the timing of disease life-history events. Trends Ecol. Evol. 18:113–18 [Google Scholar]
  31. De Paepe M, Taddei F. 31.  2006. Viruses’ life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages. PLoS Biol. 4:e193 [Google Scholar]
  32. de Roode JC, Yates AJ, Altizer S. 32.  2008. Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc. Natl. Acad. Sci. USA 105:7489–94 [Google Scholar]
  33. Deho G, Ghisotti D. 33.  2006. The satellite phage P4. The Bacteriophages RL Calendar, ST Abedon 391–408 Oxford: Oxford, UK: Univ. Press [Google Scholar]
  34. Demogines A, Abraham J, Choe H, Farzan M, Sawyer SL. 34.  2013. Dual host-virus arms races shape an essential housekeeping protein. PLoS Biol. 11:e1001571TfR1 iron transporter sequence highly conserved except at two regions associated with virus binding. [Google Scholar]
  35. den Boer PJ. 35.  1986. The present status of the competitive exclusion principle. Trends Ecol. Evol. 1:25–28 [Google Scholar]
  36. Dennehy JJ. 36.  2012. What can phages tell us about host-pathogen coevolution?. Int. J. Evol. Biol. 2012:396165 [Google Scholar]
  37. Dennehy JJ, Friedenberg NA, Yang YW, Turner PE. 37.  2007. Virus population extinction via ecological traps. Ecol. Lett. 10:230–40 [Google Scholar]
  38. Desnues C, Rodriguez-Brito B, Rayhawk S, Kelley S, Tran T. 38.  et al. 2008. Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452:340–43 [Google Scholar]
  39. Dessau M, Goldhill D, McBride RL, Turner PE, Modis Y. 39.  2012. Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral enzyme. PLoS Genet. 8:e1003102Study determines molecular basis of virus thermal stability and capsid assembly trade-off. [Google Scholar]
  40. Domingo-Calap P, Pereira-Gómez M, Sanjuán R. 40.  2010. Selection for thermostability can lead to the emergence of mutational robustness in an RNA virus. J. Evol. Biol. 23:2453–60 [Google Scholar]
  41. Doumayrou J, Avellan A, Froissart R, Michalakis Y. 41.  2013. An experimental test of the transmission-virulence trade-off hypothesis in a plant virus. Evolution 67:477–86 [Google Scholar]
  42. Ducatez MF, Hause B, Stigger-Rosser E, Darnell D, Corzo C. 42.  et al. 2011. Multiple reassortment between pandemic (H1N1) 2009 and endemic influenza viruses in pigs: United States. Emerg. Infect. Dis. 17:1624–29 [Google Scholar]
  43. Dupressoir A, Lavialle C, Heidmann T. 43.  2012. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33:663–71 [Google Scholar]
  44. Dutta C, Paul S. 44.  2012. Microbial lifestyle and genome signatures. Curr. Genomics 13:153–62 [Google Scholar]
  45. Dykhuizen D, Campbell JH, Rolfe BG. 45.  1978. Influences of a lambda prophage on the growth rate of Escherichia coli. Microbios 23:99–113 [Google Scholar]
  46. Edlin G, Lin L, Kudrna R. 46.  1975. Lambda lysogens of Escherichia coli reproduce more rapidly than non-lysogens. Nature 255:735–37 [Google Scholar]
  47. Elena SF, Agudelo-Romero P, Carrasco P, Codoñer FM, Martín S. 47.  et al. 2008. Experimental evolution of plant RNA viruses. Heredity 100:478–83 [Google Scholar]
  48. Elena SF, Agudelo-Romero P, Lalić J. 48.  2009. The evolution of viruses in multi-host fitness landscapes. Open Virol. J. 3:1–6 [Google Scholar]
  49. Evans MEK, Dennehy JJ. 49.  2005. Germ banking: bet-hedging and variable release from egg and seed dormancy. Q. Rev. Biol. 80:431–51 [Google Scholar]
  50. Figueroa-Bossi N, Bossi L. 50.  1999. Inducible prophages contribute to Salmonella virulence in mice. Mol. Microbiol. 33:167–76 [Google Scholar]
  51. Filée J, Forterre P. 51.  2005. Viral proteins functioning in organelles: a cryptic origin?. Trends Microbiol. 13:510–13 [Google Scholar]
  52. Filée J, Forterre P, Sen-Lin T, Laurent J. 52.  2002. Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J. Mol. Evol. 54:763–73 [Google Scholar]
  53. Filée J, Tetart F, Suttle CA, Krisch HM. 53.  2005. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc. Natl. Acad. Sci. USA 102:12471–76 [Google Scholar]
  54. Forterre P, Prangishvili D. 54.  2009. The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Natural Genetic Engineering and Natural Genome Editing G Witzany 65–77 Boston: Blackwell [Google Scholar]
  55. Forterre P, Prangishvili D. 55.  2013. The major role of viruses in cellular evolution: facts and hypotheses. Curr. Opin. Virol. 3:558–65 [Google Scholar]
  56. Futuyma DJ, Moreno G. 56.  1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19:207–33 [Google Scholar]
  57. Gallet R, Shao Y, Wang I-N. 57.  2009. High adsorption rate is detrimental to bacteriophage fitness in a biofilm-like environment. BMC Evol. Biol. 9:241 [Google Scholar]
  58. Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM. 58.  2013. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–77 [Google Scholar]
  59. Gause GF. 59.  1934. The Struggle for Existence Baltimore, MD: Williams & Wilkins
  60. Ghiglione J-F, Galand PE, Pommier T, Pedrós-Alió C, Maas EW. 60.  et al. 2012. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc. Natl. Acad. Sci. USA 109:17633–38 [Google Scholar]
  61. Giret MTM, Kallas EG. 61.  2012. GBV-C: state of the art and future prospects. Curr. HIV/AIDS Rep. 9:26–33 [Google Scholar]
  62. Goyal SM, Gerba CP, Bitton G. 62.  1987. Phage Ecology Boca Raton, FL: CRC
  63. Greene IP, Wang EY, Deardorff ER, Milleron R, Domingo E, Weaver SC. 63.  2005. Effect of alternating passage on adaptation of Sindbis virus to vertebrate and invertebrate cells. J. Virol. 79:14253–60 [Google Scholar]
  64. Griffin DW. 64.  2007. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 20:459–77 [Google Scholar]
  65. Hagens S, Loessner MJ. 65.  2010. Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr. Pharm. Biotechnol. 11:58–68 [Google Scholar]
  66. Haig D. 66.  1997. The social gene. Behavioural Ecology: An Evolutionary Approach JR Krebs, NB Davies 284–304 Malden, MA: Blackwell Science, 4th ed.. [Google Scholar]
  67. Hartley M-A, Ronet C, Fasel N. 67.  2012. Backseat drivers: the hidden influence of microbial viruses on disease. Curr. Opin. Microbiol. 15:538–45 [Google Scholar]
  68. Heineman RH, Bull JJ. 68.  2007. Testing optimality with experimental evolution: lysis time in a bacteriophage. Evolution 61:1695–709 [Google Scholar]
  69. Held NL, Whitaker RJ. 69.  2009. Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ. Microbiol. 11:457–66 [Google Scholar]
  70. Hendrix RW, Duda RL. 70.  1992. Bacteriophage lambda PaPa: not the mother of all lambda phages. Science 258:1145–48 [Google Scholar]
  71. Hendrix RW, Lawrence JG, Hatfull GF, Casjens S. 71.  2000. The origins and ongoing evolution of viruses. Trends Microbiol. 8:504–8 [Google Scholar]
  72. Ho Y-C, Shan L, Hosmane NN, Wang J, Laskey SB. 72.  et al. 2013. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155:540–51The noninduced provirus fraction of the latent HIV reservoir is found to be reproductively viable. [Google Scholar]
  73. Hobson-Peters J, Yam AWY, Lu JWF, Setoh YX, May FJ. 73.  et al. 2013. A new insect-specific flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley encephalitis virus in co-infected mosquito cells. PLoS ONE 8:e56534 [Google Scholar]
  74. Huang AS. 74.  1973. Defective interfering viruses. Annu. Rev. Microbiol. 27:101–17 [Google Scholar]
  75. Huisman J, Weissing FJ. 75.  1999. Biodiversity of plankton by species oscillations and chaos. Nature 402:407–10 [Google Scholar]
  76. Hutchinson GE. 76.  1961. Paradox of the plankton. Am. Nat. 95:137–45 [Google Scholar]
  77. Hyman P, Abedon ST. 77.  2010. Bacteriophage host range and bacterial resistance. Advances in Applied Microbiology AI Laskin, S Sariaslani, GM Gadd 217–48 70 Waltham, MA: Academic [Google Scholar]
  78. Iwatsuki-Horimoto K, Hatta Y, Hatta M, Muramoto Y, Chen H. 78.  et al. 2008. Limited compatibility between the RNA polymerase components of influenza virus type A and B. Virus Res. 135:161–65 [Google Scholar]
  79. Johnson RP, Gregory DW. 79.  1993. Viruses accumulate spontaneously near droplet surfaces: a method to concentrate viruses for electron microscopy. J. Microsc. 171:125–36 [Google Scholar]
  80. Kassen R. 80.  2002. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15:173–90 [Google Scholar]
  81. Kaverin NV, Varich NL, Sklyanskaya EI, Amvrosieva TV, Petrik J, Vovk TC. 81.  1983. Studies on heterotypic interference between influenza-A and influenza-B viruses: a differential inhibition of the synthesis of viral proteins and RNAs. J. Gen. Virol. 64:2139–46 [Google Scholar]
  82. Klumpp J, Fouts DE, Sozhamannan S. 82.  2013. Bacteriophage functional genomics and its role in bacterial pathogen detection. Brief Funct. Genomics 12:354–65 [Google Scholar]
  83. Krupovic M, Ravantti JJ, Bamford DH. 83.  2009. Geminiviruses: a tale of a plasmid becoming a virus. BMC Evol. Biol. 9:112 [Google Scholar]
  84. Lang GI, Botstein D. 84.  2011. A test of the coordinated expression hypothesis for the origin and maintenance of the GAL cluster in yeast. PLoS ONE 6:e25290 [Google Scholar]
  85. Lawrence JG, Roth JR. 85.  1996. Selfish operons: Horizontal transfer may drive the evolution of gene clusters. Genetics 143:1843–60 [Google Scholar]
  86. Lee KH, Miller CR, Nagel AC, Wichman HA, Joyce P, Ytreberg FM. 86.  2011. First-step mutations for adaptation at elevated temperature increase capsid stability in a virus. PLoS ONE 6:e25640 [Google Scholar]
  87. Lee KL, Hubbard LC, Hern S, Yildiz I, Gratzl M, Steinmetz NF. 87.  2013. Shape matters: The diffusion rates of TMV rods and CPMV icosahedrons in a spheroid model of extracellular matrix are distinct. Biomater. Sci. 1:581–88 [Google Scholar]
  88. Leggett HC, Buckling A, Long GH, Boots M. 88.  2013. Generalism and the evolution of parasite virulence. Trends Ecol. Evol. 28:592–96 [Google Scholar]
  89. Liang LW, Hussein R, Block DHS, Lim HN. 89.  2013. Minimal effect of gene clustering on expression in Escherichia coli. Genetics 193:453–65 [Google Scholar]
  90. Lieleg O, Lieleg C, Bloom J, Buck CB, Ribbeck K. 90.  2012. Mucin biopolymers as broad-spectrum antiviral agents. Biomacromolecules 13:1724–32 [Google Scholar]
  91. Lindsley WG, King WP, Thewlis RE, Reynolds JS, Panday K. 91.  et al. 2012. Dispersion and exposure to a cough-generated aerosol in a simulated medical examination room. J. Occup. Environ. Hyg. 9:681–90 [Google Scholar]
  92. Lloyd-Smith JO. 92.  2013. Vacated niches, competitive release and the community ecology of pathogen eradication. Philos. Trans. R. Soc. Lond. B 368:20120150 [Google Scholar]
  93. López-Ferber M, Simón O, Williams T, Caballero P. 93.  2003. Defective or effective? Mutualistic interactions between virus genotypes. Proc. R. Soc. B 270:2249–55 [Google Scholar]
  94. Mann S, Chen Y-PP. 94.  2010. Bacterial genomic G + C composition-eliciting environmental adaptation. Genomics 95:7–15 [Google Scholar]
  95. Mannige RV, Brooks CL III. 95.  2010. Periodic table of virus capsids: implications for natural selection and design. PLoS ONE 5:e9423 [Google Scholar]
  96. Marston MF, Pierciey FJ Jr, Shepard A, Gearin G, Qi J. 96.  et al. 2012. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl. Acad. Sci. USA 109:4544–49Antagonistic coevolution with a virus leads to diversification of an important marine cyanobacterium. [Google Scholar]
  97. Martinière A, Bak A, Macia J-L, Lautredou N, Gargani D. 97.  et al. 2013. A virus responds instantly to the presence of the vector on the host and forms transmission morphs. eLife 2:e00183Virus perceives aphid vectors via host cell responses and behaves to increase its own transmission. [Google Scholar]
  98. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA. 98.  et al. 2006. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4:102–12 [Google Scholar]
  99. McGeoch DJ, Rixon FJ, Davison AJ. 99.  2006. Topics in herpesvirus genomics and evolution. Virus Res. 117:90–104 [Google Scholar]
  100. Moret Y, Schmid-Hempel P. 100.  2000. Survival for immunity: the price of immune system activation for bumblebee workers. Science 290:1166–68 [Google Scholar]
  101. Mosquera J, Adler FR. 101.  1998. Evolution of virulence: a unified framework for coinfection and superinfection. J. Theor. Biol. 195:293–313 [Google Scholar]
  102. Nelson MI, Viboud C, Simonsen L, Bennett RT, Griesemer SB. 102.  et al. 2008. Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathog. 4:e1000012 [Google Scholar]
  103. Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L. 103.  et al. 2011. Global patterns in the biogeography of bacterial taxa. Environ. Microbiol. 13:135–44 [Google Scholar]
  104. Nikolin VM, Osterrieder K, von Messling V, Hofer H, Anderson D. 104.  et al. 2012. Antagonistic pleiotropy and fitness trade-offs reveal specialist and generalist traits in strains of canine distemper virus. PLoS ONE 7:e50955 [Google Scholar]
  105. Nowak MA, May RM. 105.  1994. Superinfection and the evolution of parasite virulence. Proc. R. Soc. B 255:81–89 [Google Scholar]
  106. Pal C, Hurst LD. 106.  2004. Evidence against the selfish operon theory. Trends Genet. 20:232–34 [Google Scholar]
  107. Pepin KM, Hanley KA. 107.  2008. Density-dependent competitive suppression of sylvatic dengue virus by endemic dengue virus in cultured mosquito cells. Vector Borne Zoonotic Dis. 8:821–28 [Google Scholar]
  108. Pepin KM, Lambeth K, Hanley KA. 108.  2008. Asymmetric competitive suppression between strains of dengue virus. BMC Microbiol. 8:28 [Google Scholar]
  109. Piertney SB, Oliver MK. 109.  2006. The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21 [Google Scholar]
  110. Price MN, Huang KH, Arkin AP, Alm EJ. 110.  2005. Operon formation is driven by co-regulation and not by horizontal gene transfer. Genome Res. 15:809–19 [Google Scholar]
  111. Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC. 111.  2008. The genomic and epidemiological dynamics of human influenza A virus. Nature 453:615–19 [Google Scholar]
  112. Ramig RF, Ward RL. 112.  1991. Genomic segment reassortment in rotaviruses and other reoviridae. Adv. Virus Res. 39:163–207 [Google Scholar]
  113. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N. 113.  et al. 2011. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N. Engl. J. Med. 365:709–17 [Google Scholar]
  114. Record NR, Pershing AJ, Maps F. 114.  2014. The paradox of the “paradox of the plankton”. ICES J. Mar. Sci. 71:236–40 [Google Scholar]
  115. Remold S. 115.  2012. Understanding specialism when the jack of all trades can be the master of all. Proc. R. Soc. B 279:4861–69 [Google Scholar]
  116. Rohwer F, Thurber RV. 116.  2009. Viruses manipulate the marine environment. Nature 459:207–12 [Google Scholar]
  117. Roossinck MJ. 117.  2011. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9:99–108 [Google Scholar]
  118. Rosario K, Breitbart M. 118.  2011. Exploring the viral world through metagenomics. Curr. Opin. Virol. 1:289–97 [Google Scholar]
  119. Roux L, Simon AE, Holland JJ. 119.  1991. Effects of defective interfering viruses on virus replication and pathogenesis in vitro and in vivo. Adv. Virus Res. 40:181–211 [Google Scholar]
  120. Russell CA, Jones TC, Barr IG, Cox NJ, Garten RJ. 120.  et al. 2008. The global circulation of seasonal influenza A (H3N2) viruses. Science 320:340–46Annual seasonal epidemics of influenza A are independently seeded by populations from East Asia. [Google Scholar]
  121. Sehgal OP, Jean J, Bhalla RB, Soong MM, Krause GF. 121.  1970. Correlation between buoyant density and ribonucleic acid content in viruses. Phytopathology 60:1778–84 [Google Scholar]
  122. Sharp PM, Hahn BH. 122.  2011. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1:a006841 [Google Scholar]
  123. Short CM, Suttle CA. 123.  2005. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl. Environ. Microbiol. 71:480–86 [Google Scholar]
  124. Silander OK, Weinreich DM, Wright KM, O’Keefe KJ, Rang CU. 124.  et al. 2005. Widespread genetic exchange among terrestrial bacteriophages. Proc. Natl. Acad. Sci. USA 102:19009–14 [Google Scholar]
  125. Snyder JC, Wiedenheft B, Lavin M, Roberto FF, Spuhler J. 125.  et al. 2007. Virus movement maintains local virus population diversity. Proc. Natl. Acad. Sci. USA 104:19102–7 [Google Scholar]
  126. Sommer U, Padisak J, Reynolds CS, Juhasznagy P. 126.  1993. Hutchinson heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249:1–7 [Google Scholar]
  127. Strand MR, Burke GR. 127.  2013. Polydnavirus-wasp associations: evolution, genome organization, and function. Curr. Opin. Virol. 3:587–94 [Google Scholar]
  128. Suttle CA. 128.  2005. Viruses in the sea. Nature 437:356–61 [Google Scholar]
  129. Switzer WM, Salemi M, Shanmugam V, Gao F, Cong ME. 129.  et al. 2005. Ancient co-speciation of simian foamy viruses and primates. Nature 434:376–80 [Google Scholar]
  130. Symons RH. 130.  1991. The intriguing viroids and virusoids: What is their information content and how did they evolve?. Mol. Plant Microbe Interact. 4:111–21 [Google Scholar]
  131. Syvanen M. 131.  2012. Evolutionary implications of horizontal gene transfer. Annu. Rev. Genet. 46:341–58 [Google Scholar]
  132. Szilagyi A, Zavodszky P. 132.  2000. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8:493–504 [Google Scholar]
  133. Tellier R. 133.  2009. Aerosol transmission of influenza A virus: a review of new studies. J. R. Soc. Interface 6:S783–90 [Google Scholar]
  134. Thurber RV. 134.  2009. Current insights into phage biodiversity and biogeography. Curr. Opin. Microbiol. 12:582–87 [Google Scholar]
  135. Tillmann HL, Heiken H, Knapik-Botor A, Heringlake S, Ockenga J. 135.  et al. 2001. Infection with GB virus C and reduced mortality among HIV-infected patients. N. Engl. J. Med. 345:715–24 [Google Scholar]
  136. Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL. 136.  2000. Viral subversion of the immune system. Annu. Rev. Immunol. 18:861–926 [Google Scholar]
  137. Turner PE, Chao L. 137.  1998. Sex and the evolution of intrahost competition in RNA virus ϕ6. Genetics 150:523–32 [Google Scholar]
  138. Uc-Mass A, Loeza Jacinto E, de la Garza M, Guarneros G, Hernández-Sánchez J, Kameyama L. 138.  2004. An orthologue of the cor gene is involved in the exclusion of temperate lambdoid phages. Evidence that Cor inactivates FhuA receptor functions. Virology 329:425–33 [Google Scholar]
  139. van Baalen M, Sabelis MW. 139.  1995. The dynamics of multiple infection and the evolution of virulence. Am. Nat. 146:881–910 [Google Scholar]
  140. Vica Pacheco S, García González O, Paniagua Contreras GL. 140.  1997. The lom gene of bacteriophage λ is involved in Escherichia coli K12 adhesion to human buccal epithelial cells. FEMS Microbiol. Lett. 156:129–32 [Google Scholar]
  141. Wang I-N. 141.  2006. Lysis timing and bacteriophage fitness. Genetics 172:17–26 [Google Scholar]
  142. Wanitchang A, Narkpuk J, Jaru-ampornpan P, Jengarn J, Jongkaewwattana A. 142.  2012. Inhibition of influenza A virus replication by influenza B virus nucleoprotein: an insight into interference between influenza A and B viruses. Virology 432:194–203Influenza B nucleoprotein inhibits influenza A polymerase activity in a dose-dependent manner, suggesting an interference mechanism. [Google Scholar]
  143. Weinberger AD, Weinberger LS. 143.  2013. Stochastic fate selection in HIV-infected patients. Cell 155:497–99 [Google Scholar]
  144. Whon TW, Kim M-S, Roh SW, Shin N-R, Lee H-W, Bae J-W. 144.  2012. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere. J. Virol. 86:8221–31Atmospheric virus diversity is inversely correlated with temperature and humidity and increases in winter. [Google Scholar]
  145. Wigginton KR, Kohn T. 145.  2012. Virus disinfection mechanisms: the role of virus composition, structure, and function. Curr. Opin. Virol. 2:84–89 [Google Scholar]
  146. Williams HTP. 146.  2013. Phage-induced diversification improves host evolvability. BMC Evol. Biol. 13:17 [Google Scholar]
  147. Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR. 147.  2002. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat. Genet. 32:569–77 [Google Scholar]
  148. Wright A, McConnell M, Kanegasakai S. 148.  1980. Lipopolysaccharide as a bacteriophage receptor. Bacterial Viruses LL Randall, L Phillipson 27–57 London: Chapman Hall [Google Scholar]
  149. Yang X, Forier K, Steukers L, van Vlierberghe S, Dubruel P. 149.  et al. 2012. Immobilization of pseudorabies virus in porcine tracheal respiratory mucus revealed by single particle tracking. PLoS ONE 7e51054
  150. Zinkernagel RM, Bachmann MF, Kundig TM, Oehen S, Pirchet H, Hengartner H. 150.  1996. On immunological memory. Annu. Rev. Immunol. 14:333–67 [Google Scholar]
/content/journals/10.1146/annurev-micro-091313-103436
Loading
/content/journals/10.1146/annurev-micro-091313-103436
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error