1932

Abstract

The brain serotonin systems participate in numerous aspects of reward processing, although it remains elusive how exactly serotonin signals regulate neural computation and reward-related behavior. The application of optogenetics and imaging techniques during the last decade has provided many insights. Here, we review recent progress on the organization and physiology of the dorsal raphe serotonin neurons and the relationships between their activity and behavioral functions in the context of reward processing. We also discuss several interesting theories on serotonin's function and how these theories may be reconciled by the possibility that serotonin, acting in synergy with coreleased glutamate, tracks and calculates the so-called beneficialness of the current state to guide an animal's behavior in dynamic environments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-093019-112252
2020-07-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/neuro/43/1/annurev-neuro-093019-112252.html?itemId=/content/journals/10.1146/annurev-neuro-093019-112252&mimeType=html&fmt=ahah

Literature Cited

  1. Aghajanian GK, Vandermaelen CP. 1982. Intracellular recordings from serotonergic dorsal raphe neurons: pacemaker potentials and the effect of LSD. Brain Res 238:463–69
    [Google Scholar]
  2. Andrade R, Haj-Dahmane S. 2013. Serotonin neuron diversity in the dorsal raphe. ACS Chem. Neurosci. 4:22–25
    [Google Scholar]
  3. Araneda S, Gysling K, Calas A 1999. Raphe serotonergic neurons projecting to the olfactory bulb contain galanin or somatostatin but not neurotensin. Brain Res. Bull. 49:209–14
    [Google Scholar]
  4. Baker KG, Halliday GM, Hornung JP, Geffen LB, Cotton RG, Törk I 1991. Distribution, morphology and number of monoamine-synthesizing and substance P–containing neurons in the human dorsal raphe nucleus. Neuroscience 42:757–75
    [Google Scholar]
  5. Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A et al. 2010. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology 35:1290–301
    [Google Scholar]
  6. Barnes NM, Sharp T. 1999. A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–152
    [Google Scholar]
  7. Barre A, Berthoux C, De Bundel D, Valjent E, Bockaert J et al. 2016. Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. PNAS 113:E1382–91
    [Google Scholar]
  8. Bauer C, Banks M, Blough B, Negus S 2013. Use of intracranial self‐stimulation to evaluate abuse‐related and abuse‐limiting effects of monoamine releasers in rats. Br. J. Pharmacol. 168:850–62
    [Google Scholar]
  9. Berridge KC. 2003. Pleasures of the brain. Brain Cogn 52:106–28
    [Google Scholar]
  10. Berridge KC, Robinson TE. 1998. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain Res. 28:309–69
    [Google Scholar]
  11. Berridge KC, Robinson TE, Aldridge JW 2009. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr. Opin. Pharmacol. 9:65–73
    [Google Scholar]
  12. Betley JN, Xu S, Cao ZFH, Gong R, Magnus CJ et al. 2015. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521:180–85
    [Google Scholar]
  13. Bizot J-C, Le Bihan C, Puech AJ, Hamon M, Thiébot M-H 1999. Serotonin and tolerance to delay of reward in rats. Psychopharmacology 146:400–12
    [Google Scholar]
  14. Bockaert J, Claeysen S, Dumuis A, Marin P 2010. Classification and signaling characteristics of 5-HT receptors. Handbook of the Behavioral Neurobiology of Serotonin CP Müller, BL Jacobs 103–21 London: Academic Press
    [Google Scholar]
  15. Boureau Y-L, Dayan P. 2011. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 36:74–97
    [Google Scholar]
  16. Bromberg-Martin ES, Hikosaka O, Nakamura K 2010. Coding of task reward value in the dorsal raphe nucleus. J. Neurosci. 30:6262–72
    [Google Scholar]
  17. Bubar M, Cunningham K. 2007. Distribution of serotonin 5-HT2C receptors in the ventral tegmental area. Neuroscience 146:286–97
    [Google Scholar]
  18. Buchanan GF, Richerson GB. 2010. Central serotonin neurons are required for arousal to CO2. PNAS 107:16354–59
    [Google Scholar]
  19. Calizo LH, Akanwa A, Ma X, Pan Y-Z, Lemos JC et al. 2011. Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology 61:524–43
    [Google Scholar]
  20. Cannon CM, Palmiter RD. 2003. Reward without dopamine. J. Neurosci. 23:10827–31
    [Google Scholar]
  21. Carey RJ. 2010. Serotonin and basal sensory–motor control. Handbook of the Behavioral Neurobiology of Serotonin CP Müller, BL Jacobs 325–30 London: Academic Press
    [Google Scholar]
  22. Carroll ME, Lac ST, Asencio M, Kragh R 1990. Fluoxetine reduces intravenous cocaine self-administration in rats. Pharmacol. Biochem. Behav. 35:237–44
    [Google Scholar]
  23. Cassel J-C. 2010. Experimental studies on the role(s) of serotonin in learning and memory functions. Handbook of the Behavioral Neurobiology of Serotonin CP Müller, BL Jacobs 429–47 London: Academic Press
    [Google Scholar]
  24. Celada P, Puig MV, Amargós-Bosch M, Adell A, Artigas F 2004. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J. Psychiatry Neurosci. 29:252–65
    [Google Scholar]
  25. Chen NH, Reith M. 1995. Monoamine interactions measured by microdialysis in the ventral tegmental area of rats treated systemically with (±)‐8‐hydroxy‐2‐(di‐n‐propylamino)tetralin. J. Neurochem. 64:1585–97
    [Google Scholar]
  26. Childs E, de Wit H 2009. Amphetamine-induced place preference in humans. Biol. Psychiatry 65:900–4
    [Google Scholar]
  27. Clarke H, Dalley J, Crofts H, Robbins T, Roberts A 2004. Cognitive inflexibility after prefrontal serotonin depletion. Science 304:878–80
    [Google Scholar]
  28. Cohen JY, Amoroso MW, Uchida N 2015. Serotonergic neurons signal reward and punishment on multiple timescales. eLife 4:e06346
    [Google Scholar]
  29. Commons K. 2009. Locally collateralizing glutamate neurons in the dorsal raphe nucleus responsive to substance P contain vesicular glutamate transporter 3 (VGLUT3). J. Chem. Neuroanat. 38:273–81
    [Google Scholar]
  30. Cornea‐Hébert V, Riad M, Wu C, Singh SK, Descarries L 1999. Cellular and subcellular distribution of the serotonin 5‐HT2A receptor in the central nervous system of adult rat. J. Comp. Neurol. 409:187–209
    [Google Scholar]
  31. Cunningham KA, Fox RG, Anastasio NC, Bubar MJ, Stutz SJ et al. 2011. Selective serotonin 5-HT2C receptor activation suppresses the reinforcing efficacy of cocaine and sucrose but differentially affects the incentive-salience value of cocaine- vs. sucrose-associated cues. Neuropharmacology 61:513–23
    [Google Scholar]
  32. Dalley JW, Roiser J. 2012. Dopamine, serotonin and impulsivity. Neuroscience 215:42–58
    [Google Scholar]
  33. Daw ND, Kakade S, Dayan P 2002. Opponent interactions between serotonin and dopamine. Neural Netw. 15:603–16
    [Google Scholar]
  34. Dayan P, Huys Q. 2015. Neurophysiology: Serotonin's many meanings elude simple theories. eLife 4:e07390
    [Google Scholar]
  35. Dayan P, Huys QJM. 2009. Serotonin in affective control. Annu. Rev. Neurosci. 32:95–126
    [Google Scholar]
  36. de Assis Brasil ES, Furini CRG, da Silva Rodrigues F, Nachtigall EG, Behling JAK et al. 2019. The blockade of the serotoninergic receptors 5-HT5A, 5-HT6 and 5-HT7 in the basolateral amygdala, but not in the hippocampus facilitate the extinction of fear memory. Behav. Brain Res. 372:112055
    [Google Scholar]
  37. Deakin J. 1983. Roles of brain serotonergic neurons in escape, avoidance and other behaviors. J. Psychopharmacol. 43:563–77
    [Google Scholar]
  38. Deakin JF, Graeff FG. 1991. 5-HT and mechanisms of defence. J. Psychopharmacol. 5:305–15
    [Google Scholar]
  39. Der-Avakian A, Markou A. 2012. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 35:68–77
    [Google Scholar]
  40. Derkach V, Surprenant A, North R 1989. 5-HT3 receptors are membrane ion channels. Nature 339:706–9
    [Google Scholar]
  41. Dölen G, Darvishzadeh A, Huang KW, Malenka RC 2013. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501:179–84
    [Google Scholar]
  42. Dorocic IP, Fürth D, Xuan Y, Johansson Y, Pozzi L et al. 2014. A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 83:663–78
    [Google Scholar]
  43. Eagle DM, Lehmann O, Theobald DE, Pena Y, Zakaria R et al. 2009. Serotonin depletion impairs waiting but not stop-signal reaction time in rats: implications for theories of the role of 5-HT in behavioral inhibition. Neuropsychopharmacology 34:1311–21
    [Google Scholar]
  44. Emslie GJ, Rush AJ, Weinberg WA, Kowatch RA, Hughes CW et al. 1997. A double-blind, randomized, placebo-controlled trial of fluoxetine in children and adolescents with depression. Arch. Gen. Psychiatry 54:1031–37
    [Google Scholar]
  45. Evenden JL. 1999. Varieties of impulsivity. Psychopharmacology 146:348–61
    [Google Scholar]
  46. Faulkner P, Deakin JW. 2014. The role of serotonin in reward, punishment and behavioural inhibition in humans: insights from studies with acute tryptophan depletion. Neurosci. Biobehav. Rev. 46:365–78
    [Google Scholar]
  47. Fibiger HC, Phillips AG. 1988. Mesocorticolimbic dopamine systems and reward. Ann. N. Y. Acad. Sci. 537:206–15
    [Google Scholar]
  48. Filip M, Bader M. 2009. Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacol. Rep. 61:761–77
    [Google Scholar]
  49. Fiorella D, Rabin R, Winter J 1995. The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs I: antagonist correlation analysis. Psychopharmacology 121:347–56
    [Google Scholar]
  50. Fletcher PJ, Azampanah A, Korth KM 2002. Activation of 5-HT1B receptors in the nucleus accumbens reduces self-administration of amphetamine on a progressive ratio schedule. Pharmacol. Biochem. Behav. 71:717–25
    [Google Scholar]
  51. Fletcher PJ, Korth KM, Chambers JW 1999. Selective destruction of brain serotonin neurons by 5,7-dihydroxytryptamine increases responding for a conditioned reward. Psychopharmacology 147:291–99
    [Google Scholar]
  52. Franklin K, Paxinos G. 2008. The Mouse Brain in Stereotaxic Coordinates San Diego, CA: Academic Press. , 3rd ed..
  53. Fu W, Le Maître E, Fabre V, Bernard JF, Xu Z-QD, Hökfelt T 2010. Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain. J. Comp. Neurol. 518:3464–94
    [Google Scholar]
  54. Fujita M, Shimada S, Maeno H, Nishimura T, Tohyama M 1993. Cellular localization of serotonin transporter mRNA in the rat brain. Neurosci. Lett. 162:59–62
    [Google Scholar]
  55. Geyer MA. 1995. Serotonergic functions in arousal and motor activity. Behav. Brain. Res. 73:31–35
    [Google Scholar]
  56. Glennon RA. 1987. Central serotonin receptors as targets for drug research. J. Med. Chem. 30:1–12
    [Google Scholar]
  57. Gocho Y, Sakai A, Yanagawa Y, Suzuki H, Saitow F 2013. Electrophysiological and pharmacological properties of GABAergic cells in the dorsal raphe nucleus. J. Physiol. Sci. 63:147–54
    [Google Scholar]
  58. González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L et al. 2007. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53:439–52
    [Google Scholar]
  59. Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB et al. 1999. Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826:35–43
    [Google Scholar]
  60. Gupta D, Prabhakar V, Radhakrishnan M 2016. 5HT3 receptors: target for new antidepressant drugs. Neurosci. Biobehav. Rev. 64:311–25
    [Google Scholar]
  61. Harmer CJ, Bhagwagar Z, Cowen PJ, Goodwin GM 2002. Acute administration of citalopram facilitates memory consolidation in healthy volunteers. Psychopharmacology 163:106–10
    [Google Scholar]
  62. Hayes DJ, Greenshaw AJ. 2011. 5-HT receptors and reward-related behaviour: a review. Neurosci. Biobehav. Rev. 35:1419–49
    [Google Scholar]
  63. Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA et al. 2003. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37:233–47
    [Google Scholar]
  64. Higgins GA, Fletcher PJ. 2003. Serotonin and drug reward: focus on 5-HT2C receptors. Eur. J. Pharmacol. 480:151–62
    [Google Scholar]
  65. Hioki H, Nakamura H, Ma YF, Konno M, Hayakawa T et al. 2010. Vesicular glutamate transporter 3‐expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J. Comp. Neurol. 518:668–86
    [Google Scholar]
  66. Hirschfeld RM. 1999. Efficacy of SSRIs and newer antidepressants in severe depression: comparison with TCAs. J. Clin. Psychiatry. 60:326–35
    [Google Scholar]
  67. Hnasko TS, Sotak BN, Palmiter RD 2005. Morphine reward in dopamine-deficient mice. Nature 438:854–57
    [Google Scholar]
  68. Hnasko TS, Sotak BN, Palmiter RD 2007. Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin. J. Neurosci. 27:12484–88
    [Google Scholar]
  69. Hoyer D, Hannon JP, Martin GR 2002. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71:533–54
    [Google Scholar]
  70. Hritcu L, Clicinschi M, Nabeshima T 2007. Brain serotonin depletion impairs short-term memory, but not long-term memory in rats. Physiol. Behav. 91:652–57
    [Google Scholar]
  71. Huang KW, Ochandarena NE, Philson AC, Hyun M, Birnbaum JE et al. 2019. Molecular and anatomical organization of the dorsal raphe nucleus. eLife 8:e46464
    [Google Scholar]
  72. Iigaya K, Fonseca MS, Murakami M, Mainen ZF, Dayan P 2018. An effect of serotonergic stimulation on learning rates for rewards apparent after long intertrial intervals. Nat. Commun. 9:2477
    [Google Scholar]
  73. Inaba K, Mizuhiki T, Setogawa T, Toda K, Richmond BJ, Shidara M 2013. Neurons in monkey dorsal raphe nucleus code beginning and progress of step-by-step schedule, reward expectation, and amount of reward outcome in the reward schedule task. J. Neurosci. 33:3477–91
    [Google Scholar]
  74. Ishimura K, Takeuchi Y, Fujiwara K, Tominaga M, Yoshioka H, Sawada T 1988. Quantitative analysis of the distribution of serotonin-immunoreactive cell bodies in the mouse brain. Neurosci. Lett. 91:265–70
    [Google Scholar]
  75. Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML 2005. The neural correlates of anhedonia in major depressive disorder. Biol. Psychiatry 58:843–53
    [Google Scholar]
  76. Kranz GS, Kasper S, Lanzenberger R 2010. Reward and the serotonergic system. Neuroscience 166:1023–35
    [Google Scholar]
  77. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC et al. 2011. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Investig. 121:1424–28
    [Google Scholar]
  78. Kuan L, Li Y, Lau C, Feng D, Bernard A et al. 2015. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas. . Methods 73:4–17
    [Google Scholar]
  79. Lammel S, Lim BK, Malenka RC 2014. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76:351–59
    [Google Scholar]
  80. Li Y, Dalphin N, Hyland BI 2013. Association with reward negatively modulates short latency phasic conditioned responses of dorsal raphe nucleus neurons in freely moving rats. J. Neurosci. 33:5065–78
    [Google Scholar]
  81. Li Y, Zeng J, Zhang J, Yue C, Zhong W et al. 2018. Hypothalamic circuits for predation and evasion. Neuron 97:911–24.e5
    [Google Scholar]
  82. Li Y, Zhong W, Wang D, Feng Q, Liu Z et al. 2016. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7:10503
    [Google Scholar]
  83. Liu R, Jolas T, Aghajanian G 2000. Serotonin 5-HT2 receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res 873:34–45
    [Google Scholar]
  84. Liu Y, Si Y, Kim J-Y, Chen Z-F, Rao Y 2011. Molecular regulation of sexual preference revealed by genetic studies of 5-HT in the brains of male mice. Nature 472:95–99
    [Google Scholar]
  85. Liu Z, Zhou J, Li Y, Hu F, Lu Y et al. 2014. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81:1360–74
    [Google Scholar]
  86. Liu ZH, Ikemoto S. 2007. The midbrain raphe nuclei mediate primary reinforcement via GABAA receptors. Eur. J. Neurosci. 25:735–43
    [Google Scholar]
  87. López-Figueroa AL, Norton CS, López-Figueroa MO, Armellini-Dodel D, Burke S et al. 2004. Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol. Psychiatry 55:225–33
    [Google Scholar]
  88. Lottem E, Banerjee D, Vertechi P, Sarra D, Lohuis MO, Mainen ZF 2018. Activation of serotonin neurons promotes active persistence in a probabilistic foraging task. Nat. Commun. 9:1000
    [Google Scholar]
  89. Lowry CA. 2002. Functional subsets of serotonergic neurones: implications for control of the hypothalamic-pituitary-adrenal axis. J. Neuroendocrinol. 14:911–23
    [Google Scholar]
  90. Luo J, Feng Q, Wei L, Luo M 2017. Optogenetic activation of dorsal raphe neurons rescues the autistic-like social deficits in Shank3 knockout mice. Cell Res 27:950–53
    [Google Scholar]
  91. Luo M, Li Y, Zhong W 2016. Do dorsal raphe 5-HT neurons encode “beneficialness”?. Neurobiol. Learn. Mem. 135:40–49
    [Google Scholar]
  92. Luo M, Zhou J, Liu Z 2015. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. Learn. Mem. 22:452–60
    [Google Scholar]
  93. Matias S, Lottem E, Dugue GP, Mainen ZF 2017. Activity patterns of serotonin neurons underlying cognitive flexibility. eLife 6:e20552
    [Google Scholar]
  94. McDevitt RA, Tiran-Cappello A, Shen H, Balderas I, Britt JP et al. 2014. Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Rep 8:1857–69
    [Google Scholar]
  95. McEntee WJ, Crook TH. 1991. Serotonin, memory, and the aging brain. Psychopharmacology 103:143–49
    [Google Scholar]
  96. Meneses A. 1999. 5-HT system and cognition. Neurosci. Biobehav. Rev. 23:1111–25
    [Google Scholar]
  97. Meneses A, Liy-Salmeron G. 2012. Serotonin and emotion, learning and memory. Rev. Neurosci. 23:543–53
    [Google Scholar]
  98. Mengod G, Cortés R, Vilaró MT, Hoyer D 2010. Distribution of 5-HT receptors in the central nervous system. Handbook of the Behavioral Neurobiology of Serotonin CP Müller, BL Jacobs 123–38 London: Academic Press
    [Google Scholar]
  99. Michelsen KA, Schmitz C, Steinbusch HW 2007. The dorsal raphe nucleus—from silver stainings to a role in depression. Brain Res. Rev. 55:329–42
    [Google Scholar]
  100. Miyazaki K, Miyazaki KW, Doya K 2011a. Activation of dorsal raphe serotonin neurons underlies waiting for delayed rewards. J. Neurosci. 31:469–79
    [Google Scholar]
  101. Miyazaki K, Miyazaki KW, Doya K 2012a. The role of serotonin in the regulation of patience and impulsivity. Mol. Neurobiol. 45:213–24
    [Google Scholar]
  102. Miyazaki KW, Miyazaki K, Doya K 2011b. Activation of the central serotonergic system in response to delayed but not omitted rewards. Eur. J. Neurosci. 33:153–60
    [Google Scholar]
  103. Miyazaki KW, Miyazaki K, Doya K 2012b. Activation of dorsal raphe serotonin neurons is necessary for waiting for delayed rewards. J. Neurosci. 32:10451–57
    [Google Scholar]
  104. Miyazaki KW, Miyazaki K, Tanaka KF, Yamanaka A, Takahashi A et al. 2014. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Curr. Biol. 24:2033–40
    [Google Scholar]
  105. Murphy S, Pearce B. 1987. Functional receptors for neurotransmitters on astroglial cells. Neuroscience 22:381–94
    [Google Scholar]
  106. Murrough JW, Henry S, Hu J, Gallezot J-D, Planeta-Wilson B et al. 2011. Reduced ventral striatal/ventral pallidal serotonin 1B receptor binding potential in major depressive disorder. Psychopharmacology 213:547–53
    [Google Scholar]
  107. Nakamura K, Matsumoto M, Hikosaka O 2008. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus. J. Neurosci. 28:5331–43
    [Google Scholar]
  108. Nocjar C, Roth B, Pehek E 2002. Localization of 5-HT2A receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111:163–76
    [Google Scholar]
  109. Ogawa SK, Cohen JY, Hwang D, Uchida N, Watabe-Uchida M 2014. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep 8:1105–18
    [Google Scholar]
  110. Ogren SO, Eriksson TM, Elvander-Tottie E, D'Addario C, Ekstrom JC et al. 2008. The role of 5-HT1A receptors in learning and memory. Behav. Brain Res. 195:54–77
    [Google Scholar]
  111. Okaty BW, Freret ME, Rood BD, Brust RD, Hennessy ML et al. 2015. Multi-scale molecular deconstruction of the serotonin neuron system. Neuron 88:774–91
    [Google Scholar]
  112. Olds J, Milner P. 1954. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47:419–27
    [Google Scholar]
  113. Orabona GM, Griesi-Oliveira K, Vadasz E, Bulcão V, Takahashi V et al. 2009. HTR1B and HTR2C in autism spectrum disorders in Brazilian families. Brain Res 1250:14–19
    [Google Scholar]
  114. Palminteri S, Clair AH, Mallet L, Pessiglione M 2012. Similar improvement of reward and punishment learning by serotonin reuptake inhibitors in obsessive-compulsive disorder. Biol. Psychiatry 72:244–50
    [Google Scholar]
  115. Park SB, Coull JT, McShane RH, Young AH, Sahakian BJ et al. 1994. Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology 33:575–88
    [Google Scholar]
  116. Paxinos G, Franklin K. 2001. The Mouse Brain in Stereotaxic Coordinates San Diego, CA: Academic Press. , 2nd ed..
  117. Pecina S, Smith KS, Berridge KC 2006. Hedonic hot spots in the brain. Neuroscientist 12:500–11
    [Google Scholar]
  118. Prisco S, Pagannone S, Esposito E 1994. Serotonin-dopamine interaction in the rat ventral tegmental area: an electrophysiological study in vivo. J. Pharmacol. Exp. Ther. 271:83–90
    [Google Scholar]
  119. Qi J, Zhang S, Wang H-L, Wang H, Aceves Buendia JDJ et al. 2014. A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons. Nat. Commun. 5:5390
    [Google Scholar]
  120. Redgrave P, Horrell RI. 1976. Potentiation of central reward by localised perfusion of acetylcholine and 5-hydroxytryptamine. Nature 262:305–7
    [Google Scholar]
  121. Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR et al. 2018. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175:472–87.e20
    [Google Scholar]
  122. Ren J, Isakova A, Friedmann D, Zeng J, Grutzner SM et al. 2019. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. eLife 8:e49424
    [Google Scholar]
  123. Riad M, Garcia S, Watkins KC, Jodoin N, Doucet É et al. 2000. Somatodendritic localization of 5‐HT1A and preterminal axonal localization of 5‐HT1B serotonin receptors in adult rat brain. J. Comp. Neurol. 417:181–94
    [Google Scholar]
  124. Schultz W, Dayan P, Montague PR 1997. A neural substrate of prediction and reward. Science 275:1593–99
    [Google Scholar]
  125. Schweighofer N, Bertin M, Shishida K, Okamoto Y, Tanaka SC et al. 2008. Low-serotonin levels increase delayed reward discounting in humans. J. Neurosci. 28:4528–32
    [Google Scholar]
  126. Schweimer JV, Ungless MA. 2010. Phasic responses in dorsal raphe serotonin neurons to noxious stimuli. Neuroscience 171:1209–15
    [Google Scholar]
  127. Sengupta A, Bocchio M, Bannerman DM, Sharp T, Capogna M 2017. Control of amygdala circuits by 5-HT neurons via 5-HT and glutamate cotransmission. J. Neurosci. 37:1785–96
    [Google Scholar]
  128. Seo C, Guru A, Jin M, Ito B, Sleezer BJ et al. 2019. Intense threat switches dorsal raphe serotonin neurons to a paradoxical operational mode. Science 363:538–42
    [Google Scholar]
  129. Shin R, Ikemoto S. 2010. The GABAB receptor agonist baclofen administered into the median and dorsal raphe nuclei is rewarding as shown by intracranial self-administration and conditioned place preference in rats. Psychopharmacology 208:545–54
    [Google Scholar]
  130. Simon H, Le Moal M, Cardo B 1976. Intracranial self-stimulation from the dorsal raphe nucleus of the rat: effects of the injection of para-chlorophenylalanine and of alpha-methylparatyrosine. Behav. Biol. 16:353–64
    [Google Scholar]
  131. Sora I, Hall FS, Andrews AM, Itokawa M, Li X-F et al. 2001. Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. PNAS 98:5300–5
    [Google Scholar]
  132. Sora I, Wichems C, Takahashi N, Li X-F, Zeng Z et al. 1998. Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. PNAS 95:7699–704
    [Google Scholar]
  133. Soubrié P. 1986. Reconciling the role of central serotonin neurons in human and animal behavior. Behav. Brain Sci. 9:319–35
    [Google Scholar]
  134. Spaethling JM, Piel D, Dueck H, Buckley PT, Morris JF et al. 2014. Serotonergic neuron regulation informed by in vivo single-cell transcriptomics. FASEB J 28:771–80
    [Google Scholar]
  135. Stratford TR, Wirtshafter D. 1990. Ascending dopaminergic projections from the dorsal raphe nucleus in the rat. Brain Res 511:173–76
    [Google Scholar]
  136. Thiebot MH, Hamon M, Soubrie P 1983. The involvement of nigral serotonin innervation in the control of punishment-induced behavioral inhibition in rats. Pharmacol. Biochem. Behav. 19:225–29
    [Google Scholar]
  137. Underwood MD, Arango V, Bakalian MJ, Ruggiero DA, Mann JJ 1999. Dorsal raphe nucleus serotonergic neurons innervate the rostral ventrolateral medulla in rat. Brain Res 824:45–55
    [Google Scholar]
  138. Van Heeringen C, Audenaert K, Van Laere K, Dumont F, Slegers G et al. 2003. Prefrontal 5-HT2a receptor binding index, hopelessness and personality characteristics in attempted suicide. J. Affect. Disord. 74:149–58
    [Google Scholar]
  139. Vertes RP. 1991. A PHA‐L analysis of ascending projections of the dorsal raphe nucleus in the rat. J. Comp. Neurol. 313:643–68
    [Google Scholar]
  140. Vertes RP, Fortin WJ, Crane AM 1999. Projections of the median raphe nucleus in the rat. J. Comp. Neurol. 407:555–82
    [Google Scholar]
  141. Vertes RP, Kocsis B. 1994. Projections of the dorsal raphe nucleus to the brainstem: PHA‐L analysis in the rat. J. Comp. Neurol. 340:11–26
    [Google Scholar]
  142. Vertes RP, Linley SB. 2008. Efferent and afferent connections of the dorsal and median raphe nuclei in the rat. Serotonin and Sleep: Molecular, Functional and Clinical Aspects JM Monti, SR Pandi-Perumal, BL Jacobs, DJ Nutt 69–102 Berlin: Birkhäuser Verlag
    [Google Scholar]
  143. Voigt J-P, Fink H. 2015. Serotonin controlling feeding and satiety. Behav. Brain Res. 277:14–31
    [Google Scholar]
  144. Vrieze E, Pizzagalli DA, Demyttenaere K, Hompes T, Sienaert P et al. 2013. Reduced reward learning predicts outcome in major depressive disorder. Biol. Psychiatry 73:639–45
    [Google Scholar]
  145. Waider J, Popp S, Mlinar B, Montalbano A, Bonfiglio F et al. 2019. Serotonin deficiency increases context-dependent fear learning through modulation of hippocampal activity. Front. Neurosci. 13:245
    [Google Scholar]
  146. Walsh JJ, Christoffel DJ, Heifets BD, Ben-Dor GA, Selimbeyoglu A et al. 2018. 5-HT release in nucleus accumbens rescues social deficits in mouse autism model. Nature 560:589–94
    [Google Scholar]
  147. Walther DJ, Peter J-U, Bashammakh S, Hörtnagl H, Voits M et al. 2003. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76
    [Google Scholar]
  148. Wang H, Jing M, Li Y 2018. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Curr. Opin. Neurobiol. 50:171–78
    [Google Scholar]
  149. Wang H-L, Zhang S, Qi J, Wang H, Cachope R et al. 2019. Dorsal raphe dual serotonin-glutamate neurons drive reward by establishing excitatory synapses on VTA mesoaccumbens dopamine neurons. Cell Rep 26:1128–42.e7
    [Google Scholar]
  150. Wang QP, Nakai Y. 1994. The dorsal raphe: an important nucleus in pain modulation. Brain Res. Bull. 34:575–85
    [Google Scholar]
  151. Wei C, Han X, Weng D, Feng Q, Qi X et al. 2018. Response dynamics of midbrain dopamine neurons and serotonin neurons to heroin, nicotine, cocaine, and MDMA. Cell Discov 4:60
    [Google Scholar]
  152. Weissbourd B, Ren J, DeLoach KE, Guenthner CJ, Miyamichi K, Luo L 2014. Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron 83:645–62
    [Google Scholar]
  153. Wise CD, Berger BD, Stein L 1970. Serotonin: a possible mediator of behavioral suppression induced by anxiety. Dis. Nerv. Syst. 31:Suppl.34–37
    [Google Scholar]
  154. Wise RA. 1982. Neuroleptics and operant behavior: the anhedonia hypothesis. Behav. Brain Sci. 5:39–53
    [Google Scholar]
  155. Wise RA. 2002. Brain reward circuitry: insights from unsensed incentives. Neuron 36:229–40
    [Google Scholar]
  156. Wise RA, Rompre PP. 1989. Brain dopamine and reward. Annu. Rev. Psychol. 40:191–225
    [Google Scholar]
  157. Zhong W, Li Y, Feng Q, Luo M 2017. Learning and stress shape the reward response patterns of serotonin neurons. J. Neurosci. 37:8863–75
    [Google Scholar]
  158. Zhou J, Jia C, Feng Q, Bao J, Luo M 2015. Prospective coding of dorsal raphe reward signals by the orbitofrontal cortex. J. Neurosci. 35:2717–30
    [Google Scholar]
  159. Zhou L, Liu M-Z, Li Q, Deng J, Mu D, Sun Y-G 2017. Organization of functional long-range circuits controlling the activity of serotonergic neurons in the dorsal raphe nucleus. Cell Rep 18:3018–32
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-093019-112252
Loading
/content/journals/10.1146/annurev-neuro-093019-112252
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error