1932

Abstract

The dynamic properties of mitochondria—including their fusion, fission, and degradation—are critical for their optimal function in energy generation. The interplay of fusion and fission confers widespread benefits on mitochondria, including efficient transport, increased homogenization of the mitochondrial population, and efficient oxidative phosphorylation. These benefits arise through control of morphology, content exchange, equitable inheritance of mitochondria, maintenance of high-quality mitochondrial DNA, and segregation of damaged mitochondria for degradation. The key components of the machinery mediating mitochondrial fusion and fission belong to the dynamin family of GTPases that utilize GTP hydrolysis to drive mechanical work on biological membranes. Defects in this machinery cause a range of diseases that especially affect the nervous system. In addition, several common diseases, including neurodegenerative diseases and cancer, strongly affect mitochondrial dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032711
2020-01-24
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathmechdis-012419-032711.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032711&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Archibald JM. 2015. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25:R911–21
    [Google Scholar]
  2. 2. 
    Carelli V, Chan DC. 2014. Mitochondrial DNA: impacting central and peripheral nervous systems. Neuron 84:1126–42
    [Google Scholar]
  3. 3. 
    Liu X, Weaver D, Shirihai O, Hajnoczky G 2009. Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion–fission dynamics. EMBO J 28:3074–89
    [Google Scholar]
  4. 4. 
    Gilkerson RW, Schon EA, Hernandez E, Davidson MM 2008. Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation. J. Cell Biol. 181:1117–28
    [Google Scholar]
  5. 5. 
    Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC 2003. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160:189–200
    [Google Scholar]
  6. 6. 
    Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD et al. 2008. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–46
    [Google Scholar]
  7. 7. 
    Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC 2004. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305:858–62
    [Google Scholar]
  8. 8. 
    Cao YL, Meng S, Chen Y, Feng JX, Gu DD et al. 2017. MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature 542:372–76
    [Google Scholar]
  9. 9. 
    Qi Y, Yan L, Yu C, Guo X, Zhou X et al. 2016. Structures of human mitofusin 1 provide insight into mitochondrial tethering. J. Cell Biol. 215:621–29
    [Google Scholar]
  10. 10. 
    Mishra P, Carelli V, Manfredi G, Chan DC 2014. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab 19:630–41
    [Google Scholar]
  11. 11. 
    Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC 2009. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol. Biol. Cell 20:3525–32
    [Google Scholar]
  12. 12. 
    Delettre C, Griffoin JM, Kaplan J, Dollfus H, Lorenz B et al. 2001. Mutation spectrum and splicing variants in the OPA1 gene. Hum. Genet. 109:584–91
    [Google Scholar]
  13. 13. 
    Song Z, Chen H, Fiket M, Alexander C, Chan DC 2007. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol. 178:749–55
    [Google Scholar]
  14. 14. 
    Ishihara N, Fujita Y, Oka T, Mihara K 2006. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25:2966–77
    [Google Scholar]
  15. 15. 
    Anand R, Wai T, Baker MJ, Kladt N, Schauss AC et al. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204:919–29
    [Google Scholar]
  16. 16. 
    Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y et al. 2009. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28:1589–600
    [Google Scholar]
  17. 17. 
    Ban T, Ishihara T, Kohno H, Saita S, Ichimura A et al. 2017. Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat. Cell Biol. 19:856–63
    [Google Scholar]
  18. 18. 
    Ban T, Kohno H, Ishihara T, Ishihara N 2018. Relationship between OPA1 and cardiolipin in mitochondrial inner-membrane fusion. Biochim. Biophys. Acta Bioenerg. 1859:951–57
    [Google Scholar]
  19. 19. 
    Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R et al. 2013. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155:160–71
    [Google Scholar]
  20. 20. 
    Del Dotto V, Mishra P, Vidoni S, Fogazza M, Maresca A et al. 2017. OPA1 isoforms in the hierarchical organization of mitochondrial functions. Cell Rep 19:2557–71
    [Google Scholar]
  21. 21. 
    Lee H, Smith SB, Yoon Y 2017. The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. J. Biol. Chem. 292:7115–30
    [Google Scholar]
  22. 22. 
    Pagliuso A, Cossart P, Stavru F 2018. The ever-growing complexity of the mitochondrial fission machinery. Cell Mol. Life Sci. 75:355–74
    [Google Scholar]
  23. 23. 
    Jimah JR, Hinshaw JE. 2019. Structural insights into the mechanism of dynamin superfamily proteins. Trends Cell Biol 29:257–73
    [Google Scholar]
  24. 24. 
    Lee JE, Westrate LM, Wu H, Page C, Voeltz GK 2016. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540:139–43
    [Google Scholar]
  25. 25. 
    Kamerkar SC, Kraus F, Sharpe AJ, Pucadyil TJ, Ryan MT 2018. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat. Commun. 9:5239
    [Google Scholar]
  26. 26. 
    Bui HT, Shaw JM. 2013. Dynamin assembly strategies and adaptor proteins in mitochondrial fission. Curr. Biol. 23:R891–99
    [Google Scholar]
  27. 27. 
    Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S et al. 2010. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191:1141–58
    [Google Scholar]
  28. 28. 
    Losón OC, Song Z, Chen H, Chan DC 2013. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24:659–67
    [Google Scholar]
  29. 29. 
    Yamano K, Fogel AI, Wang C, van der Bliek AM, Youle RJ 2014. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife 3:e01612
    [Google Scholar]
  30. 30. 
    Shen Q, Yamano K, Head BP, Kawajiri S, Cheung JT et al. 2014. Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Mol. Biol. Cell 25:145–59
    [Google Scholar]
  31. 31. 
    Rojansky R, Cha MY, Chan DC 2016. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife 5:e17896
    [Google Scholar]
  32. 32. 
    Otera H, Miyata N, Kuge O, Mihara K 2016. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. J. Cell Biol. 212:531–44
    [Google Scholar]
  33. 33. 
    Osellame LD, Singh AP, Stroud DA, Palmer CS, Stojanovski D et al. 2016. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J. Cell Sci. 129:2170–81
    [Google Scholar]
  34. 34. 
    Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT 2013. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J. Biol. Chem. 288:27584–93
    [Google Scholar]
  35. 35. 
    Yu R, Liu T, Jin SB, Ning C, Lendahl U et al. 2017. MIEF1/2 function as adaptors to recruit Drp1 to mitochondria and regulate the association of Drp1 with Mff. Sci. Rep. 7:880
    [Google Scholar]
  36. 36. 
    Losón OC, Liu R, Rome ME, Meng S, Kaiser JT et al. 2014. The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure 22:367–77
    [Google Scholar]
  37. 37. 
    Kalia R, Wang RY, Yusuf A, Thomas PV, Agard DA et al. 2018. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 558:401–5
    [Google Scholar]
  38. 38. 
    Francy CA, Clinton RW, Fröhlich C, Murphy C, Mears JA 2017. Cryo-EM studies of Drp1 reveal cardiolipin interactions that activate the helical oligomer. Sci. Rep. 7:10744
    [Google Scholar]
  39. 39. 
    Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK 2011. ER tubules mark sites of mitochondrial division. Science 334:358–62
    [Google Scholar]
  40. 40. 
    Elgass KD, Smith EA, LeGros MA, Larabell CA, Ryan MT 2015. Analysis of ER–mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells. J. Cell Sci. 128:2795–804
    [Google Scholar]
  41. 41. 
    Hensen F, Cansiz S, Gerhold JM, Spelbrink JN 2014. To be or not to be a nucleoid protein: a comparison of mass-spectrometry based approaches in the identification of potential mtDNA-nucleoid associated proteins. Biochimie 100:219–26
    [Google Scholar]
  42. 42. 
    Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN 2003. Composition and dynamics of human mitochondrial nucleoids. Mol. Biol. Cell 14:1583–96
    [Google Scholar]
  43. 43. 
    Ban-Ishihara R, Ishihara T, Sasaki N, Mihara K, Ishihara N 2013. Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c. . PNAS 110:11863–68
    [Google Scholar]
  44. 44. 
    Ishihara T, Ban-Ishihara R, Maeda M, Matsunaga Y, Ichimura A et al. 2015. Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development. Mol. Cell. Biol. 35:211–23
    [Google Scholar]
  45. 45. 
    Lewis SC, Uchiyama LF, Nunnari J 2016. ER–mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353:aaf5549
    [Google Scholar]
  46. 46. 
    Li Z, Okamoto K, Hayashi Y, Sheng M 2004. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–87
    [Google Scholar]
  47. 47. 
    Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ 2005. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47:365–78
    [Google Scholar]
  48. 48. 
    Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH 2010. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci. 30:4232–40
    [Google Scholar]
  49. 49. 
    Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A et al. 2006. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J. Biol. Chem. 281:37972–79
    [Google Scholar]
  50. 50. 
    Toyama EQ, Herzig S, Courchet J, Lewis TL Jr., Losón OC et al. 2016. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351:275–81
    [Google Scholar]
  51. 51. 
    Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA et al. 2010. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280–89
    [Google Scholar]
  52. 52. 
    Weaver D, Eisner V, Liu X, Varnai P, Hunyady L et al. 2014. Distribution and apoptotic function of outer membrane proteins depend on mitochondrial fusion. Mol. Cell 54:870–78
    [Google Scholar]
  53. 53. 
    Chen H, McCaffery JM, Chan DC 2007. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130:548–62
    [Google Scholar]
  54. 54. 
    Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M et al. 2009. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J. Cell Biol. 186:805–16
    [Google Scholar]
  55. 55. 
    Mitra K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J 2009. A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase. PNAS 106:11960–65
    [Google Scholar]
  56. 56. 
    Kashatus DF, Lim KH, Brady DC, Pershing NL, Cox AD, Counter CM 2011. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat. Cell Biol. 13:1108–15
    [Google Scholar]
  57. 57. 
    Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K 2007. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282:11521–29
    [Google Scholar]
  58. 58. 
    Katajisto P, Döhla J, Chaffer CL, Pentinmikko N, Marjanovic N et al. 2015. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348:340–43
    [Google Scholar]
  59. 59. 
    Westermann B. 2014. Mitochondrial inheritance in yeast. Biochim. Biophys. Acta Bioenerg. 1837:1039–46
    [Google Scholar]
  60. 60. 
    Chu CT. 2019. Mechanisms of selective autophagy and mitophagy: implications for neurodegenerative diseases. Neurobiol. Dis. 122:23–34
    [Google Scholar]
  61. 61. 
    Mao K, Wang K, Liu X, Klionsky DJ 2013. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev. Cell 26:9–18
    [Google Scholar]
  62. 62. 
    Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF et al. 2010. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191:1367–80
    [Google Scholar]
  63. 63. 
    Yamashita SI, Jin X, Furukawa K, Hamasaki M, Nezu A et al. 2016. Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J. Cell Biol. 215:649–65
    [Google Scholar]
  64. 64. 
    Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ et al. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20:1726–37
    [Google Scholar]
  65. 65. 
    Ziviani E, Tao RN, Whitworth AJ 2010. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. PNAS 107:5018–23
    [Google Scholar]
  66. 66. 
    Kandul NP, Zhang T, Hay BA, Guo M 2016. Selective removal of deletion-bearing mitochondrial DNA in heteroplasmic Drosophila. Nat. Commun 7:13100
    [Google Scholar]
  67. 67. 
    Chen H, Ren S, Clish C, Jain M, Mootha V et al. 2015. Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy. J. Cell Biol. 211:795–805
    [Google Scholar]
  68. 68. 
    Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO et al. 2009. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11:958–66
    [Google Scholar]
  69. 69. 
    Stuppia G, Rizzo F, Riboldi G, Del Bo R, Nizzardo M et al. 2015. MFN2-related neuropathies: clinical features, molecular pathogenesis and therapeutic perspectives. J. Neurol. Sci. 356:7–18
    [Google Scholar]
  70. 70. 
    Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J et al. 2004. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36:449–51
    [Google Scholar]
  71. 71. 
    Nicholson GA, Magdelaine C, Zhu D, Grew S, Ryan MM et al. 2008. Severe early-onset axonal neuropathy with homozygous and compound heterozygous MFN2 mutations. Neurology 70:1678–81
    [Google Scholar]
  72. 72. 
    Strickland AV, Rebelo AP, Zhang F, Price J, Bolon B et al. 2014. Characterization of the mitofusin 2 R94W mutation in a knock-in mouse model. J. Peripher. Nerv. Syst. 19:152–64
    [Google Scholar]
  73. 73. 
    Detmer SA, Chan DC. 2007. Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J. Cell Biol. 176:405–14
    [Google Scholar]
  74. 74. 
    Bannerman P, Burns T, Xu J, Miers L, Pleasure D 2016. Mice hemizygous for a pathogenic mitofusin-2 allele exhibit hind limb/foot gait deficits and phenotypic perturbations in nerve and muscle. PLOS ONE 11:e0167573
    [Google Scholar]
  75. 75. 
    Detmer SA, Vande Velde C, Cleveland DW, Chan DC 2008. Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot–Marie–Tooth type 2A. Hum. Mol. Genet. 17:367–75
    [Google Scholar]
  76. 76. 
    Cartoni R, Arnaud E, Medard JJ, Poirot O, Courvoisier DS et al. 2010. Expression of mitofusin 2R94Q in a transgenic mouse leads to Charcot–Marie–Tooth neuropathy type 2A. Brain 133:1460–69
    [Google Scholar]
  77. 77. 
    El Fissi N, Rojo M, Aouane A, Karatas E, Poliacikova G et al. 2018. Mitofusin gain and loss of function drive pathogenesis in Drosophila models of CMT2A neuropathy. EMBO Rep 19:e45241
    [Google Scholar]
  78. 78. 
    Martins de Brito O, Scorrano L 2008. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–10
    [Google Scholar]
  79. 79. 
    Cosson P, Marchetti A, Ravazzola M, Orci L 2012. Mitofusin-2 independent juxtaposition of endoplasmic reticulum and mitochondria: an ultrastructural study. PLOS ONE 7:e46293
    [Google Scholar]
  80. 80. 
    Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P 2015. Mitofusin 2 ablation increases endoplasmic reticulum–mitochondria coupling. PNAS 112:E2174–81
    [Google Scholar]
  81. 81. 
    Naon D, Zaninello M, Giacomello M, Varanita T, Grespi F et al. 2016. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum–mitochondria tether. PNAS 113:11249–54
    [Google Scholar]
  82. 82. 
    Bernard-Marissal N, van Hameren G, Juneja M, Pellegrino C, Louhivuori L et al. 2019. Altered interplay between endoplasmic reticulum and mitochondria in Charcot–Marie–Tooth type 2A neuropathy. PNAS 116:2328–37
    [Google Scholar]
  83. 83. 
    Larrea D, Pera M, Gonelli A, Cabrera RQ, Akman HO et al. 2019. MFN2 mutations in Charcot–Marie–Tooth disease alter mitochondria-associated ER membrane function but do not impair bioenergetics. Hum. Mol. Genet. 28:1782–800
    [Google Scholar]
  84. 84. 
    Pham AH, Meng S, Chu QN, Chan DC 2012. Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum. Mol. Genet. 21:4817–26
    [Google Scholar]
  85. 85. 
    Lee S, Sterky FH, Mourier A, Terzioglu M, Cullheim S et al. 2012. Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum. Mol. Genet. 21:4827–35
    [Google Scholar]
  86. 86. 
    Fyfe JC, Al-Tamimi RA, Liu J, Schaffer AA, Agarwala R, Henthorn PS 2011. A novel mitofusin 2 mutation causes canine fetal-onset neuroaxonal dystrophy. Neurogenetics 12:223–32
    [Google Scholar]
  87. 87. 
    Capel E, Vatier C, Cervera P, Stojkovic T, Disse E et al. 2018. MFN2-associated lipomatosis: clinical spectrum and impact on adipose tissue. J. Clin. Lipidol. 12:1420–35
    [Google Scholar]
  88. 88. 
    Rocha N, Bulger DA, Frontini A, Titheradge H, Gribsholt SB et al. 2017. Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression. eLife 6:e23813
    [Google Scholar]
  89. 89. 
    Sawyer SL, Ng AC-H, Innes AM, Wagner JD, Dyment DA et al. 2015. Homozygous mutations in MFN2 cause multiple symmetric lipomatosis associated with neuropathy. Hum. Mol. Genet. 24:5109–14
    [Google Scholar]
  90. 90. 
    Chong PS, Vucic S, Hedley-Whyte ET, Dreyer M, Cros D 2003. Multiple symmetric lipomatosis (Madelung's disease) caused by the MERRF (A8344G) mutation: a report of two cases and review of the literature. J. Clin. Neuromuscul. Dis. 5:1–7
    [Google Scholar]
  91. 91. 
    Chun BY, Rizzo JF 3rd. 2017. Dominant optic atrophy and Leber's hereditary optic neuropathy: update on clinical features and current therapeutic approaches. Semin. Pediatr. Neurol. 24:129–34
    [Google Scholar]
  92. 92. 
    Amati-Bonneau P, Valentino ML, Reynier P, Gallardo ME, Bornstein B et al. 2008. OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain 131:338–51
    [Google Scholar]
  93. 93. 
    Hudson G, Amati-Bonneau P, Blakely EL, Stewart JD, He L et al. 2008. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 131:329–37
    [Google Scholar]
  94. 94. 
    Brockmann K, Dreha-Kulaczewski S, Dechent P, Bönnemann C, Helms G et al. 2008. Cerebral involvement in axonal Charcot-Marie-Tooth neuropathy caused by mitofusin2 mutations. J. Neurol. 255:1049–58
    [Google Scholar]
  95. 95. 
    Zhu D, Kennerson ML, Walizada G, Züchner S, Vance JM, Nicholson GA 2005. Charcot–Marie–Tooth with pyramidal signs is genetically heterogeneous: families with and without MFN2 mutations. Neurology 65:496–97
    [Google Scholar]
  96. 96. 
    Rouzier C, Bannwarth S, Chaussenot A, Chevrollier A, Verschueren A et al. 2012. The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy ‘plus’ phenotype. Brain 135:23–34
    [Google Scholar]
  97. 97. 
    Zhang Y, Tian Z, Yuan J, Liu C, Liu HL et al. 2017. The progress of gene therapy for Leber's optic hereditary neuropathy. Curr. Gene Ther. 17:320–26
    [Google Scholar]
  98. 98. 
    Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr., Mingozzi F et al. 2008. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N. Engl. J. Med. 358:2240–48
    [Google Scholar]
  99. 99. 
    Sarzi E, Seveno M, Piro-Mégy C, Elzière L, Quilès M et al. 2018. OPA1 gene therapy prevents retinal ganglion cell loss in a Dominant Optic Atrophy mouse model. Sci. Rep. 8:2468
    [Google Scholar]
  100. 100. 
    Del Dotto V, Fogazza M, Carelli V, Rugolo M, Zanna C 2018. Eight human OPA1 isoforms, long and short: What are they for. ? Biochim. Biophys. Acta Bioenerg. 1859:263–69
    [Google Scholar]
  101. 101. 
    Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV 2007. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356:1736–41
    [Google Scholar]
  102. 102. 
    Fahrner JA, Liu R, Perry MS, Klein J, Chan DC 2016. A novel de novo dominant negative mutation in DNM1L impairs mitochondrial fission and presents as childhood epileptic encephalopathy. Am. J. Med. Genet. A 170:2002–11
    [Google Scholar]
  103. 103. 
    Vanstone JR, Smith AM, McBride S, Naas T, Holcik M et al. 2016. DNM1L-related mitochondrial fission defect presenting as refractory epilepsy. Eur. J. Hum. Genet. 24:1084–88
    [Google Scholar]
  104. 104. 
    von Spiczak S, Helbig KL, Shinde DN, Huether R, Pendziwiat M et al. 2017. DNM1 encephalopathy: a new disease of vesicle fission. Neurology 89:385–94
    [Google Scholar]
  105. 105. 
    Kageyama Y, Zhang Z, Roda R, Fukaya M, Wakabayashi J et al. 2012. Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage. J. Cell Biol. 197:535–51
    [Google Scholar]
  106. 106. 
    Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H et al. 2012. Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J. Med. Genet. 49:234–41
    [Google Scholar]
  107. 107. 
    Koch J, Feichtinger RG, Freisinger P, Pies M, Schrödl F et al. 2016. Disturbed mitochondrial and peroxisomal dynamics due to loss of MFF causes Leigh-like encephalopathy, optic atrophy and peripheral neuropathy. J. Med. Genet. 53:270–78
    [Google Scholar]
  108. 108. 
    Sesaki H, Jensen RE. 2001. UGO1 encodes an outer membrane protein required for mitochondrial fusion. J. Cell Biol. 152:1123–34
    [Google Scholar]
  109. 109. 
    Sesaki H, Jensen RE. 2004. Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion. J. Biol. Chem. 279:28298–303
    [Google Scholar]
  110. 110. 
    Wong ED, Wagner JA, Scott SV, Okreglak V, Holewinske TJ et al. 2003. The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J. Cell Biol. 160:303–11
    [Google Scholar]
  111. 111. 
    Abrams AJ, Hufnagel RB, Rebelo A, Zanna C, Patel N et al. 2015. Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nat. Genet. 47:926–32
    [Google Scholar]
  112. 112. 
    Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J et al. 2016. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol. Med. 8:1019–38
    [Google Scholar]
  113. 113. 
    Wan J, Steffen J, Yourshaw M, Mamsa H, Andersen E et al. 2016. Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia. Brain 139:2877–90
    [Google Scholar]
  114. 114. 
    Steffen J, Vashisht AA, Wan J, Jen JC, Claypool SM et al. 2017. Rapid degradation of mutant SLC25A46 by the ubiquitin-proteasome system results in MFN1/2-mediated hyperfusion of mitochondria. Mol. Biol. Cell 28:600–12
    [Google Scholar]
  115. 115. 
    Charlesworth G, Balint B, Mencacci NE, Carr L, Wood NW, Bhatia KP 2016. SLC25A46 mutations underlie progressive myoclonic ataxia with optic atrophy and neuropathy. Mov. Disord. 31:1249–51
    [Google Scholar]
  116. 116. 
    Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR et al. 2006. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. . Nature 441:1162–66
    [Google Scholar]
  117. 117. 
    Park J, Lee SB, Lee S, Kim Y, Song S et al. 2006. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. . Nature 441:1157–61
    [Google Scholar]
  118. 118. 
    Narendra D, Tanaka A, Suen DF, Youle RJ 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:795–803
    [Google Scholar]
  119. 119. 
    Sekine S, Youle RJ. 2018. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol 16:2
    [Google Scholar]
  120. 120. 
    Yamano K, Youle RJ. 2013. PINK1 is degraded through the N-end rule pathway. Autophagy 9:1758–69
    [Google Scholar]
  121. 121. 
    Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K et al. 2014. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205:143–53
    [Google Scholar]
  122. 122. 
    Koyano F, Okatsu K, Kosako H, Tamura Y, Go E et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:162–66
    [Google Scholar]
  123. 123. 
    Wauer T, Simicek M, Schubert A, Komander D 2015. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524:370–74
    [Google Scholar]
  124. 124. 
    Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL et al. 2013. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496:372–76
    [Google Scholar]
  125. 125. 
    Yoshii SR, Kishi C, Ishihara N, Mizushima N 2011. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286:19630–40
    [Google Scholar]
  126. 126. 
    Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–14
    [Google Scholar]
  127. 127. 
    McWilliams TG, Prescott AR, Allen GF, Tamjar J, Munson MJ et al. 2016. mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 214:333–45
    [Google Scholar]
  128. 128. 
    Sun N, Yun J, Liu J, Malide D, Liu C et al. 2015. Measuring in vivo mitophagy. Mol. Cell 60:685–96
    [Google Scholar]
  129. 129. 
    Lee JJ, Sanchez-Martinez A, Zarate AM, Benincá C, Mayor U et al. 2018. Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J. Cell Biol. 217:1613–22
    [Google Scholar]
  130. 130. 
    Cornelissen T, Vilain S, Vints K, Gounko N, Verstreken P, Vandenberghe W 2018. Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. . eLife 7:e35878
    [Google Scholar]
  131. 131. 
    Sliter DA, Martinez J, Hao L, Chen X, Sun N et al. 2018. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561:258–62
    [Google Scholar]
  132. 132. 
    Pickrell AM, Huang CH, Kennedy SR, Ordureau A, Sideris DP et al. 2015. Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron 87:371–81
    [Google Scholar]
  133. 133. 
    McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA 2014. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33:282–95
    [Google Scholar]
  134. 134. 
    Sugiura A, McLelland GL, Fon EA, McBride HM 2014. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33:2142–56
    [Google Scholar]
  135. 135. 
    Majcher V, Goode A, James V, Layfield R 2015. Autophagy receptor defects and ALS-FTLD. Mol. Cell Neurosci. 66:43–52
    [Google Scholar]
  136. 136. 
    Zhang T, Mishra P, Hay BA, Chan D, Guo M 2017. Valosin-containing protein (VCP/p97) inhibitors relieve Mitofusin-dependent mitochondrial defects due to VCP disease mutants. eLife 6:e17834
    [Google Scholar]
  137. 137. 
    Walker FO. 2007. Huntington's disease. Lancet 369:218–28
    [Google Scholar]
  138. 138. 
    Saudou F, Humbert S. 2016. The biology of huntingtin. Neuron 89:910–26
    [Google Scholar]
  139. 139. 
    Harjes P, Wanker EE. 2003. The hunt for huntingtin function: Interaction partners tell many different stories. Trends Biochem. Sci. 28:425–33
    [Google Scholar]
  140. 140. 
    Orr AL, Li S, Wang CE, Li H, Wang J et al. 2008. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J. Neurosci. 28:2783–92
    [Google Scholar]
  141. 141. 
    Song W, Chen J, Petrilli A, Liot G, Klinglmayr E et al. 2011. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat. Med. 17:377–82
    [Google Scholar]
  142. 142. 
    Shirendeb UP, Calkins MJ, Manczak M, Anekonda V, Dufour B et al. 2012. Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease. Hum. Mol. Genet. 21:406–20
    [Google Scholar]
  143. 143. 
    Qi X, Qvit N, Su YC, Mochly-Rosen D 2013. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J. Cell Sci. 126:789–802
    [Google Scholar]
  144. 144. 
    Guo X, Disatnik MH, Monbureau M, Shamloo M, Mochly-Rosen D, Qi X 2013. Inhibition of mitochondrial fragmentation diminishes Huntington's disease–associated neurodegeneration. J. Clin. Investig. 123:5371–88
    [Google Scholar]
  145. 145. 
    Cha MY, Chen H, Chan D 2018. Removal of the mitochondrial fission factor Mff exacerbates neuronal loss and neurological phenotypes in a Huntington's disease mouse model. PLOS Curr 1: https://doi.org/10.1371/currents.hd.a4e15b80c4915c828d39754942c6631f
    [Crossref] [Google Scholar]
  146. 146. 
    Kim DI, Lee KH, Oh JY, Kim JS, Han HJ 2017. Relationship between β-amyloid and mitochondrial dynamics. Cell Mol. Neurobiol. 37:955–68
    [Google Scholar]
  147. 147. 
    Area-Gomez E, de Groof A, Bonilla E, Montesinos J, Tanji K et al. 2018. A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis 9:335
    [Google Scholar]
  148. 148. 
    Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G et al. 2012. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 26:2175–86
    [Google Scholar]
  149. 149. 
    Serasinghe MN, Wieder SY, Renault TT, Elkholi R, Asciolla JJ et al. 2015. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol. Cell 57:521–36
    [Google Scholar]
  150. 150. 
    Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL et al. 2015. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell 57:537–51
    [Google Scholar]
  151. 151. 
    Wieder SY, Serasinghe MN, Sung JC, Choi DC, Birge MB et al. 2015. Activation of the mitochondrial fragmentation protein DRP1 correlates with BRAFV600E melanoma. J. Investig. Dermatol. 135:2544–47
    [Google Scholar]
  152. 152. 
    Kashatus DF. 2018. The regulation of tumor cell physiology by mitochondrial dynamics. Biochem. Biophys. Res. Commun. 500:9–16
    [Google Scholar]
  153. 153. 
    Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S et al. 2000. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26:211–15
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032711
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032711
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error