1932

Abstract

Addiction is a disease characterized by compulsive drug seeking and consumption observed in 20–30% of users. An addicted individual will favor drug reward over natural rewards, despite major negative consequences. Mechanistic research on rodents modeling core components of the disease has identified altered synaptic transmission as the functional substrate of pathological behavior. While the initial version of a circuit model for addiction focused on early drug adaptive behaviors observed in all individuals, it fell short of accounting for the stochastic nature of the transition to compulsion. The model builds on the initial pharmacological effect common to all addictive drugs—an increase in dopamine levels in the mesolimbic system. Here, we consolidate this early model by integrating circuits underlying compulsion and negative reinforcement. We discuss the genetic and epigenetic correlates of individual vulnerability. Many recent data converge on a gain-of-function explanation for circuit remodeling, revealing blueprints for novel addiction therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-092920-123905
2021-07-08
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-092920-123905.html?itemId=/content/journals/10.1146/annurev-neuro-092920-123905&mimeType=html&fmt=ahah

Literature Cited

  1. Adamantidis AR, Tsai H-C, Boutrel B, Zhang F, Stuber GD et al. 2011. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J. Neurosci. 31:3010829–35
    [Google Scholar]
  2. Ahmed SH, Guillem K, Vandaele Y. 2013. Sugar addiction: pushing the drug-sugar analogy to the limit. Curr. Opin. Clin. Nutr. Metab. Care. 16:4434–39
    [Google Scholar]
  3. Alcaraz F, Marchand AR, Vidal E, Guillou A, Faugère A et al. 2015. Flexible use of predictive cues beyond the orbitofrontal cortex: role of the submedius thalamic nucleus. J. Neurosci. 35:3813183–93
    [Google Scholar]
  4. Am. Soc. Addict. Med 2011. Definition of addiction Public Policy Statement, Am. Soc. Addict. Med. Rockville, MD:
  5. Baarendse PJJ, Limpens JHW, Vanderschuren LJMJ. 2013. Disrupted social development enhances the motivation for cocaine in rats. Psychopharmacology 231:81695–704
    [Google Scholar]
  6. Baddeley A. 1992. Working memory. Science 255:5044556–59
    [Google Scholar]
  7. Balleine BW, Dickinson A. 1998. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:4–5407–19
    [Google Scholar]
  8. Belin D, Belin-Rauscent A, Everitt BJ, Dalley JW. 2016. In search of predictive endophenotypes in addiction: insights from preclinical research. Genes Brain Behav 15:174–88
    [Google Scholar]
  9. Belin D, Everitt BJ. 2008. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57:3432–41
    [Google Scholar]
  10. Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ. 2009. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav. Brain Res. 199:189–102
    [Google Scholar]
  11. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ. 2008. High impulsivity predicts the switch to compulsive cocaine-taking. Science 320:58811352–55
    [Google Scholar]
  12. Bellone C, Lüscher C. 2006. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat. Neurosci. 9:5636–41
    [Google Scholar]
  13. Beyeler A. 2016. Parsing reward from aversion. Science 354:6312558
    [Google Scholar]
  14. Bissonette GB, Martins GJ, Franz TM, Harper ES, Schoenbaum G, Powell EM. 2008. Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J. Neurosci. 28:4411124–30
    [Google Scholar]
  15. Blum K, Briggs AH, DeLallo L, Elston SF, Ochoa R. 1982. Whole brain methionine-enkephalin of ethanol-avoiding and ethanol-preferring c57BL mice. Experientia 38:121469–70
    [Google Scholar]
  16. Bocklisch C, Pascoli V, Wong JCY, House DRC, Yvon C et al. 2013. Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 341:61531521–25
    [Google Scholar]
  17. Boulos LJ, Ben Hamida S, Bailly J, Maitra M, Ehrlich AT et al. 2020. Mu opioid receptors in the medial habenula contribute to naloxone aversion. Neuropsychopharmacology 45:247–55
    [Google Scholar]
  18. Bradfield LA, Dezfouli A, Van Holstein M, Chieng B, Balleine BW. 2015. Medial orbitofrontal cortex mediates outcome retrieval in partially observable task situations. Neuron 88:61268–80
    [Google Scholar]
  19. Bräscher A-K, Becker S, Hoeppli M-E, Schweinhardt P. 2016. Different brain circuitries mediating controllable and uncontrollable pain. J. Neurosci. 36:185013–25
    [Google Scholar]
  20. Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A. 2012. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76:4790–803
    [Google Scholar]
  21. Cadet JL. 2016. Epigenetics of stress, addiction, and resilience: therapeutic implications. Mol. Neurobiol. 53:1545–60
    [Google Scholar]
  22. Calipari ES, Juarez B, Morel C, Walker DM, Cahill ME et al. 2017. Dopaminergic dynamics underlying sex-specific cocaine reward. Nat. Commun. 8:113877
    [Google Scholar]
  23. Canchy L, Girardeau P, Durand A, Vouillac-Mendoza C, Ahmed SH. 2021. Pharmacokinetics trumps pharmacodynamics during cocaine choice: a reconciliation with the dopamine hypothesis of addiction. Neuropsychopharmacology 46:28896
    [Google Scholar]
  24. Caprioli D, Celentano M, Dubla A, Lucantonio F, Nencini P, Badiani A. 2009. Ambience and drug choice: cocaine- and heroin-taking as a function of environmental context in humans and rats. Biol. Psychiatry 65:10893–99
    [Google Scholar]
  25. Chen BT, Yau H-J, Hatch C, Kusumoto-Yoshida I, Cho SL et al. 2013. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496:7445359–62
    [Google Scholar]
  26. Chen C-FF, Zou D-J, Altomare CG, Xu L, Greer CA, Firestein SJ 2014. Nonsensory target-dependent organization of piriform cortex. PNAS 111:4716931–36
    [Google Scholar]
  27. Christie MJ, Williams JT, Osborne PB, Bellchambers CE. 1997. Where is the locus in opioid withdrawal?. Trends Pharmacol. Sci. 18:4134–40
    [Google Scholar]
  28. Corder G, Doolen S, Donahue RR, Winter MK, Jutras BL et al. 2013. Constitutive μ-opioid receptor activity leads to long-term endogenous analgesia and dependence. Science 341:61521394–99
    [Google Scholar]
  29. Corre J, van Zessen R, Loureiro M, Patriarchi T, Tian L et al. 2018. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. eLife 7:e39945
    [Google Scholar]
  30. Creed M, Ntamati NR, Chandra R, Lobo MK, Lüscher C. 2016. Convergence of reinforcing and anhedonic cocaine effects in the ventral pallidum. Neuron 92:1214–26
    [Google Scholar]
  31. Creed M, Pascoli VJ, Lüscher C. 2015. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347:6222659–64
    [Google Scholar]
  32. Dalley JW, Cardinal RN, Robbins TW. 2004. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28:7771–84
    [Google Scholar]
  33. Dalton GL, Wang NY, Phillips AG, Floresco SB. 2016. Multifaceted contributions by different regions of the orbitofrontal and medial prefrontal cortex to probabilistic reversal learning. J. Neurosci. 36:61996–2006
    [Google Scholar]
  34. de Guglielmo G, Kallupi M, Pomrenze MB, Crawford E, Simpson S et al. 2019. Inactivation of a CRF-dependent amygdalofugal pathway reverses addiction-like behaviors in alcohol-dependent rats. Nat. Commun. 10:11238
    [Google Scholar]
  35. Degoulet M, Tiran-Cappello A, Baunez C, Pelloux Y 2019. Low frequency oscillatory activity of the subthalamic nucleus is a predictive biomarker of compulsive-like cocaine seeking. bioRxiv 451203. https://doi.org/10.1101/451203
    [Crossref]
  36. Deroche-Gamonet V, Belin D, Piazza PV. 2004. Evidence for addiction-like behavior in the rat. Science 305:56861014–17
    [Google Scholar]
  37. Di Chiara G, Imperato A 1988. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. PNAS 85:145274–78
    [Google Scholar]
  38. Dölen G, Darvishzadeh A, Huang KW, Malenka RC. 2013. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501:7466179–84
    [Google Scholar]
  39. Egervari G, Ciccocioppo R, Jentsch JD, Hurd YL. 2018. Shaping vulnerability to addiction—the contribution of behavior, neural circuits and molecular mechanisms. Neurosci. Biobehav. Rev. 85:117–25
    [Google Scholar]
  40. Elam KK, Wang FL, Bountress K, Chassin L, Pandika D, Lemery-Chalfant K. 2016. Predicting substance use in emerging adulthood: a genetically informed study of developmental transactions between impulsivity and family conflict. Dev. Psychopathol. 28:3673–88
    [Google Scholar]
  41. Euston DR, Gruber AJ, McNaughton BL. 2012. The role of medial prefrontal cortex in memory and decision making. Neuron 76:61057–70
    [Google Scholar]
  42. Everitt BJ, Robbins TW. 2016. Drug addiction: updating actions to habits to compulsions ten years on. Annu. Rev. Psychol. 67:23–50
    [Google Scholar]
  43. Fakhrieh-Asl G, Sadr SS, Karimian SM, Riahi E. 2020. Deep brain stimulation of the orbitofrontal cortex prevents the development and reinstatement of morphine place preference. Addict. Biol. 25:4e12780
    [Google Scholar]
  44. Freund J, Brandmaier AM, Lewejohann L, Kirste I, Kritzler M et al. 2013. Emergence of individuality in genetically identical mice. Science 340:6133756–59
    [Google Scholar]
  45. Girault J-A. 2012. Signaling in striatal neurons: the phosphoproteins of reward, addiction, and dyskinesia. Prog. Mol. Biol. Transl. Sci. 106:33–62
    [Google Scholar]
  46. Gremel CM, Costa RM. 2013a. Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat. Commun. 4:2264
    [Google Scholar]
  47. Gremel CM, Costa RM. 2013b. Premotor cortex is critical for goal-directed actions. Front. Comput. Neurosci. 7:110
    [Google Scholar]
  48. Grieder TE, Herman MA, Contet C, Tan LA, Vargas-Perez H et al. 2014. VTA CRF neurons mediate the aversive effects of nicotine withdrawal and promote intake escalation. Nat. Neurosci. 17:121751–58
    [Google Scholar]
  49. Grimm JW, Hope BT, Wise RA, Shaham Y. 2001. Incubation of cocaine craving after withdrawal. Nature 412:141–42
    [Google Scholar]
  50. Guillem K, Ahmed SH. 2018. Preference for cocaine is represented in the orbitofrontal cortex by an increased proportion of cocaine use-coding neurons. Cereb. Cortex 28:3819–32
    [Google Scholar]
  51. Guillem K, Ahmed SH. 2020. Reorganization of theta phase-locking in the orbitofrontal cortex drives cocaine choice under the influence. Sci. Rep. 10:18041
    [Google Scholar]
  52. Haber SN, Fudge JL, McFarland NR. 2000. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20:62369–82
    [Google Scholar]
  53. Harada M, Hiver A, Pascoli V, Lüscher C. 2019. Cortico-striatal synaptic plasticity underlying compulsive reward seeking. bioRxiv 789495. https://doi.org/10.1101/789495
    [Crossref]
  54. Hardung S, Epple R, Jäckel Z, Eriksson D, Uran C et al. 2017. A functional gradient in the rodent prefrontal cortex supports behavioral inhibition. Curr. Biol. 27:4549–55
    [Google Scholar]
  55. Heidbreder CA, Groenewegen HJ. 2003. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci. Biobehav. Rev. 27:6555–79
    [Google Scholar]
  56. Heinrichs SC, Menzaghi F, Schulteis G, Koob GF, Stinus L. 1995. Suppression of corticotropin-releasing factor in the amygdala attenuates aversive consequences of morphine withdrawal. Behav. Pharmacol. 6:174–80
    [Google Scholar]
  57. Henges AL, Marczinski CA. 2012. Impulsivity and alcohol consumption in young social drinkers. Addict. Behav. 37:2217–20
    [Google Scholar]
  58. Hwa LS, Chu A, Levinson SA, Kayyali TM, DeBold JF, Miczek KA. 2011. Persistent escalation of alcohol drinking in C57BL/6J mice with intermittent access to 20% ethanol. Alcohol. Clin. Exp. Res. 35:111938–47
    [Google Scholar]
  59. Iino Y, Sawada T, Yamaguchi K, Tajiri M, Ishii S et al. 2020. Dopamine D2 receptors in discrimination learning and spine enlargement. Nature 579:7800555–60
    [Google Scholar]
  60. Ikemoto S, Yang C, Tan A 2015. Basal ganglia circuit loops, dopamine and motivation: a review and enquiry. Behav. Brain Res. 290:17–31
    [Google Scholar]
  61. Izquierdo A, Jentsch JD. 2012. Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology 219:2607–20
    [Google Scholar]
  62. Jonkman S, Pelloux Y, Everitt BJ. 2012. Drug intake is sufficient, but conditioning is not necessary for the emergence of compulsive cocaine seeking after extended self-administration. Neuropsychopharmacology 37:71612–19
    [Google Scholar]
  63. Keiflin R, Janak PH. 2015. Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry. Neuron 88:2247–63
    [Google Scholar]
  64. Kerstetter KA, Su Z-I, Ettenberg A, Kippin TE. 2013. Sex and estrous cycle differences in cocaine-induced approach-avoidance conflict. Addict. Biol. 18:2222–29
    [Google Scholar]
  65. Kessler RC, Berglund P, Chiu WT, Demler O, Heeringa S et al. 2004. The US National Comorbidity Survey Replication (NCS-R): design and field procedures. Int. J. Methods Psychiatr. Res. 13:269–92
    [Google Scholar]
  66. Kim CK, Ye L, Jennings JH, Pichamoorthy N, Tang DD et al. 2017. Molecular and circuit-dynamical identification of top-down neural mechanisms for restraint of reward seeking. Cell 170:51013–27.e14
    [Google Scholar]
  67. Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S. 2016. Antagonistic negative and positive neurons of the basolateral amygdala. Nat. Neurosci. 19:121636–46
    [Google Scholar]
  68. Koob GF. 2020. Neurobiology of opioid addiction: opponent process, hyperkatifeia and negative reinforcement. Biol. Psychiatry 87:44–53
    [Google Scholar]
  69. Koob GF, Schulkin J. 2018. Addiction and stress: an allostatic view. Neurosci. Biobehav. Rev. 106:245–62
    [Google Scholar]
  70. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ et al. 2012. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491:7423212–17
    [Google Scholar]
  71. Lee JH, Ribeiro EA, Kim J, Ko B, Kronman H et al. 2020. Dopaminergic regulation of nucleus accumbens cholinergic interneurons demarcates susceptibility to cocaine addiction. Biol. Psychiatry 88:746–57
    [Google Scholar]
  72. Lenoir M, Cantin L, Vanhille N, Serre F, Ahmed SH. 2013. Extended heroin access increases heroin choices over a potent nondrug alternative. Neuropsychopharmacology 38:71209–20
    [Google Scholar]
  73. Lenoir M, Serre F, Cantin L, Ahmed SH. 2007. Intense sweetness surpasses cocaine reward. PLOS ONE 2:8e698
    [Google Scholar]
  74. Lucantonio F, Kambhampati S, Haney RZ, Atalayer D, Rowland NE et al. 2015. Effects of prior cocaine versus morphine or heroin self-administration on extinction learning driven by overexpectation versus omission of reward. Biol. Psychiatry. 77:10912–20
    [Google Scholar]
  75. Lucantonio F, Takahashi YK, Hoffman AF, Chang CY, Bali-Chaudhary S et al. 2014. Orbitofrontal activation restores insight lost after cocaine use. Nat. Neurosci. 17:81092–99
    [Google Scholar]
  76. Lüscher C. 2016. The emergence of a circuit model for addiction. Annu. Rev. Neurosci. 39:257–76
    [Google Scholar]
  77. Lüscher C, Robbins TW, Everitt BJ. 2020. The transition to compulsion in addiction. Nat. Rev. Neurosci. 21:5247–63
    [Google Scholar]
  78. Lüscher C, Ungless MA. 2006. The mechanistic classification of addictive drugs. PLOS Med 3:11e437
    [Google Scholar]
  79. Lüthi A, Lüscher C. 2014. Pathological circuit function underlying addiction and anxiety disorders. Nat. Neurosci. 17:121635–43
    [Google Scholar]
  80. Macmillan M. 2000. Restoring Phineas Gage: a 150th retrospective. 946–66
  81. Mameli M, Halbout B, Creton C, Engblom D, Parkitna JR et al. 2009. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat. Neurosci. 12:81036–41
    [Google Scholar]
  82. Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S et al. 1996. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383:6603819–23
    [Google Scholar]
  83. Mátyás F, Lee J, Shin HS, Acsády L. 2014. The fear circuit of the mouse forebrain: connections between the mediodorsal thalamus, frontal cortices and basolateral amygdala. Eur. J. Neurosci. 39:111810–23
    [Google Scholar]
  84. McCutcheon JE, Loweth JA, Ford KA, Marinelli M, Wolf ME, Tseng KY. 2011. Group I mGluR activation reverses cocaine-induced accumulation of calcium-permeable AMPA receptors in nucleus accumbens synapses via a protein kinase C-dependent mechanism. J. Neurosci. 31:4114536–41
    [Google Scholar]
  85. McNamara R, Dalley JW, Robbins TW, Everitt BJ, Belin D. 2010. Trait-like impulsivity does not predict escalation of heroin self-administration in the rat. Psychopharmacology 212:4453–64
    [Google Scholar]
  86. Mechling AE, Arefin T, Lee H-L, Bienert T, Reisert M et al. 2016. Deletion of the mu opioid receptor gene in mice reshapes the reward-aversion connectome. PNAS 113:4111603–8
    [Google Scholar]
  87. Menegas W, Akiti K, Amo R, Uchida N, Watabe-Uchida M. 2018. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci. 21:101421–30
    [Google Scholar]
  88. Meye FJ, Valentinova K, Lecca S, Marion-Poll L, Maroteaux MJ et al. 2015. Cocaine-evoked negative symptoms require AMPA receptor trafficking in the lateral habenula. Nat. Neurosci. 18:3376–78
    [Google Scholar]
  89. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:167–202
    [Google Scholar]
  90. Morrow JD, Flagel SB. 2016. Neuroscience of resilience and vulnerability for addiction medicine: from genes to behavior. Prog. Brain Res 223:3–18
    [Google Scholar]
  91. Muschamp JW, Carlezon WA. 2013. Roles of nucleus accumbens CREB and dynorphin in dysregulation of motivation. Cold Spring Harb. Perspect. Med. 3:2a012005
    [Google Scholar]
  92. Musselman HN, Neal-Beliveau B, Nass R, Engleman EA. 2012. Chemosensory cue conditioning with stimulants in a Caenorhabditis elegans animal model of addiction. Behav. Neurosci. 126:3445–56
    [Google Scholar]
  93. Negus SS. 2006. Choice between heroin and food in nondependent and heroin-dependent rhesus monkeys: effects of naloxone, buprenorphine, and methadone. J. Pharmacol. Exp. Ther. 317:2711–23
    [Google Scholar]
  94. Negus SS, Rice KC. 2009. Mechanisms of withdrawal-associated increases in heroin self-administration: pharmacologic modulation of heroin versus food choice in heroin-dependent rhesus monkeys. Neuropsychopharmacology 34:4899–911
    [Google Scholar]
  95. Nestler EJ, Lüscher C. 2019. The molecular basis of drug addiction: linking epigenetic to synaptic and circuit mechanisms. Neuron 102:148–59
    [Google Scholar]
  96. Ong W-Y, Stohler CS, Herr DR. 2019. Role of the prefrontal cortex in pain processing. Mol. Neurobiol. 56:21137–66
    [Google Scholar]
  97. Öngür D, Ferry AT, Price JL. 2003. Architectonic subdivision of the human orbital and medial prefrontal cortex. J. Comp. Neurol. 460:3425–49
    [Google Scholar]
  98. Ongür D, Price JL. 2000. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10:3206–19
    [Google Scholar]
  99. Park PE, Schlosburg JE, Vendruscolo LF, Schulteis G, Edwards S, Koob GF. 2015. Chronic CRF1 receptor blockade reduces heroin intake escalation and dependence-induced hyperalgesia. Addict. Biol. 20:2275–84
    [Google Scholar]
  100. Pascoli V, Hiver A, van Zessen R, Loureiro M, Achargui R et al. 2018. Stochastic synaptic plasticity underlying compulsion in a model of addiction. Nature 564:7736366–71
    [Google Scholar]
  101. Pascoli V, Terrier J, Espallergues J, Valjent E, O'Connor EC, Lüscher C 2014. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509:7501459–64
    [Google Scholar]
  102. Pascoli V, Terrier J, Hiver A, Lüscher C. 2015. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88:1054–66
    [Google Scholar]
  103. Pascoli V, Turiault M, Lüscher C. 2012. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 481:737971–75
    [Google Scholar]
  104. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A et al. 2018. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360:6396eaat4422
    [Google Scholar]
  105. Pelloux Y, Baunez C. 2013. Deep brain stimulation for addiction: why the subthalamic nucleus should be favored. Curr. Opin. Neurobiol. 23:4713–20
    [Google Scholar]
  106. Pelloux Y, Dilleen R, Economidou D, Theobald D, Everitt BJ 2012. Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats. Neuropsychopharmacology 37:112505–14
    [Google Scholar]
  107. Pelloux Y, Everitt BJ, Dickinson A. 2007. Compulsive drug seeking by rats under punishment: effects of drug taking history. Psychopharmacology 194:1127–37
    [Google Scholar]
  108. Peyron R. 2014. Imagerie de la douleur [Functional imaging of pain]. Biol. Aujourd'hui 208:15–12
    [Google Scholar]
  109. Piazza PV, Deroche-Gamonet V. 2013. A multistep general theory of transition to addiction. Psychopharmacology 229:3387–413
    [Google Scholar]
  110. Piazza PV, Deroche-Gamonet V. 2014. A general theory of transition to addiction it was and a general theory of transition to addiction it is. Psychopharmacology 231:193929–37
    [Google Scholar]
  111. Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA. 2004. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J. Neurosci. 24:143554–62
    [Google Scholar]
  112. Quinn RK, Brown AL, Goldie BJ, Levi EM, Dickson PW et al. 2015. Distinct miRNA expression in dorsal striatal subregions is associated with risk for addiction in rats. Transl. Psychiatry. 5:e503
    [Google Scholar]
  113. Redish AD. 2004. Addiction as a computational process gone awry. Science 306:57031944–47
    [Google Scholar]
  114. Roberts DC. 1993. Self-administration of GBR 12909 on a fixed ratio and progressive ratio schedule in rats. Psychopharmacology 111:2202–6
    [Google Scholar]
  115. Sanchez-Roige S, Peña-Oliver Y, Ripley TL, Stephens DN. 2014. Repeated ethanol exposure during early and late adolescence: double dissociation of effects on waiting and choice impulsivity. Alcohol. Clin. Exp. Res. 38:102579–89
    [Google Scholar]
  116. Scaplen KM, Kaun KR. 2016. Reward from bugs to bipeds: a comparative approach to understanding how reward circuits function. J. Neurogenet. 30:2133–48
    [Google Scholar]
  117. Scaplen KM, Talay M, Nunez KM, Salamon S, Waterman AG et al. 2020. Circuits that encode and guide alcohol-associated preference. eLife 9:e48730
    [Google Scholar]
  118. Schoenbaum G, Chang C-Y, Lucantonio F, Takahashi YK. 2016. Thinking outside the box: orbitofrontal cortex, imagination, and how we can treat addiction. Neuropsychopharmacology 41:132966–76
    [Google Scholar]
  119. Schultz W, Dayan P, Montague PR. 1997. A neural substrate of prediction and reward. Science 275:53061593–99
    [Google Scholar]
  120. Seifert F, Bschorer K, De Col R, Filitz J, Peltz E et al. 2009. Medial prefrontal cortex activity is predictive for hyperalgesia and pharmacological antihyperalgesia. J. Neurosci. 29:196167–75
    [Google Scholar]
  121. Shaham Y, Erb S, Leung S, Buczek Y, Stewart J. 1998. CP-154,526, a selective, non-peptide antagonist of the corticotropin-releasing factor1 receptor attenuates stress-induced relapse to drug seeking in cocaine- and heroin-trained rats. Psychopharmacology 137:2184–90
    [Google Scholar]
  122. Shaham Y, Erb S, Stewart J. 2000. Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res. Rev. 33:13–33
    [Google Scholar]
  123. Shen C-J, Zheng D, Li K-X, Yang J-M, Pan H-Q et al. 2019. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat. Med. 25:2337–49
    [Google Scholar]
  124. Shen W, Flajolet M, Greengard P, Surmeier DJ. 2008. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:5890848–51
    [Google Scholar]
  125. Simon NW, Wood J, Moghaddam B. 2015. Action-outcome relationships are represented differently by medial prefrontal and orbitofrontal cortex neurons during action execution. J. Neurophysiol. 114:63374–85
    [Google Scholar]
  126. Sinha R, Garcia M, Paliwal P, Kreek MJ, Rounsaville BJ. 2006. Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Arch. Gen. Psychiatry. 63:3324–31
    [Google Scholar]
  127. Solomon RL. 1980. The opponent-process theory of acquired motivation. Am. Psychol. 35:691–712
    [Google Scholar]
  128. Søvik E, Even N, Radford CW, Barron AB. 2014. Cocaine affects foraging behaviour and biogenic amine modulated behavioural reflexes in honey bees. PeerJ 2:e662
    [Google Scholar]
  129. Stalnaker TA, Cooch NK, Schoenbaum G. 2015. What the orbitofrontal cortex does not do. Nat. Neurosci. 18:5620–27
    [Google Scholar]
  130. Sul JH, Kim H, Huh N, Lee D, Jung MW 2010. Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron 66:3449–60
    [Google Scholar]
  131. Suska A, Lee BR, Huang YH, Dong Y, Schlüter OM. 2013. Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine. PNAS 110:2713–18
    [Google Scholar]
  132. Szőnyi A, Zichó K, Barth AM, Gönczi RT, Schlingloff D et al. 2019. Median raphe controls acquisition of negative experience in the mouse. Science 366:6469eaay8746
    [Google Scholar]
  133. Terraneo A, Leggio L, Saladini M, Ermani M, Bonci A, Gallimberti L. 2015. Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: a pilot study. Eur. Neuropsychopharmacol. 26:137–44
    [Google Scholar]
  134. Tsai H-C, Zhang F, Adamantidis A, Stuber GD, Bonci A et al. 2009. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:59301080–84
    [Google Scholar]
  135. Ungless MA, Whistler JL, Malenka RC, Bonci A. 2001. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411:6837583–87
    [Google Scholar]
  136. Van De Werd HJJM, Rajkowska G, Evers P, Uylings HBM. 2010. Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct. Funct. 214:4339–53
    [Google Scholar]
  137. Vassoler FM, White SL, Schmidt HD, Sadri-Vakili G, Pierce RC. 2013. Epigenetic inheritance of a cocaine-resistance phenotype. Nat. Neurosci. 16:142–47
    [Google Scholar]
  138. Volkow ND, Wang G-J, Ma Y, Fowler JS, Wong C et al. 2005. Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J. Neurosci. 25:153932–39
    [Google Scholar]
  139. Wagner FA, Anthony JC. 2002. From first drug use to drug dependence: developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology 26:4479–88
    [Google Scholar]
  140. Wall NR, Neumann PA, Beier KT, Mokhtari AK, Luo L, Malenka RC. 2019. Complementary genetic targeting and monosynaptic input mapping reveal recruitment and refinement of distributed corticostriatal ensembles by cocaine. Neuron 104:5916–929.e6
    [Google Scholar]
  141. Wallis JD. 2007. Orbitofrontal cortex and its contribution to decision-making. Annu. Rev. Neurosci. 30:31–56
    [Google Scholar]
  142. Wallis JD. 2012. Cross-species studies of orbitofrontal cortex and value-based decision-making. Nat. Neurosci. 15:113–19
    [Google Scholar]
  143. Wise RA, Robble MA. 2020. Dopamine and addiction. Annu. Rev. Psychol. 71:79–106
    [Google Scholar]
  144. Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA et al. 2011. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72:5721–33
    [Google Scholar]
  145. Wulff AB, Tooley J, Marconi LJ, Creed MC. 2019. Ventral pallidal modulation of aversion processing. Brain Res 1713:62–69
    [Google Scholar]
  146. Yoshida A, Dostrovsky JO, Chiang CY. 1992. The afferent and efferent connections of the nucleus submedius in the rat. J. Comp. Neurol. 324:1115–33
    [Google Scholar]
  147. Zhou Y, Bendor J, Hofmann L, Randesi M, Ho A, Kreek MJ. 2006. Mu opioid receptor and orexin/hypocretin mRNA levels in the lateral hypothalamus and striatum are enhanced by morphine withdrawal. J. Endocrinol. 191:1137–45
    [Google Scholar]
  148. Zhou Y, Spangler R, Ho A, Kreek MJ. 2003. Increased CRH mRNA levels in the rat amygdala during short-term withdrawal from chronic “binge” cocaine. Mol. Brain Res. 114:173–79
    [Google Scholar]
  149. Zhou Y, Spangler R, Yuferov VP, Schlussmann SD, Ho A, Kreek MJ. 2004. Effects of selective D1- or D2-like dopamine receptor antagonists with acute “binge” pattern cocaine on corticotropin-releasing hormone and proopiomelanocortin mRNA levels in the hypothalamus. Mol. Brain Res. 130:1–261–67
    [Google Scholar]
  150. Zhu Y, Wienecke CFR, Nachtrab G, Chen X 2016. A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530:7589219–22
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-092920-123905
Loading
/content/journals/10.1146/annurev-neuro-092920-123905
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error