1932

Abstract

Autophagy is an evolutionarily conserved catabolic process that targets different types of cytoplasmic cargo (such as bulk cytoplasm, damaged cellular organelles, and misfolded protein aggregates) for lysosomal degradation. Autophagy is activated in response to biological stress and also plays a critical role in the maintenance of normal cellular homeostasis; the latter function is particularly important for the integrity of postmitotic, metabolically active tissues, such as skeletal muscle. Through impairment of muscle homeostasis, autophagy dysfunction contributes to the pathogenesis of many different skeletal myopathies; the observed autophagy defects differ from disease to disease but have been shown to involve all steps of the autophagic cascade (from induction to lysosomal cargo degradation) and to impair both bulk and selective autophagy. To highlight the molecular and cellular mechanisms that are shared among different myopathies with deficient autophagy, these disorders are discussed based on the nature of the underlying autophagic defect rather than etiology or clinical presentation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032618
2020-01-24
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathmechdis-012419-032618.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032618&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Parzych KR, Klionsky DJ. 2014. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal. 20:460–73
    [Google Scholar]
  2. 2. 
    Feng Y, Yao Z, Klionsky DJ 2015. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 25:354–63
    [Google Scholar]
  3. 3. 
    Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM et al. 2017. Molecular definitions of autophagy and related processes. EMBO J 36:1811–36
    [Google Scholar]
  4. 4. 
    Kast DJ, Dominguez R. 2017. The cytoskeleton–autophagy connection. Curr. Biol. 27:R318–26
    [Google Scholar]
  5. 5. 
    Dikic I, Elazar Z. 2018. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19:349–64
    [Google Scholar]
  6. 6. 
    Danieli A, Martens S. 2018. p62-mediated phase separation at the intersection of the ubiquitin-proteasome system and autophagy. J. Cell Sci. 131:jcs214304
    [Google Scholar]
  7. 7. 
    Kalimo H, Savontaus ML, Lang H, Paljarvi L, Sonninen V et al. 1988. X-linked myopathy with excessive autophagy: a new hereditary muscle disease. Ann. Neurol. 23:258–65
    [Google Scholar]
  8. 8. 
    Dowling JJ, Moore SA, Kalimo H, Minassian BA 2015. X-linked myopathy with excessive autophagy: a failure of self-eating. Acta Neuropathol 129:383–90
    [Google Scholar]
  9. 9. 
    Saraste A, Koskenvuo JW, Airaksinen J, Ramachandran N, Munteanu I et al. 2015. No cardiomyopathy in X-linked myopathy with excessive autophagy. Neuromuscul. Disord. 25:485–87
    [Google Scholar]
  10. 10. 
    Munteanu I, Kalimo H, Saraste A, Nishino I, Minassian BA 2017. Cardiac autophagic vacuolation in severe X-linked myopathy with excessive autophagy. Neuromuscul. Disord. 27:185–87
    [Google Scholar]
  11. 11. 
    De Bleecker JL, Engel AG, Winkelmann JC 1993. Localization of dystrophin and β-spectrin in vacuolar myopathies. Am. J. Pathol. 143:1200–8
    [Google Scholar]
  12. 12. 
    Holton JL, Beesley C, Jackson M, Venner K, Bhardwaj N et al. 2006. Autophagic vacuolar myopathy in twin girls. Neuropathol. Appl. Neurobiol. 32:253–59
    [Google Scholar]
  13. 13. 
    Stenzel W, Nishino I, von Moers A, Kadry MA, Glaeser D et al. 2013. Juvenile autophagic vacuolar myopathy—a new entity or variant?. Neuropathol. Appl. Neurobiol. 39:449–53
    [Google Scholar]
  14. 14. 
    Ramachandran N, Munteanu I, Wang P, Ruggieri A, Rilstone JJ et al. 2013. VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathol 125:439–57
    [Google Scholar]
  15. 15. 
    Shippey EA, Wagler VD, Collamer AN 2018. Hydroxychloroquine: an old drug with new relevance. Clevel. Clin. J. Med. 85:459–67
    [Google Scholar]
  16. 16. 
    Ding HJ, Denniston AK, Rao VK, Gordon C 2016. Hydroxychloroquine-related retinal toxicity. Rheumatology 55:957–67
    [Google Scholar]
  17. 17. 
    Lee HS, Daniels BH, Salas E, Bollen AW, Debnath J, Margeta M 2012. Clinical utility of LC3 and p62 immunohistochemistry in diagnosis of drug-induced autophagic vacuolar myopathies: a case–control study. PLOS ONE 7:e36221
    [Google Scholar]
  18. 18. 
    Daniels BH, McComb RD, Mobley BC, Gultekin SH, Lee HS, Margeta M 2013. LC3 and p62 as diagnostic markers of drug-induced autophagic vacuolar cardiomyopathy: a study of three cases. Am. J. Surg. Pathol. 37:1014–21
    [Google Scholar]
  19. 19. 
    Avina-Zubieta JA, Johnson ES, Suarez-Almazor ME, Russell AS 1995. Incidence of myopathy in patients treated with antimalarials: a report of three cases and a review of the literature. Br. J. Rheumatol. 34:166–70
    [Google Scholar]
  20. 20. 
    Casado E, Gratacos J, Tolosa C, Martinez JM, Ojanguren I et al. 2006. Antimalarial myopathy: an underdiagnosed complication? Prospective longitudinal study of 119 patients. Ann. Rheum. Dis. 65:385–90
    [Google Scholar]
  21. 21. 
    Kumamoto T, Araki S, Watanabe S, Ikebe N, Fukuhara N 1989. Experimental chloroquine myopathy: morphological and biochemical studies. Eur. Neurol. 29:202–7
    [Google Scholar]
  22. 22. 
    Suzuki T, Nakagawa M, Yoshikawa A, Sasagawa N, Yoshimori T et al. 2002. The first molecular evidence that autophagy relates rimmed vacuole formation in chloroquine myopathy. J. Biochem. 131:647–51
    [Google Scholar]
  23. 23. 
    Ohkuma S, Poole B. 1978. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. PNAS 75:3327–31
    [Google Scholar]
  24. 24. 
    Stauber WT, Hedge AM, Trout JJ, Schottelius BA 1981. Inhibition of lysosomal function in red and white skeletal muscles by chloroquine. Exp. Neurol. 71:295–306
    [Google Scholar]
  25. 25. 
    Yoon YH, Cho KS, Hwang JJ, Lee SJ, Choi JA, Koh JY 2010. Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Investig. Ophthalmol. Vis. Sci. 51:6030–37
    [Google Scholar]
  26. 26. 
    Lie SO, Schofield B. 1973. Inactivation of lysosomal function in normal cultured human fibroblasts by chloroquine. Biochem. Pharmacol. 22:3109–14
    [Google Scholar]
  27. 27. 
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H et al. 2016. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222
    [Google Scholar]
  28. 28. 
    Sundelin SP, Terman A. 2002. Different effects of chloroquine and hydroxychloroquine on lysosomal function in cultured retinal pigment epithelial cells. APMIS 110:481–89
    [Google Scholar]
  29. 29. 
    Radke J, Stenzel W, Goebel HH 2015. Human NCL neuropathology. Biochim. Biophys. Acta Mol. Basis Dis. 1852:2262–66
    [Google Scholar]
  30. 30. 
    Cortese A, Tucci A, Piccolo G, Galimberti CA, Fratta P et al. 2014. Novel CLN3 mutation causing autophagic vacuolar myopathy. Neurology 82:2072–76
    [Google Scholar]
  31. 31. 
    Licchetta L, Bisulli F, Fietz M, Valentino ML, Morbin M et al. 2015. A novel mutation of CLN3 associated with delayed-classic juvenile ceroid lipofuscinois and autophagic vacuolar myopathy. Eur. J. Med. Genet. 58:540–44
    [Google Scholar]
  32. 32. 
    Radke J, Koll R, Gill E, Wiese L, Schulz A et al. 2018. Autophagic vacuolar myopathy is a common feature of CLN3 disease. Ann. Clin. Transl. Neurol. 5:1385–93
    [Google Scholar]
  33. 33. 
    Engel AG. 1970. Acid maltase deficiency in adults: studies in four cases of a syndrome which may mimic muscular dystrophy or other myopathies. Brain 93:599–616
    [Google Scholar]
  34. 34. 
    Raben N, Takikita S, Pittis MG, Bembi B, Marie SK et al. 2007. Deconstructing Pompe disease by analyzing single muscle fibers: “to see a world in a grain of sand….”. Autophagy 3:546–52
    [Google Scholar]
  35. 35. 
    Raben N, Baum R, Schreiner C, Takikita S, Mizushima N et al. 2009. When more is less: Excess and deficiency of autophagy coexist in skeletal muscle in Pompe disease. Autophagy 5:111–13
    [Google Scholar]
  36. 36. 
    Carcel-Trullols J, Kovacs AD, Pearce DA 2015. Cell biology of the NCL proteins: what they do and don't do. Biochim. Biophys. Acta Mol. Basis Dis. 1852:2242–55
    [Google Scholar]
  37. 37. 
    Vidal-Donet JM, Carcel-Trullols J, Casanova B, Aguado C, Knecht E 2013. Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts. PLOS ONE 8:e55526
    [Google Scholar]
  38. 38. 
    Kohler L, Puertollano R, Raben N 2018. Pompe disease: from basic science to therapy. Neurotherapeutics 15:928–42
    [Google Scholar]
  39. 39. 
    Prater SN, Banugaria SG, DeArmey SM, Botha EG, Stege EM et al. 2012. The emerging phenotype of long-term survivors with infantile Pompe disease. Genet. Med. 14:800–10
    [Google Scholar]
  40. 40. 
    Chan J, Desai AK, Kazi ZB, Corey K, Austin S et al. 2017. The emerging phenotype of late-onset Pompe disease: a systematic literature review. Mol. Genet. Metab. 120:163–72
    [Google Scholar]
  41. 41. 
    Takemura G, Kanamori H, Okada H, Tsujimoto A, Miyazaki N et al. 2017. Ultrastructural aspects of vacuolar degeneration of cardiomyocytes in human endomyocardial biopsies. Cardiovasc. Pathol. 30:64–71
    [Google Scholar]
  42. 42. 
    Lagalice L, Pichon J, Gougeon E, Soussi S, Deniaud J et al. 2018. Satellite cells fail to contribute to muscle repair but are functional in Pompe disease (glycogenosis type II). Acta Neuropathol. Commun. 6:116
    [Google Scholar]
  43. 43. 
    Schaaf GJ, van Gestel TJM, in ’t Groen SLM, de Jong B, Boomaars B et al. 2018. Satellite cells maintain regenerative capacity but fail to repair disease-associated muscle damage in mice with Pompe disease. Acta Neuropathol. Commun. 6:119
    [Google Scholar]
  44. 44. 
    Nascimbeni AC, Fanin M, Angelini C, Sandri M 2015. New pathogenetic mechanisms that link autophagy to Pompe disease. J. Neuromuscul. Dis. 2:Suppl. 1S9
    [Google Scholar]
  45. 45. 
    Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A 2012. Autophagy in lysosomal storage disorders. Autophagy 8:719–30
    [Google Scholar]
  46. 46. 
    Danon MJ, Oh SJ, DiMauro S, Manaligod JR, Eastwood A et al. 1981. Lysosomal glycogen storage disease with normal acid maltase. Neurology 31:51–57
    [Google Scholar]
  47. 47. 
    Endo Y, Furuta A, Nishino I 2015. Danon disease: a phenotypic expression of LAMP-2 deficiency. Acta Neuropathol 129:391–98
    [Google Scholar]
  48. 48. 
    Rowland TJ, Sweet ME, Mestroni L, Taylor MR 2016. Danon disease—dysregulation of autophagy in a multisystem disorder with cardiomyopathy. J. Cell Sci. 129:2135–43
    [Google Scholar]
  49. 49. 
    Nascimbeni AC, Fanin M, Angelini C, Sandri M 2017. Autophagy dysregulation in Danon disease. Cell Death Dis 8:e2565
    [Google Scholar]
  50. 50. 
    Furuta A, Wakabayashi K, Haratake J, Kikuchi H, Kabuta T et al. 2013. Lysosomal storage and advanced senescence in the brain of LAMP-2-deficient Danon disease. Acta Neuropathol 125:459–61
    [Google Scholar]
  51. 51. 
    Chi C, Leonard A, Knight WE, Beussman KM, Zhao Y et al. 2019. LAMP-2B regulates human cardiomyocyte function by mediating autophagosome–lysosome fusion. PNAS 116:556–65
    [Google Scholar]
  52. 52. 
    Finkelstein Y, Aks SE, Hutson JR, Juurlink DN, Nguyen P et al. 2010. Colchicine poisoning: the dark side of an ancient drug. Clin. Toxicol. 48:407–14
    [Google Scholar]
  53. 53. 
    Kuncl RW, Duncan G, Watson D, Alderson K, Rogawski MA, Peper M 1987. Colchicine myopathy and neuropathy. N. Engl. J. Med. 316:1562–68
    [Google Scholar]
  54. 54. 
    Kwon OC, Hong S, Ghang B, Kim YG, Lee CK, Yoo B 2017. Risk of colchicine-associated myopathy in gout: influence of concomitant use of statin. Am. J. Med. 130:583–87
    [Google Scholar]
  55. 55. 
    Fernandez C, Figarella-Branger D, Alla P, Harle JR, Pellissier JF 2002. Colchicine myopathy: a vacuolar myopathy with selective type I muscle fiber involvement. An immunohistochemical and electron microscopic study of two cases. Acta Neuropathol 103:100–6
    [Google Scholar]
  56. 56. 
    Kuncl RW. 2009. Agents and mechanisms of toxic myopathy. Curr. Opin. Neurol. 22:506–15
    [Google Scholar]
  57. 57. 
    Shinde A, Nakano S, Abe M, Kohara N, Akiguchi I, Shibasaki H 2000. Accumulation of microtubule-based motor protein in a patient with colchicine myopathy. Neurology 55:1414–15
    [Google Scholar]
  58. 58. 
    Ju JS, Varadhachary AS, Miller SE, Weihl CC 2010. Quantitation of “autophagic flux” in mature skeletal muscle. Autophagy 6:929–35
    [Google Scholar]
  59. 59. 
    Ching JK, Ju JS, Pittman SK, Margeta M, Weihl CC 2013. Increased autophagy accelerates colchicine-induced muscle toxicity. Autophagy 9:2115–25
    [Google Scholar]
  60. 60. 
    Kimonis VE, Kovach MJ, Waggoner B, Leal S, Salam A et al. 2000. Clinical and molecular studies in a unique family with autosomal dominant limb-girdle muscular dystrophy and Paget disease of bone. Genet. Med. 2:232–41
    [Google Scholar]
  61. 61. 
    Evangelista T, Weihl CC, Kimonis V, Lochmüller H, VCP Related Diseases Consortium 2016. 215th ENMC International Workshop VCP-related multi-system proteinopathy (IBMPFD) 13–15 November 2015, Heemskerk, The Netherlands. Neuromuscul. Disord. 26:535–47
    [Google Scholar]
  62. 62. 
    Taylor JP. 2015. Multisystem proteinopathy: intersecting genetics in muscle, bone, and brain degeneration. Neurology 85:658–60
    [Google Scholar]
  63. 63. 
    Al-Obeidi E, Al-Tahan S, Surampalli A, Goyal N, Wang AK et al. 2018. Genotype–phenotype study in patients with valosin-containing protein mutations associated with multisystem proteinopathy. Clin. Genet. 93:119–25
    [Google Scholar]
  64. 64. 
    Ye Y, Tang WK, Zhang T, Xia D 2017. A mighty “protein extractor” of the cell: structure and function of the p97/CDC48 ATPase. Front. Mol. Biosci. 4:39
    [Google Scholar]
  65. 65. 
    Papadopoulos C, Kirchner P, Bug M, Grum D, Koerver L et al. 2017. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J 36:135–50
    [Google Scholar]
  66. 66. 
    Johnson AE, Shu H, Hauswirth AG, Tong A, Davis GW 2015. VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo. eLife 4:e07366
    [Google Scholar]
  67. 67. 
    Buchan JR, Kolaitis RM, Taylor JP, Parker R 2013. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153:1461–74
    [Google Scholar]
  68. 68. 
    Lee Y, Jonson PH, Sarparanta J, Palmio J, Sarkar M et al. 2018. TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations. J. Clin. Investig. 128:1164–77
    [Google Scholar]
  69. 69. 
    Wang B, Maxwell BA, Joo JH, Gwon Y, Messing J et al. 2019. ULK1 and ULK2 regulate stress granule disassembly through phosphorylation and activation of VCP/p97. Mol. Cell 74:742–57.e8
    [Google Scholar]
  70. 70. 
    Batonnet-Pichon S, Behin A, Cabet E, Delort F, Vicart P, Lilienbaum A 2017. Myofibrillar myopathies: new perspectives from animal models to potential therapeutic approaches. J. Neuromuscul. Dis. 4:1–15
    [Google Scholar]
  71. 71. 
    Fichna JP, Maruszak A, Zekanowski C 2018. Myofibrillar myopathy in the genomic context. J. Appl. Genet. 59:431–39
    [Google Scholar]
  72. 72. 
    Kley RA, van der Ven PF, Olive M, Hohfeld J, Goldfarb LG et al. 2013. Impairment of protein degradation in myofibrillar myopathy caused by FLNC/filamin C mutations. Autophagy 9:422–23
    [Google Scholar]
  73. 73. 
    Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D et al. 2010. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol. 20:143–48
    [Google Scholar]
  74. 74. 
    Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N et al. 2013. Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr. Biol. 23:430–35
    [Google Scholar]
  75. 75. 
    Bouhy D, Juneja M, Katona I, Holmgren A, Asselbergh B et al. 2018. A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathol 135:131–48
    [Google Scholar]
  76. 76. 
    Ruparelia AA, Oorschot V, Vaz R, Ramm G, Bryson-Richardson RJ 2014. Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathol 128:821–33
    [Google Scholar]
  77. 77. 
    Ruparelia AA, Oorschot V, Ramm G, Bryson-Richardson RJ 2016. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum. Mol. Genet. 25:2131–42
    [Google Scholar]
  78. 78. 
    Sandell S, Huovinen S, Palmio J, Raheem O, Lindfors M et al. 2016. Diagnostically important muscle pathology in DNAJB6 mutated LGMD1D. Acta Neuropathol. Commun. 4:9
    [Google Scholar]
  79. 79. 
    Ghaoui R, Palmio J, Brewer J, Lek M, Needham M et al. 2016. Mutations in HSPB8 causing a new phenotype of distal myopathy and motor neuropathy. Neurology 86:391–98
    [Google Scholar]
  80. 80. 
    Weihl CC, Iyadurai S, Baloh RH, Pittman SK, Schmidt RE et al. 2015. Autophagic vacuolar pathology in desminopathies. Neuromuscul. Disord. 25:199–206
    [Google Scholar]
  81. 81. 
    Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A et al. 2010. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat. Med. 16:1313–20
    [Google Scholar]
  82. 82. 
    Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E et al. 2009. Autophagy is required to maintain muscle mass. Cell Metab 10:507–15
    [Google Scholar]
  83. 83. 
    De Palma C, Morisi F, Cheli S, Pambianco S, Cappello V et al. 2012. Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis 3:e418
    [Google Scholar]
  84. 84. 
    Jungbluth H, Gautel M. 2014. Pathogenic mechanisms in centronuclear myopathies. Front. Aging Neurosci. 6:339
    [Google Scholar]
  85. 85. 
    Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA et al. 2009. Control of autophagy initiation by phosphoinositide 3-phosphatase Jumpy. EMBO J 28:2244–58
    [Google Scholar]
  86. 86. 
    Al-Qusairi L, Prokic I, Amoasii L, Kretz C, Messaddeq N et al. 2013. Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways. FASEB J 27:3384–94
    [Google Scholar]
  87. 87. 
    Fetalvero KM, Yu Y, Goetschkes M, Liang G, Valdez RA et al. 2013. Defective autophagy and mTORC1 signaling in myotubularin null mice. Mol. Cell. Biol. 33:98–110
    [Google Scholar]
  88. 88. 
    Durieux AC, Vignaud A, Prudhon B, Viou MT, Beuvin M et al. 2010. A centronuclear myopathy–dynamin 2 mutation impairs skeletal muscle structure and function in mice. Hum. Mol. Genet. 19:4820–36
    [Google Scholar]
  89. 89. 
    Durieux AC, Vassilopoulos S, Laine J, Fraysse B, Brinas L et al. 2012. A centronuclear myopathy–dynamin 2 mutation impairs autophagy in mice. Traffic 13:869–79
    [Google Scholar]
  90. 90. 
    Nonaka I, Sunohara N, Ishiura S, Satoyoshi E 1981. Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J. Neurol. Sci. 51:141–55
    [Google Scholar]
  91. 91. 
    Argov Z, Yarom R. 1984. “Rimmed vacuole myopathy” sparing the quadriceps: a unique disorder in Iranian Jews. J. Neurol. Sci. 64:33–43
    [Google Scholar]
  92. 92. 
    Eisenberg I, Avidan N, Potikha T, Hochner H, Chen M et al. 2001. The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat. Genet. 29:83–87
    [Google Scholar]
  93. 93. 
    Nishino I, Noguchi S, Murayama K, Driss A, Sugie K et al. 2002. Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology 59:1689–93
    [Google Scholar]
  94. 94. 
    Carrillo N, Malicdan MC, Huizing M 2018. GNE myopathy: etiology, diagnosis, and therapeutic challenges. Neurotherapeutics 15:900–14
    [Google Scholar]
  95. 95. 
    Nonaka I, Murakami N, Suzuki Y, Kawai M 1998. Distal myopathy with rimmed vacuoles. Neuromuscul. Disord. 8:333–37
    [Google Scholar]
  96. 96. 
    Broccolini A, Mirabella M. 2015. Hereditary inclusion-body myopathies. Biochim. Biophys. Acta Mol. Basis Dis. 1852:644–50
    [Google Scholar]
  97. 97. 
    Malicdan MC, Noguchi S, Hayashi YK, Nonaka I, Nishino I 2009. Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat. Med. 15:690–95
    [Google Scholar]
  98. 98. 
    Nogalska A, D'Agostino C, Engel WK, Cacciottolo M, Asada S et al. 2015. Activation of the unfolded protein response in sporadic inclusion-body myositis but not in hereditary GNE inclusion-body myopathy. J. Neuropathol. Exp. Neurol. 74:538–46
    [Google Scholar]
  99. 99. 
    Cho A, Christine M, Malicdan V, Miyakawa M, Nonaka I et al. 2017. Sialic acid deficiency is associated with oxidative stress leading to muscle atrophy and weakness in GNE myopathy. Hum. Mol. Genet. 26:3081–93
    [Google Scholar]
  100. 100. 
    Keller CW, Schmidt J, Lunemann JD 2017. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann. Clin. Transl. Neurol. 4:422–45
    [Google Scholar]
  101. 101. 
    Jabari D, Vedanarayanan VV, Barohn RJ, Dimachkie MM 2018. Update on inclusion body myositis. Curr. Rheumatol. Rep. 20:52
    [Google Scholar]
  102. 102. 
    Hiniker A, Daniels BH, Lee HS, Margeta M 2013. Comparative utility of LC3, p62 and TDP-43 immunohistochemistry in differentiation of inclusion body myositis from polymyositis and related inflammatory myopathies. Acta Neuropathol. Commun. 1:29
    [Google Scholar]
  103. 103. 
    Brady S, Squier W, Sewry C, Hanna M, Hilton-Jones D, Holton JL 2014. A retrospective cohort study identifying the principal pathological features useful in the diagnosis of inclusion body myositis. BMJ Open 4:e004552
    [Google Scholar]
  104. 104. 
    Lloyd TE, Mammen AL, Amato AA, Weiss MD, Needham M, Greenberg SA 2014. Evaluation and construction of diagnostic criteria for inclusion body myositis. Neurology 83:426–33
    [Google Scholar]
  105. 105. 
    Benveniste O, Stenzel W, Hilton-Jones D, Sandri M, Boyer O, van Engelen BG 2015. Amyloid deposits and inflammatory infiltrates in sporadic inclusion body myositis: the inflammatory egg comes before the degenerative chicken. Acta Neuropathol 129:611–24
    [Google Scholar]
  106. 106. 
    Weihl CC, Mammen AL. 2017. Sporadic inclusion body myositis—a myodegenerative disease or an inflammatory myopathy. Neuropathol. Appl. Neurobiol. 43:82–91
    [Google Scholar]
  107. 107. 
    Hiniker A, Daniels BH, Margeta M 2016. T-cell-mediated inflammatory myopathies in HIV-positive individuals: a histologic study of 19 cases. J. Neuropathol. Exp. Neurol. 75:239–45
    [Google Scholar]
  108. 108. 
    Ontaneda D, Thompson AJ, Fox RJ, Cohen JA 2017. Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet 389:1357–66
    [Google Scholar]
  109. 109. 
    Britson KA, Yang SY, Lloyd TE 2018. New developments in the genetics of inclusion body myositis. Curr. Rheumatol. Rep. 20:26
    [Google Scholar]
  110. 110. 
    Guttsches AK, Brady S, Krause K, Maerkens A, Uszkoreit J et al. 2017. Proteomics of rimmed vacuoles define new risk allele in inclusion body myositis. Ann. Neurol. 81:227–39
    [Google Scholar]
  111. 111. 
    Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T et al. 2010. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end–directed vesicle transport. J. Cell Biol. 188:253–69
    [Google Scholar]
  112. 112. 
    Castagnaro S, Pellegrini C, Pellegrini M, Chrisam M, Sabatelli P et al. 2016. Autophagy activation in COL6 myopathic patients by a low-protein-diet pilot trial. Autophagy 12:2484–95
    [Google Scholar]
  113. 113. 
    Drost MR, Hesselink RP, Oomens CW, van der Vusse GJ 2005. Effects of non-contractile inclusions on mechanical performance of skeletal muscle. J. Biomech. 38:1035–43
    [Google Scholar]
  114. 114. 
    Nemazanyy I, Blaauw B, Paolini C, Caillaud C, Protasi F et al. 2013. Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease. EMBO Mol. Med. 5:870–90
    [Google Scholar]
  115. 115. 
    Spampanato C, Feeney E, Li L, Cardone M, Lim JA et al. 2013. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 5:691–706
    [Google Scholar]
  116. 116. 
    Tang AH, Rando TA. 2014. Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO J 33:2782–97
    [Google Scholar]
  117. 117. 
    Hofmann JW, Seeley WW, Huang EJ 2019. RNA binding proteins and the pathogenesis of frontotemporal lobar degeneration. Annu. Rev. Pathol. Mech. Dis. 14:469–95
    [Google Scholar]
  118. 118. 
    Ching JK, Elizabeth SV, Ju JS, Lusk C, Pittman SK, Weihl CC 2013. mTOR dysfunction contributes to vacuolar pathology and weakness in valosin-containing protein associated inclusion body myopathy. Hum. Mol. Genet. 22:1167–79
    [Google Scholar]
  119. 119. 
    Ching JK, Weihl CC. 2013. Rapamycin-induced autophagy aggravates pathology and weakness in a mouse model of VCP-associated myopathy. Autophagy 9:799–800
    [Google Scholar]
  120. 120. 
    Nalbandian A, Llewellyn KJ, Nguyen C, Yazdi PG, Kimonis VE 2015. Rapamycin and chloroquine: The in vitro and in vivo effects of autophagy-modifying drugs show promising results in valosin containing protein multisystem proteinopathy. PLOS ONE 10:e0122888
    [Google Scholar]
  121. 121. 
    Ahmed M, Machado PM, Miller A, Spicer C, Herbelin L et al. 2016. Targeting protein homeostasis in sporadic inclusion body myositis. Sci. Transl. Med. 8:331ra41
    [Google Scholar]
  122. 122. 
    Sanbe A, Daicho T, Mizutani R, Endo T, Miyauchi N et al. 2009. Protective effect of geranylgera-nylacetone via enhancement of HSPB8 induction in desmin-related cardiomyopathy. PLOS ONE 4:e5351
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032618
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032618
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error