1932

Abstract

Neural activity and behavior are both notoriously variable, with responses differing widely between repeated presentation of identical stimuli or trials. Recent results in humans and animals reveal that these variations are not random in their nature, but may in fact be due in large part to rapid shifts in neural, cognitive, and behavioral states. Here we review recent advances in the understanding of rapid variations in the waking state, how variations are generated, and how they modulate neural and behavioral responses in both mice and humans. We propose that the brain has an identifiable set of states through which it wanders continuously in a nonrandom fashion, owing to the activity of both ascending modulatory and fast-acting corticocortical and subcortical-cortical neural pathways. These state variations provide the backdrop upon which the brain operates, and understanding them is critical to making progress in revealing the neural mechanisms underlying cognition and behavior.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-100219-105424
2020-07-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/neuro/43/1/annurev-neuro-100219-105424.html?itemId=/content/journals/10.1146/annurev-neuro-100219-105424&mimeType=html&fmt=ahah

Literature Cited

  1. Anton-Erxleben K, Carrasco M. 2013. Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat. Rev. Neurosci. 14:3188–200
    [Google Scholar]
  2. Arazi A, Censor N, Dinstein I 2017. Neural variability quenching predicts individual perceptual abilities. J. Neurosci. 37:197–109
    [Google Scholar]
  3. Arnsten AFT, Wang MJ, Paspalas CD 2012. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76:1223–39
    [Google Scholar]
  4. Aston-Jones G, Cohen JD. 2005. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28:403–50
    [Google Scholar]
  5. Ayaz A, Saleem AB, Schölvinck ML, Carandini M 2013. Locomotion controls spatial integration in mouse visual cortex. Curr. Biol. 23:10890–94
    [Google Scholar]
  6. Baria AT, Maniscalco B, He BJ 2017. Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception. PLOS Comput. Biol. 13:11e1005806
    [Google Scholar]
  7. Baumgarten TJ, Schnitzler A, Lange J 2015. Beta oscillations define discrete perceptual cycles in the somatosensory domain. PNAS 112:3912187–92
    [Google Scholar]
  8. Beaman CB, Eagleman SL, Dragoi V 2017. Sensory coding accuracy and perceptual performance are improved during the desynchronized cortical state. Nat. Commun. 8:11308
    [Google Scholar]
  9. Bennett C, Arroyo S, Hestrin S 2013. Subthreshold mechanisms underlying state-dependent modulation of visual responses. Neuron 80:2350–57
    [Google Scholar]
  10. Bernardi G, Siclari F, Yu X, Zennig C, Bellesi M et al. 2015. Neural and behavioral correlates of extended training during sleep deprivation in humans: evidence for local, task-specific effects. J. Neurosci. 35:114487–500
    [Google Scholar]
  11. Boly M, Balteau E, Schnakers C, Degueldre C, Moonen G et al. 2007. Baseline brain activity fluctuations predict somatosensory perception in humans. PNAS 104:2912187–92
    [Google Scholar]
  12. Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE 2014. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J. Neurosci. 34:134708–27
    [Google Scholar]
  13. Bouvier G, Senzei Y, Scanziani M 2020. Head movements control the activity of primary visual cortex in a luminance dependent manner. bioRxiv 2020.01.20.913160. https://doi.org/10.1101/2020.01.20.913160
    [Crossref]
  14. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW 2012. Control of sleep and wakefulness. Physiol. Rev. 92:31087–187
    [Google Scholar]
  15. Bullock T, Elliott JC, Serences JT, Giesbrecht B 2017. Acute exercise modulates feature-selective responses in human cortex. J. Cogn. Neurosci. 29:4605–18
    [Google Scholar]
  16. Buschman TJ, Kastner S. 2015. From behavior to neural dynamics: an integrated theory of attention. Neuron 88:1127–44
    [Google Scholar]
  17. Buzsaki G. 2006. Rhythms of the Brain New York: Oxford Univ. Press
  18. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A et al. 2010. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13:121526–33
    [Google Scholar]
  19. Caton R. 1887. Researches on electrical phenomena of cerebral grey matter. Transactions of the International Medical Congress: Ninth Session 3: JB Hamilton 246–49 Washington, DC: Int. Med. Congress
    [Google Scholar]
  20. Chakravarthi R, Vanrullen R. 2012. Conscious updating is a rhythmic process. PNAS 109:2610599–604
    [Google Scholar]
  21. Chandler DJ, Gao W-J, Waterhouse BD 2014. Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. PNAS 111:186816–21
    [Google Scholar]
  22. Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR et al. 2010. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13:3369–78
    [Google Scholar]
  23. Cohen MR, Maunsell JHR. 2009. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12:121594–600
    [Google Scholar]
  24. Cohen MR, Maunsell JHR. 2011. When attention wanders: how uncontrolled fluctuations in attention affect performance. J. Neurosci. 31:4415802–6
    [Google Scholar]
  25. Constantinople CM, Bruno RM. 2011. Effects and mechanisms of wakefulness on local cortical networks. Neuron 69:61061–68
    [Google Scholar]
  26. Crochet S, Petersen CCH. 2006. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9:5608–10
    [Google Scholar]
  27. Dasgupta R, Seibt F, Beierlein M 2018. Synaptic release of acetylcholine rapidly suppresses cortical activity by recruiting muscarinic receptors in layer 4. J. Neurosci. 38:235338–50
    [Google Scholar]
  28. Desimone R, Duncan J. 1995. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18:193–222
    [Google Scholar]
  29. Dipoppa M, Ranson A, Krumin M, Pachitariu M, Carandini M, Harris KD 2018. Vision and locomotion shape the interactions between neuron types in mouse visual cortex. Neuron 98:3602–15.e8
    [Google Scholar]
  30. Drew PJ. 2019. Vascular and neural basis of the BOLD signal. Curr. Opin. Neurobiol. 58:61–69
    [Google Scholar]
  31. Eggermann E, Kremer Y, Crochet S, Petersen CCH 2014. Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell Rep 9:51654–60
    [Google Scholar]
  32. Einstein MC, Polack P-O, Tran DT, Golshani P 2017. Visually evoked 3–5 Hz membrane potential oscillations reduce the responsiveness of visual cortex neurons in awake behaving mice. J. Neurosci. 37:205084–98
    [Google Scholar]
  33. Erisken S, Vaiceliunaite A, Jurjut O, Fiorini M, Katzner S, Busse L 2014. Effects of locomotion extend throughout the mouse early visual system. Curr. Biol. 24:242899–907
    [Google Scholar]
  34. Fanselow EE, Nicolelis MA. 1999. Behavioral modulation of tactile responses in the rat somatosensory system. J. Neurosci. 19:177603–16
    [Google Scholar]
  35. Ferguson KA, Cardin JA. 2020. Mechanisms underlying gain modulation in the cortex. Nat. Rev. Neurosci. 21:280–92
    [Google Scholar]
  36. Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP et al. 2014. A cortical circuit for gain control by behavioral state. Cell 156:61139–52
    [Google Scholar]
  37. Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CCH 2010. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65:3422–35
    [Google Scholar]
  38. Goard M, Dan Y. 2009. Basal forebrain activation enhances cortical coding of natural scenes. Nat. Neurosci. 12:111444–49
    [Google Scholar]
  39. Guitchounts G, Masis J, Wolf SBE, Cox D 2020. Encoding of 3D head orienting movements in primary visual cortex. bioRxiv 2020.01.16.909473. https://doi.org/10.1101/2020.01.16.909473
    [Crossref]
  40. Guo ZV, Li N, Huber D, Ophir E, Gutnisky D et al. 2014. Flow of cortical activity underlying a tactile decision in mice. Neuron 81:1179–94
    [Google Scholar]
  41. Haider B, Duque A, Hasenstaub AR, McCormick DA 2006. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26:174535–45
    [Google Scholar]
  42. Haider B, Duque A, Hasenstaub AR, Yu Y, McCormick DA 2007. Enhancement of visual responsiveness by spontaneous local network activity in vivo. J. Neurophysiol. 97:64186–202
    [Google Scholar]
  43. Haider B, McCormick DA. 2009. Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62:2171–89
    [Google Scholar]
  44. Harris KD, Thiele A. 2011. Cortical state and attention. Nat. Rev. Neurosci. 12:9509–23
    [Google Scholar]
  45. Hasenstaub A, Sachdev RNS, McCormick DA 2007. State changes rapidly modulate cortical neuronal responsiveness. J. Neurosci. 27:369607–22
    [Google Scholar]
  46. He BJ. 2013. Spontaneous and task-evoked brain activity negatively interact. J. Neurosci. 33:114672–82
    [Google Scholar]
  47. He BJ. 2018. Robust, transient neural dynamics during conscious perception. Trends Cogn. Sci. 22:7563–65
    [Google Scholar]
  48. He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME 2008. Electrophysiological correlates of the brain's intrinsic large-scale functional architecture. PNAS 105:4116039–44
    [Google Scholar]
  49. He BJ, Zempel JM. 2013. Average is optimal: an inverted-U relationship between trial-to-trial brain activity and behavioral performance. PLOS Comput. Biol. 9:11e1003348
    [Google Scholar]
  50. Hedrick T, Waters J. 2015. Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors. J. Neurophysiol. 113:72195–209
    [Google Scholar]
  51. Hesselmann G, Kell CA, Eger E, Kleinschmidt A 2008. Spontaneous local variations in ongoing neural activity bias perceptual decisions. PNAS 105:3110984–89
    [Google Scholar]
  52. Hill DN, Curtis JC, Moore JD, Kleinfeld D 2011. Primary motor cortex reports efferent control of vibrissa motion on multiple timescales. Neuron 72:2344–56
    [Google Scholar]
  53. Huber R, Ghilardi MF, Massimini M, Tononi G 2004. Local sleep and learning. Nature 430:699578–81
    [Google Scholar]
  54. Iemi L, Chaumon M, Crouzet SM, Busch NA 2017. Spontaneous neural oscillations bias perception by modulating baseline excitability. J. Neurosci. 37:4807–19
    [Google Scholar]
  55. Inagaki HK, Fontolan L, Romani S, Svoboda K 2019. Discrete attractor dynamics underlies persistent activity in the frontal cortex. Nature 566:7743212–17
    [Google Scholar]
  56. Inagaki HK, Inagaki M, Romani S, Svoboda K 2018. Low-dimensional and monotonic preparatory activity in mouse anterior lateral motor cortex. J. Neurosci. 38:174163–85
    [Google Scholar]
  57. Jacobs EAK, Steinmetz NA, Carandini M, Harris KD 2018. Cortical state fluctuations during sensory decision making. bioRxiv 348193. https://doi.org/10.1101/348193
    [Crossref]
  58. Jones BE. 2019. Arousal and sleep circuits. Neuropsychopharmacology 45:16–20
    [Google Scholar]
  59. Kahn I, Knoblich U, Desai M, Bernstein J, Graybiel AM et al. 2013. Optogenetic drive of neocortical pyramidal neurons generates fMRI signals that are correlated with spiking activity. Brain Res 1511:33–45
    [Google Scholar]
  60. Khader P, Schicke T, Röder B, Rösler F 2008. On the relationship between slow cortical potentials and BOLD signal changes in humans. Int. J. Psychophysiol. 67:3252–61
    [Google Scholar]
  61. Khan AG, Hofer SB. 2018. Contextual signals in visual cortex. Curr. Opin. Neurobiol. 52:131–38
    [Google Scholar]
  62. Kim J-H, Jung A-H, Jeong D, Choi I, Kim K et al. 2016. Selectivity of neuromodulatory projections from the basal forebrain and locus ceruleus to primary sensory cortices. J. Neurosci. 36:195314–27
    [Google Scholar]
  63. Kyriakatos A, Sadashivaiah V, Zhang Y, Motta A, Auffret M, Petersen CCH 2017. Voltage-sensitive dye imaging of mouse neocortex during a whisker detection task. Neurophotonics 4:3031204
    [Google Scholar]
  64. Lee AM, Hoy JL, Bonci A, Wilbrecht L, Stryker MP, Niell CM 2014. Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron 83:2455–66
    [Google Scholar]
  65. Lee CCY, Diamond ME, Arabzadeh E 2016. Sensory prioritization in rats: behavioral performance and neuronal correlates. J. Neurosci. 36:113243–53
    [Google Scholar]
  66. Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B 2013. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat. Neurosci. 16:111662–70
    [Google Scholar]
  67. Lee S-H, Dan Y. 2012. Neuromodulation of brain states. Neuron 76:1209–22
    [Google Scholar]
  68. Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB 2017. A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95:61420–32.e5
    [Google Scholar]
  69. Letzkus JJ, Wolff SBE, Lüthi A 2015. Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88:2264–76
    [Google Scholar]
  70. Letzkus JJ, Wolff SBE, Meyer EMM, Tovote P, Courtin J et al. 2011. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480:7377331–35
    [Google Scholar]
  71. Li N, Chen T-W, Guo ZV, Gerfen CR, Svoboda K 2015. A motor cortex circuit for motor planning and movement. Nature 519:754151–56
    [Google Scholar]
  72. Li N, Daie K, Svoboda K, Druckmann S 2016. Robust neuronal dynamics in premotor cortex during motor planning. Nature 532:7600459–64
    [Google Scholar]
  73. Liu D, Dan Y. 2019. A motor theory of sleep-wake control: arousal-action circuit. Annu. Rev. Neurosci. 42:27–46
    [Google Scholar]
  74. Lovett-Barron M, Andalman AS, Allen WE, Vesuna S, Kauvar I et al. 2017. Ancestral circuits for the coordinated modulation of brain state. Cell 171:61411–23.e17
    [Google Scholar]
  75. Luczak A, Barthó P, Harris KD 2009. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62:3413–25
    [Google Scholar]
  76. Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T 2009. To see or not to see: prestimulus phase predicts visual awareness. J. Neurosci. 29:92725–32
    [Google Scholar]
  77. Maunsell JHR. 2015. Neuronal mechanisms of visual attention. Annu. Rev. Vis. Sci. 1:373–91
    [Google Scholar]
  78. Maunsell JHR, Treue S. 2006. Feature-based attention in visual cortex. Trends Neurosci 29:6317–22
    [Google Scholar]
  79. McCormick DA, Bal T. 1997. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20:185–215
    [Google Scholar]
  80. McCormick DA, McGinley MJ, Salkoff DB 2015. Brain state dependent activity in the cortex and thalamus. Curr. Opin. Neurobiol. 31:133–40
    [Google Scholar]
  81. McGinley MJ, David SV, McCormick DA 2015a. Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87:1179–92
    [Google Scholar]
  82. McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E et al. 2015b. Waking state: Rapid variations modulate neural and behavioral responses. Neuron 87:61143–61
    [Google Scholar]
  83. Meir I, Katz Y, Lampl I 2018. Membrane potential correlates of network decorrelation and improved SNR by cholinergic activation in the somatosensory cortex. J. Neurosci. 38:5010692–708
    [Google Scholar]
  84. Metherate R, Cox CL, Ashe JH 1992. Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J. Neurosci. 12:124701–11
    [Google Scholar]
  85. Mitchell JF, Sundberg KA, Reynolds JH 2009. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63:6879–88
    [Google Scholar]
  86. Mitra A, Kraft A, Wright P, Acland B, Snyder AZ et al. 2018. Spontaneous infra-slow brain activity has unique spatiotemporal dynamics and laminar structure. Neuron 98:2297–305.e6
    [Google Scholar]
  87. Monto S, Palva S, Voipio J, Palva JM 2008. Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. J. Neurosci. 28:338268–72
    [Google Scholar]
  88. Muñoz W, Rudy B. 2014. Spatiotemporal specificity in cholinergic control of neocortical function. Curr. Opin. Neurobiol. 26:149–60
    [Google Scholar]
  89. Murphy BK, Miller KD. 2003. Multiplicative gain changes are induced by excitation or inhibition alone. J. Neurosci. 23:3110040–51
    [Google Scholar]
  90. Musall S, Kaufman MT, Juavinett AL, Gluf S, Churchland AK 2019. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22:1677–86
    [Google Scholar]
  91. Nandy AS, Nassi JJ, Jadi MP, Reynolds J 2019. Optogenetically induced low-frequency correlations impair perception. eLife 8:e35123
    [Google Scholar]
  92. Nandy AS, Nassi JJ, Reynolds JH 2017. Laminar organization of attentional modulation in macaque visual area V4. Neuron 93:1235–46
    [Google Scholar]
  93. Nelson A, Mooney R. 2016. The basal forebrain and motor cortex provide convergent yet distinct movement-related inputs to the auditory cortex. Neuron 90:3635–48
    [Google Scholar]
  94. Neske GT, Nestvogel D, Steffan PJ, McCormick DA 2019. Distinct waking states for strong evoked responses in primary visual cortex and optimal visual detection performance. J. Neurosci. 39:5010044–59
    [Google Scholar]
  95. Ni AM, Ruff DA, Alberts JJ, Symmonds J, Cohen MR 2018. Learning and attention reveal a general relationship between population activity and behavior. Science 359:6374463–65
    [Google Scholar]
  96. Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:4472–79
    [Google Scholar]
  97. Nir Y, Andrillon T, Marmelshtein A, Suthana N, Cirelli C et al. 2017. Selective neuronal lapses precede human cognitive lapses following sleep deprivation. Nat. Med. 23:121474–80
    [Google Scholar]
  98. Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C et al. 2011. Regional slow waves and spindles in human sleep. Neuron 70:1153–69
    [Google Scholar]
  99. Nobre AC, van Ede F 2018. Anticipated moments: temporal structure in attention. Nat. Rev. Neurosci. 19:134–48
    [Google Scholar]
  100. Oh SW, Harris JA, Ng L, Winslow B, Cain N et al. 2014. A mesoscale connectome of the mouse brain. Nature 508:7495207–14
    [Google Scholar]
  101. Pan W-J, Thompson GJ, Magnuson ME, Jaeger D, Keilholz S 2013. Infraslow LFP correlates to resting-state fMRI BOLD signals. Neuroimage 74:288–97
    [Google Scholar]
  102. Petersen CCH. 2019. Sensorimotor processing in the rodent barrel cortex. Nat. Rev. Neurosci. 20:9533–46
    [Google Scholar]
  103. Petersen SE, Sporns O. 2015. Brain networks and cognitive architectures. Neuron 88:1207–19
    [Google Scholar]
  104. Pfaff DW, Martin EM, Faber D 2012. Origins of arousal: roles for medullary reticular neurons. Trends Neurosci 35:8468–76
    [Google Scholar]
  105. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M 2013. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16:81068–76
    [Google Scholar]
  106. Pi H-J, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A 2013. Cortical interneurons that specialize in disinhibitory control. Nature 503:7477521–24
    [Google Scholar]
  107. Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC et al. 2013. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat. Neurosci. 16:121857–63
    [Google Scholar]
  108. Podvalny E, Flounders MW, King LE, Holroyd T, He BJ 2019. A dual role of prestimulus spontaneous neural activity in visual object recognition. Nat. Commun. 10:13910
    [Google Scholar]
  109. Polack P-O, Friedman J, Golshani P 2013. Cellular mechanisms of brain state–dependent gain modulation in visual cortex. Nat. Neurosci. 16:91331–39
    [Google Scholar]
  110. Poulet JFA, Crochet S. 2018. The cortical states of wakefulness. Front. Syst. Neurosci. 12:64
    [Google Scholar]
  111. Poulet JFA, Fernandez LMJ, Crochet S, Petersen CCH 2012. Thalamic control of cortical states. Nat. Neurosci. 15:3370–72
    [Google Scholar]
  112. Raichle ME. 2015. The brain's default mode network. Annu. Rev. Neurosci. 38:433–47
    [Google Scholar]
  113. Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS 2014. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84:2355–62
    [Google Scholar]
  114. Reimer J, McGinley MJ, Liu Y, Rodenkirch C, Wang Q et al. 2016. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat. Commun. 7:13289
    [Google Scholar]
  115. Reynolds JH, Chelazzi L. 2004. Attentional modulation of visual processing. Annu. Rev. Neurosci. 27:611–47
    [Google Scholar]
  116. Rockstroh B, Elbert T, Canavan A, Lutzenberger W, Birbaumer N 1989. Slow Brain Potentials and Behavior Munich: Urban & Schwarzenberg. , 2nd ed..
  117. Ruff DA, Ni AM, Cohen MR 2018. Cognition as a window into neuronal population space. Annu. Rev. Neurosci. 41:77–97
    [Google Scholar]
  118. Sachidhanandam S, Sreenivasan V, Kyriakatos A, Kremer Y, Petersen CCH 2013. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16:111671–77
    [Google Scholar]
  119. Sadaghiani S, Hesselmann G, Kleinschmidt A 2009. Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. J. Neurosci. 29:4213410–17
    [Google Scholar]
  120. Salkoff DB, Zagha E, McCarthy E, McCormick DA 2020. Movement and performance explain widespread cortical activity in a visual detection task. Cereb. Cortex 30:421–37
    [Google Scholar]
  121. Sanchez-Vives MV, McCormick DA. 2000. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3:101027–34
    [Google Scholar]
  122. Saper CB, Fuller PM. 2017. Wake-sleep circuitry: an overview. Curr. Opin. Neurobiol. 44:186–92
    [Google Scholar]
  123. Sara SJ. 2009. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10:3211–23
    [Google Scholar]
  124. Sara SJ, Bouret S. 2012. Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron 76:1130–41
    [Google Scholar]
  125. Scammell TE, Arrigoni E, Lipton JO 2017. Neural circuitry of wakefulness and sleep. Neuron 93:4747–65
    [Google Scholar]
  126. Schneider DM, Mooney R. 2018. How movement modulates hearing. Annu. Rev. Neurosci. 41:553–72
    [Google Scholar]
  127. Schneider DM, Nelson A, Mooney R 2014. A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature 513:7517189–94
    [Google Scholar]
  128. Schröder S, Steinmetz NA, Krumin M, Pachitariu M, Rizzi M et al. 2019. Retinal outputs depend on behavioural state. bioRxiv 638049. https://doi.org/10.1101/638049
    [Crossref]
  129. Schroeder CE, Lakatos P. 2009. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32:19–18
    [Google Scholar]
  130. Sederberg AJ, Pala A, Zheng HJV, He BJ, Stanley GB 2019. State-aware detection of sensory stimuli in the cortex of the awake mouse. PLOS Comput. Biol. 15:5e1006716
    [Google Scholar]
  131. Shimaoka D, Harris KD, Carandini M 2018. Effects of arousal on mouse sensory cortex depend on modality. Cell Rep 22:123160–67
    [Google Scholar]
  132. Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA 2003. Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J. Neurosci. 23:3210388–401
    [Google Scholar]
  133. Sommer MA, Wurtz RH. 2008. Brain circuits for the internal monitoring of movements. Annu. Rev. Neurosci. 31:317–38
    [Google Scholar]
  134. Speed A, Del Rosario J, Burgess CP, Haider B 2019. Cortical state fluctuations across layers of V1 during visual spatial perception. Cell Rep 26:112868–74.e3
    [Google Scholar]
  135. Speed A, Del Rosario J, Mikail N, Haider B 2020. Spatial attention enhances network, cellular and subthreshold responses in mouse visual cortex. Nat. Commun. 11:1505
    [Google Scholar]
  136. Spitzer H, Desimone R, Moran J 1988. Increased attention enhances both behavioral and neuronal performance. Science 240:4850338–40
    [Google Scholar]
  137. Steinmetz NA, Moore T. 2010. Changes in the response rate and response variability of area V4 neurons during the preparation of saccadic eye movements. J. Neurophysiol. 103:31171–78
    [Google Scholar]
  138. Steinmetz NA, Zatka-Haas P, Carandini M, Harris KD 2019. Distributed coding of choice, action and engagement across the mouse brain. Nature 576:266–73
    [Google Scholar]
  139. Steriade M. 2003. Neuronal Substrates of Sleep and Epilepsy New York: Cambridge Univ. Press
  140. Steriade M, McCormick DA, Sejnowski TJ 1993. Thalamocortical oscillations in the sleeping and aroused brain. Science 262:5134679–85
    [Google Scholar]
  141. Steriade M, Timofeev I, Grenier F 2001. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85:51969–85
    [Google Scholar]
  142. Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD 2019. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364:6437 eaav7893
    [Google Scholar]
  143. Stroh A, Adelsberger H, Groh A, Rühlmann C, Fischer S et al. 2013. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 77:61136–50
    [Google Scholar]
  144. Tan AYY, Chen Y, Scholl B, Seidemann E, Priebe NJ 2014. Sensory stimulation shifts visual cortex from synchronous to asynchronous states. Nature 509:7499226–29
    [Google Scholar]
  145. Thiele A, Bellgrove MA. 2018. Neuromodulation of attention. Neuron 97:4769–85
    [Google Scholar]
  146. Tononi G, Cirelli C. 2014. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81:112–34
    [Google Scholar]
  147. Totah NK, Neves RM, Panzeri S, Logothetis NK, Eschenko O 2018. The locus coeruleus is a complex and differentiated neuromodulatory system. Neuron 99:51055–68.e6
    [Google Scholar]
  148. Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones G 1999. The role of locus coeruleus in the regulation of cognitive performance. Science 283:5401549–54
    [Google Scholar]
  149. van den Brink RL, Pfeffer T, Donner TH 2019. Brainstem modulation of large-scale intrinsic cortical activity correlations. Front. Hum. Neurosci. 13:340
    [Google Scholar]
  150. van Dijk H, Schoffelen J-M, Oostenveld R, Jensen O 2008. Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J. Neurosci. 28:81816–23
    [Google Scholar]
  151. Vidaurre D, Smith SM, Woolrich MW 2017. Brain network dynamics are hierarchically organized in time. PNAS 114:4812827–32
    [Google Scholar]
  152. Vinck M, Batista-Brito R, Knoblich U, Cardin JA 2015. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86:3740–54
    [Google Scholar]
  153. Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G 2011. Local sleep in awake rats. Nature 472:7344443–47
    [Google Scholar]
  154. Waschke L, Tune S, Obleser J 2019. Local cortical desynchronization and pupil-linked arousal differentially shape brain states for optimal sensory performance. eLife 8:e51501
    [Google Scholar]
  155. Weisz N, Wühle A, Monittola G, Demarchi G, Frey J et al. 2014. Prestimulus oscillatory power and connectivity patterns predispose conscious somatosensory perception. PNAS 111:4E417–25
    [Google Scholar]
  156. Williamson RS, Hancock KE, Shinn-Cunningham BG, Polley DB 2015. Locomotion and task demands differentially modulate thalamic audiovisual processing during active search. Curr. Biol. 25:141885–91
    [Google Scholar]
  157. Xie L, Kang H, Xu Q, Chen MJ, Liao Y et al. 2013. Sleep drives metabolite clearance from the adult brain. Science 342:6156373–77
    [Google Scholar]
  158. Yamashita T, Pala A, Pedrido L, Kremer Y, Welker E, Petersen CCH 2013. Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron 80:61477–90
    [Google Scholar]
  159. Yamashita T, Petersen CC. 2016. Target-specific membrane potential dynamics of neocortical projection neurons during goal-directed behavior. eLife 5:e15798
    [Google Scholar]
  160. Yellin D, Berkovich-Ohana A, Malach R 2015. Coupling between pupil fluctuations and resting-state fMRI uncovers a slow build-up of antagonistic responses in the human cortex. Neuroimage 106:414–27
    [Google Scholar]
  161. Yerkes RM, Dodson JD. 1908. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18:5459–82
    [Google Scholar]
  162. Záborszky L, Gombkoto P, Varsanyi P, Gielow MR, Poe G et al. 2018. Specific basal forebrain-cortical cholinergic circuits coordinate cognitive operations. J. Neurosci. 38:449446–58
    [Google Scholar]
  163. Zagha E, Casale AE, Sachdev RNS, McGinley MJ, McCormick DA 2013. Motor cortex feedback influences sensory processing by modulating network state. Neuron 79:3567–78
    [Google Scholar]
  164. Zagha E, Ge X, McCormick DA 2015. Competing neural ensembles in motor cortex gate goal-directed motor output. Neuron 88:3565–77
    [Google Scholar]
  165. Zagha E, McCormick DA. 2014. Neural control of brain state. Curr. Opin. Neurobiol. 29:178–86
    [Google Scholar]
  166. Zatka-Haas P, Steinmetz NA, Carandini M, Harris KD 2018. Distinct contributions of mouse cortical areas to visual discrimination. bioRxiv 501627. https://doi.org/10.1101/501627
    [Crossref]
  167. Zhang M, Wang X, Goldberg ME 2014. A spatially nonselective baseline signal in parietal cortex reflects the probability of a monkey's success on the current trial. PNAS 111:248967–72
    [Google Scholar]
  168. Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang W-C et al. 2014. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345:6197660–65
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-100219-105424
Loading
/content/journals/10.1146/annurev-neuro-100219-105424
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error