1932

Abstract

Pluripotent stem cells (PSCs) are a potential replacement tissue source for degenerative diseases. Age-related macular degeneration (AMD) is a blinding disease triggered by degeneration of the retinal pigment epithelium (RPE), a monolayer tissue that functionally supports retinal photoreceptors. Recently published clinical and preclinical studies have tested PSC-derived RPE as a potential treatment for AMD. Multiple approaches have been used to manufacture RPE cells, to validate them functionally, to confirm their safety profile, and to deliver them to patients either as suspension or as a monolayer patch. Since most of these studies are at an early regulatory approval stage, the primary outcome has been to determine the safety of RPE transplants in patients. However, preliminary signs of efficacy were observed in a few patients. Here, we review the current progress in the PSC-derived RPE transplantation field and provide a comparative assessment of various approaches under development as potential therapeutics for AMD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023245
2020-01-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010919-023245.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023245&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–47
    [Google Scholar]
  2. 2. 
    Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76
    [Google Scholar]
  3. 3. 
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–72
    [Google Scholar]
  4. 4. 
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL et al. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–20
    [Google Scholar]
  5. 5. 
    Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK et al. 2012. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–20
    [Google Scholar]
  6. 6. 
    Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ et al. 2015. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–16
    [Google Scholar]
  7. 7. 
    Song WK, Park KM, Kim HJ, Lee JH, Choi J et al. 2015. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep 4:860–72
    [Google Scholar]
  8. 8. 
    da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH et al. 2018. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 36:328–37
    [Google Scholar]
  9. 9. 
    Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H et al. 2018. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci. Transl. Med. 10:435eaao4097
    [Google Scholar]
  10. 10. 
    Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C et al. 2017. Autologous induced stem-cell–derived retinal cells for macular degeneration. N. Engl. J. Med. 376:1038–46
    [Google Scholar]
  11. 11. 
    Ben M'Barek K, Habeler W, Plancheron A, Jarraya M, Regent F et al. 2017. Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci. Transl. Med. 9:421eaai7471
    [Google Scholar]
  12. 12. 
    Sharma R, Khristov V, Rising A, Jha BS, Dejene R et al. 2019. Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci. Transl. Med. 11:475eaat5580
    [Google Scholar]
  13. 13. 
    Wong WL, Su X, Li X, Cheung CM, Klein R et al. 2014. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health 2:e106–16
    [Google Scholar]
  14. 14. 
    Stevens GA, White RA, Flaxman SR, Price H, Jonas JB et al. 2013. Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990–2010. Ophthalmology 120:2377–84
    [Google Scholar]
  15. 15. 
    Haruta M, Sasai Y, Kawasaki H, Amemiya K, Ooto S et al. 2004. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Investig. Ophthalmol. Vis. Sci. 45:1020–25
    [Google Scholar]
  16. 16. 
    Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F et al. 2002. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. PNAS 99:1580–85
    [Google Scholar]
  17. 17. 
    Bharti K, Miller SS, Arnheiter H 2011. The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells. Pigment. Cell Melanoma Res. 24:21–34
    [Google Scholar]
  18. 18. 
    Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A 2014. Age-related macular degeneration: genetics and biology coming together. Annu. Rev. Genom. Hum. Genet. 15:151–71
    [Google Scholar]
  19. 19. 
    Ambati J, Fowler BJ. 2012. Mechanisms of age-related macular degeneration. Neuron 75:26–39
    [Google Scholar]
  20. 20. 
    Nadler Z, Wang B, Schuman JS, Ferguson RD, Patel A et al. 2014. In vivo three-dimensional characterization of the healthy human lamina cribrosa with adaptive optics spectral-domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 55:6459–66
    [Google Scholar]
  21. 21. 
    van Meurs JC, ter Averst E, Hofland LJ, van Hagen PM, Mooy CM et al. 2004. Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. Br. J. Ophthalmol. 88:110–13
    [Google Scholar]
  22. 22. 
    van Zeeburg EJ, Maaijwee KJ, Missotten TO, Heimann H, van Meurs JC 2012. A free retinal pigment epithelium-choroid graft in patients with exudative age-related macular degeneration: results up to 7 years. Am. J. Ophthalmol. 153:120–27.e2
    [Google Scholar]
  23. 23. 
    Swaroop A, Chew EY, Rickman CB, Abecasis GR 2009. Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu. Rev. Genom. Hum. Genet. 10:19–43
    [Google Scholar]
  24. 24. 
    Mitchell S, Gelman A, Ross R, Chen J, Bari S et al. 2018. The Millennium Villages Project: a retrospective, observational, endline evaluation. Lancet Glob. Health 6:e500–13
    [Google Scholar]
  25. 25. 
    Gwatkin DR, Brandel SK. 1982. Life expectancy and population growth in the Third World. Sci. Am. 246:57–65
    [Google Scholar]
  26. 26. 
    Joussen AM, Joeres S, Fawzy N, Heussen FM, Llacer H et al. 2007. Autologous translocation of the choroid and retinal pigment epithelium in patients with geographic atrophy. Ophthalmology 114:551–60
    [Google Scholar]
  27. 27. 
    Joussen AM, Heussen FM, Joeres S, Llacer H, Prinz B et al. 2006. Autologous translocation of the choroid and retinal pigment epithelium in age-related macular degeneration. Am. J. Ophthalmol. 142:17–30
    [Google Scholar]
  28. 28. 
    Gehrs KM, Anderson DH, Johnson LV, Hageman GS 2006. Age-related macular degeneration—emerging pathogenetic and therapeutic concepts. Ann. Med. 38:450–71
    [Google Scholar]
  29. 29. 
    Zadunaisky JA, Degnan KJ. 1976. Passage of sugars and urea across the isolated retina pigment epithelium of the frog. Exp. Eye Res. 23:191–96
    [Google Scholar]
  30. 30. 
    Sugasawa K, Deguchi J, Okami T, Yamamoto A, Omori K et al. 1994. Immunocytochemical analyses of distributions of Na, K-ATPase and GLUT1, insulin and transferrin receptors in the developing retinal pigment epithelial cells. Cell Struct. Funct. 19:21–28
    [Google Scholar]
  31. 31. 
    Ban Y, Rizzolo LJ. 2000. Regulation of glucose transporters during development of the retinal pigment epithelium. Dev. Brain Res. 121:89–95
    [Google Scholar]
  32. 32. 
    McBee JK, Van Hooser JP, Jang GF, Palczewski K 2001. Isomerization of 11-cis-retinoids to all-trans-retinoids in vitro and in vivo. J. Biol. Chem. 276:48483–93
    [Google Scholar]
  33. 33. 
    Adijanto J, Du J, Moffat C, Seifert EL, Hurle JB, Philp NJ 2014. The retinal pigment epithelium utilizes fatty acids for ketogenesis. J. Biol. Chem. 289:20570–82
    [Google Scholar]
  34. 34. 
    Mazzoni F, Safa H, Finnemann SC 2014. Understanding photoreceptor outer segment phagocytosis: use and utility of RPE cells in culture. Exp. Eye Res. 126:51–60
    [Google Scholar]
  35. 35. 
    Holtkamp GM, Van Rossem M, de Vos AF, Willekens B, Peek R, Kijlstra A 1998. Polarized secretion of IL-6 and IL-8 by human retinal pigment epithelial cells. Clin. Exp. Immunol. 112:34–43
    [Google Scholar]
  36. 36. 
    Shi G, Maminishkis A, Banzon T, Jalickee S, Li R et al. 2008. Control of chemokine gradients by the retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 49:4620–30
    [Google Scholar]
  37. 37. 
    Padgett LC, Lui GM, Werb Z, LaVail MM 1997. Matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 in the retinal pigment epithelium and interphotoreceptor matrix: vectorial secretion and regulation. Exp. Eye Res. 64:927–38
    [Google Scholar]
  38. 38. 
    Hoffmann S, He S, Ehren M, Ryan SJ, Wiedemann P, Hinton DR 2006. MMP-2 and MMP-9 secretion by RPE is stimulated by angiogenic molecules found in choroidal neovascular membranes. Retina 26:454–61
    [Google Scholar]
  39. 39. 
    Strunnikova NV, Maminishkis A, Barb JJ, Wang F, Zhi C et al. 2010. Transcriptome analysis and molecular signature of human retinal pigment epithelium. Hum. Mol. Genet. 19:2468–86
    [Google Scholar]
  40. 40. 
    Immel J, Steinberg RH. 1986. Spatial buffering of K+ by the retinal pigment epithelium in frog. J. Neurosci. 6:3197–204
    [Google Scholar]
  41. 41. 
    la Cour M. 1985. The retinal pigment epithelium controls the potassium activity in the subretinal space. Acta Ophthalmol. Suppl. 173:9–10
    [Google Scholar]
  42. 42. 
    Shahi PK, Hermans D, Sinha D, Brar S, Moulton H et al. 2019. Gene augmentation and readthrough rescue channelopathy in an iPSC-RPE model of congenital blindness. Am. J. Hum. Genet. 104:310–18
    [Google Scholar]
  43. 43. 
    Bharti K, Nguyen MT, Skuntz S, Bertuzzi S, Arnheiter H 2006. The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. Pigment. Cell Res. 19:380–94
    [Google Scholar]
  44. 44. 
    Léveillard T, Philp NJ, Sennlaub F 2019. Is retinal metabolic dysfunction at the center of the pathogenesis of age-related macular degeneration?. Int. J. Mol. Sci. 20:3762
    [Google Scholar]
  45. 45. 
    Raviv S, Bharti K, Rencus-Lazar S, Cohen-Tayar Y, Schyr R et al. 2014. PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF. PLOS Genet 10:e1004360
    [Google Scholar]
  46. 46. 
    May-Simera HL, Wan Q, Jha BS, Hartford J, Khristov V et al. 2018. Primary cilium-mediated retinal pigment epithelium maturation is disrupted in ciliopathy patient cells. Cell Rep 22:189–205
    [Google Scholar]
  47. 47. 
    He H, Kuriyan AE, Su CW, Mahabole M, Zhang Y et al. 2017. Inhibition of proliferation and epithelial mesenchymal transition in retinal pigment epithelial cells by heavy chain-hyaluronan/pentraxin 3. Sci. Rep. 7:43736
    [Google Scholar]
  48. 48. 
    Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y et al. 2013. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Investig. Ophthalmol. Vis. Sci. 54:5087–96
    [Google Scholar]
  49. 49. 
    Tanos BE, Yeaman C, Rodriguez-Boulan E 2018. An emerging role for IQGAP1 in tight junction control. Small GTPases 9:375–83
    [Google Scholar]
  50. 50. 
    Westenskow P, Piccolo S, Fuhrmann S 2009. β-Catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development 136:2505–10
    [Google Scholar]
  51. 51. 
    Economopoulou M, Hammer J, Wang F, Fariss R, Maminishkis A, Miller SS 2009. Expression, localization, and function of junctional adhesion molecule-C (JAM-C) in human retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 50:1454–63
    [Google Scholar]
  52. 52. 
    Maminishkis A, Chen S, Jalickee S, Banzon T, Shi G et al. 2006. Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Investig. Ophthalmol. Vis. Sci. 47:3612–24
    [Google Scholar]
  53. 53. 
    Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R 2004. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 6:217–45
    [Google Scholar]
  54. 54. 
    Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR et al. 2009. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27:2427–34
    [Google Scholar]
  55. 55. 
    Lane A, Philip LR, Ruban L, Fynes K, Smart M et al. 2014. Engineering efficient retinal pigment epithelium differentiation from human pluripotent stem cells. Stem Cells Transl. Med. 3:1295–304
    [Google Scholar]
  56. 56. 
    Reh TA, Lamba D, Gust J 2010. Directing human embryonic stem cells to a retinal fate. Methods Mol. Biol. 636:139–53
    [Google Scholar]
  57. 57. 
    Lamba DA, Karl MO, Ware CB, Reh TA 2006. Efficient generation of retinal progenitor cells from human embryonic stem cells. PNAS 103:12769–74
    [Google Scholar]
  58. 58. 
    Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA et al. 2009. Modeling early retinal development with human embryonic and induced pluripotent stem cells. PNAS 106:16698–703
    [Google Scholar]
  59. 59. 
    Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I et al. 2009. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396–408
    [Google Scholar]
  60. 60. 
    Maruotti J, Sripathi SR, Bharti K, Fuller J, Wahlin KJ et al. 2015. Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. PNAS 112:10950–55
    [Google Scholar]
  61. 61. 
    Zhu J, Lamba DA. 2018. Small molecule-based retinal differentiation of human embryonic stem cells and induced pluripotent stem cells. Bio Protoc 8:e2882
    [Google Scholar]
  62. 62. 
    Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T et al. 2009. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J. Cell Sci. 122:3169–79
    [Google Scholar]
  63. 63. 
    Pera EM, Wessely O, Li SY, De Robertis EM 2001. Neural and head induction by insulin-like growth factor signals. Dev. Cell 1:655–65
    [Google Scholar]
  64. 64. 
    Fuhrmann S, Levine EM, Reh TA 2000. Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development 127:4599–609
    [Google Scholar]
  65. 65. 
    Bharti K, Gasper M, Ou J, Brucato M, Clore-Gronenborn K et al. 2012. A regulatory loop involving PAX6, MITF, and WNT signaling controls retinal pigment epithelium development. PLOS Genet 8:e1002757
    [Google Scholar]
  66. 66. 
    Leach LL, Buchholz DE, Nadar VP, Lowenstein SE, Clegg DO 2015. Canonical/β-catenin Wnt pathway activation improves retinal pigmented epithelium derivation from human embryonic stem cells. Investig. Ophthalmol. Vis. Sci. 56:1002–13
    [Google Scholar]
  67. 67. 
    Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S et al. 2009. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci. Lett. 458:126–31
    [Google Scholar]
  68. 68. 
    Osakada F, Ikeda H, Sasai Y, Takahashi M 2009. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat. Protoc. 4:811–24
    [Google Scholar]
  69. 69. 
    Singh R, Phillips MJ, Kuai D, Meyer J, Martin JM et al. 2013. Functional analysis of serially expanded human iPS cell-derived RPE cultures. Investig. Ophthalmol. Vis. Sci. 54:6767–78
    [Google Scholar]
  70. 70. 
    Kamao H, Mandai M, Okamoto S, Sakai N, Suga A et al. 2014. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2:205–18
    [Google Scholar]
  71. 71. 
    Miyagishima KJ, Wan Q, Corneo B, Sharma R, Lotfi MR et al. 2016. In pursuit of authenticity: induced pluripotent stem cell-derived retinal pigment epithelium for clinical applications. Stem Cells Transl. Med. 5:1562–74
    [Google Scholar]
  72. 72. 
    Li R, Maminishkis A, Banzon T, Wan Q, Jalickee S et al. 2009. IFNγ regulates retinal pigment epithelial fluid transport. Am. J. Physiol. Cell Physiol. 297:C1452–65
    [Google Scholar]
  73. 73. 
    Marmor MF. 1999. Mechanisms of fluid accumulation in retinal edema. Doc. Ophthalmol. 97:239–49
    [Google Scholar]
  74. 74. 
    Off. Fed. Reg 2019. Electronic Code of Federal Regulations Washington, DC: Gov. Publ. Off https://www.ecfr.gov/
  75. 75. 
    Magalhães PO, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TC, Pessoa A 2007. Methods of endotoxin removal from biological preparations: a review. J. Pharm. Pharm. Sci. 10:388–404
    [Google Scholar]
  76. 76. 
    Cao F, Li Z, Lee A, Liu Z, Chen K et al. 2009. Noninvasive de novo imaging of human embryonic stem cell-derived teratoma formation. Cancer Res 69:2709–13
    [Google Scholar]
  77. 77. 
    Merkle FT, Ghosh S, Kamitaki N, Mitchell J, Avior Y et al. 2017. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545:229–33
    [Google Scholar]
  78. 78. 
    Avery S, Hirst AJ, Baker D, Lim CY, Alagaratnam S et al. 2013. BCL-XL mediates the strong selective advantage of a 20q11.21 amplification commonly found in human embryonic stem cell cultures. Stem Cell Rep 1:379–86
    [Google Scholar]
  79. 79. 
    Rutledge SD, Douglas TA, Nicholson JM, Vila-Casadesús M, Kantzler CL et al. 2016. Selective advantage of trisomic human cells cultured in non-standard conditions. Sci. Rep. 6:22828
    [Google Scholar]
  80. 80. 
    Turinetto V, Orlando L, Giachino C 2017. Induced pluripotent stem cells: advances in the quest for genetic stability during reprogramming process. Int. J. Mol. Sci. 18:91952
    [Google Scholar]
  81. 81. 
    Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A 2014. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 32:1380–89
    [Google Scholar]
  82. 82. 
    Dowling JE, Sidman RL. 1962. Inherited retinal dystrophy in the rat. J. Cell Biol. 14:73–109
    [Google Scholar]
  83. 83. 
    Edwards RB, Szamier RB. 1977. Defective phagocytosis of isolated rod outer segments by RCS rat retinal pigment epithelium in culture. Science 197:1001–3
    [Google Scholar]
  84. 84. 
    Silverman MS, Hughes SE. 1990. Photoreceptor rescue in the RCS rat without pigment epithelium transplantation. Curr. Eye Res. 9:183–91
    [Google Scholar]
  85. 85. 
    McGill TJ, Cottam B, Lu B, Wang S, Girman S et al. 2012. Transplantation of human central nervous system stem cells—neuroprotection in retinal degeneration. Eur. J. Neurosci. 35:468–77
    [Google Scholar]
  86. 86. 
    McGill TJ, Bohana-Kashtan O, Stoddard JW, Andrews MD, Pandit N et al. 2017. Long-term efficacy of GMP grade xeno-free hESC-derived RPE cells following transplantation. Transl. Vis. Sci. Technol. 6:17
    [Google Scholar]
  87. 87. 
    Fernandes RAB, Stefanini FR, Falabella P, Koss MJ, Wells T et al. 2017. Development of a new tissue injector for subretinal transplantation of human embryonic stem cell derived retinal pigmented epithelium. Int. J. Retina Vitreous 3:41
    [Google Scholar]
  88. 88. 
    Hotaling NA, Khristov V, Wan Q, Sharma R, Jha BS et al. 2016. Nanofiber scaffold-based tissue-engineered retinal pigment epithelium to treat degenerative eye diseases. J. Ocul. Pharmacol. Ther. 32:272–85
    [Google Scholar]
  89. 89. 
    Thompson JT, Sjaarda RN. 2005. Vitrectomy for the treatment of submacular hemorrhages from macular degeneration: a comparison of submacular hemorrhage/membrane removal and submacular tissue plasminogen activator-assisted pneumatic displacement. Trans. Am. Ophthalmol. Soc. 103:98–107
    [Google Scholar]
  90. 90. 
    Pennington BO, Clegg DO, Melkoumian ZK, Hikita ST 2015. Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate. Stem Cells Transl. Med. 4:2165–77
    [Google Scholar]
  91. 91. 
    Koss MJ, Falabella P, Stefanini FR, Pfister M, Thomas BB et al. 2016. Subretinal implantation of a monolayer of human embryonic stem cell–derived retinal pigment epithelium: a feasibility and safety study in Yucatán minipigs. Graefes Arch. Clin. Exp. Ophthalmol. 254:81553–65
    [Google Scholar]
  92. 92. 
    Kanemura H, Go MJ, Shikamura M, Nishishita N, Sakai N et al. 2014. Tumorigenicity studies of induced pluripotent stem cell (iPSC)–derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLOS ONE 9:1e85336
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023245
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023245
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error