1932

Abstract

Over the past two decades, deadly coronaviruses, with the most recent being the severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) 2019 pandemic, have majorly challenged public health. The path for virus invasion into humans and other hosts is mediated by host–pathogen interactions, specifically virus–receptor binding. An in-depth understanding of the virus–receptor binding mechanism is a prerequisite for the discovery of vaccines, antibodies, and small-molecule inhibitors that can interrupt this interaction and prevent or cure infection. In this review, we discuss the viral entry mechanism, the known structural aspects of virus–receptor interactions (SARS-CoV-2 S/humanACE2, SARS-CoV S/humanACE2, and MERS-CoV S/humanDPP4), the key protein domains and amino acid residues involved in binding, and the small-molecule inhibitors and other drugs that have (as of June 2020) exhibited therapeutic potential. Specifically, we review the potential clinical utility of two transmembrane serine protease 2 (TMPRSS2)-targeting protease inhibitors, nafamostat mesylate and camostat mesylate, as well as two novel potent fusion inhibitors and the repurposed Ebola drug, remdesivir, which is specific to RNA-dependent RNA polymerase, against human coronaviruses, including SARS-CoV-2.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-061220-093932
2021-01-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-061220-093932.html?itemId=/content/journals/10.1146/annurev-pharmtox-061220-093932&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R et al. 2017. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. PNAS 114:40E8508–17
    [Google Scholar]
  2. 2. 
    Wang Q, Zhang Y, Wu L, Niu S, Song C et al. 2020. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181:4894–904.e9
    [Google Scholar]
  3. 3. 
    Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:64831260–63
    [Google Scholar]
  4. 4. 
    Wu K, Li W, Peng G, Li F 2009. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. PNAS 106:4719970–74
    [Google Scholar]
  5. 5. 
    Khan S, Siddique R, Shereen MA, Ali A, Liu J et al. 2020. Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: biology and therapeutic options. J. Clin. Microbiol. 58:5e00187–20
    [Google Scholar]
  6. 6. 
    Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:7798270–73
    [Google Scholar]
  7. 7. 
    Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C et al. 2020. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5:4536–44
    [Google Scholar]
  8. 8. 
    Bojkova D, McGreig JE, McLaughlin K-M, Masterson SG, Widera M et al. 2020. SARS-CoV-2 and SARS-CoV differ in their cell tropism and drug sensitivity profiles. bioRxiv 2020.04.03.024257. https://doi.org/10.1101/2020.04.03.024257
    [Crossref]
  9. 9. 
    Quinlan BD, Mou H, Zhang L, Guo Y, He W et al. 2020. The SARS-CoV-2 receptor-binding domain elicits a potent neutralizing response without antibody-dependent enhancement. bioRxiv 2020.04.10.036418. https://doi.org/10.1101/2020.04.10.036418
    [Crossref]
  10. 10. 
    Ou X, Liu Y, Lei X, Li P, Mi D et al. 2020. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11:11620
    [Google Scholar]
  11. 11. 
    Li F. 2008. Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J. Virol. 82:146984–91
    [Google Scholar]
  12. 12. 
    Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:2281–92.e6
    [Google Scholar]
  13. 13. 
    Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E 2020. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res. 176:104742
    [Google Scholar]
  14. 14. 
    Srinivasan S, Cui H, Gao Z, Liu M, Lu S et al. 2020. Structural genomics of SARS-COV-2 indicates evolutionary conserved functional regions of viral proteins. Viruses 12:4360
    [Google Scholar]
  15. 15. 
    Yuan Y, Cao D, Zhang Y, Ma J, Qi J et al. 2017. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 8:15092
    [Google Scholar]
  16. 16. 
    Wang N, Shi X, Jiang L, Zhang S, Wang D et al. 2013. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res 23:8986–93
    [Google Scholar]
  17. 17. 
    Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pöhlmann S 2005. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. PNAS 102:227988–93
    [Google Scholar]
  18. 18. 
    Lan J, Ge J, Yu J, Shan S, Zhou H et al. 2020. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581:7807215–20
    [Google Scholar]
  19. 19. 
    Shang J, Ye G, Shi K, Wan Y, Luo C et al. 2020. Structural basis of receptor recognition by SARS-CoV-2. Nature 581:221–24
    [Google Scholar]
  20. 20. 
    Li F, Li W, Farzan M, Harrison SC 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. J. Clin. Endocrinol. Metab. 309:1864–68
    [Google Scholar]
  21. 21. 
    Dai W, Zhang B, Su H, Li J, Zhao Y et al. 2020. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368:64971331–35
    [Google Scholar]
  22. 22. 
    Jin Z, Du X, Xu Y, Deng Y, Liu M et al. 2020. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582:7811289–93
    [Google Scholar]
  23. 23. 
    Zhang L, Lin D, Sun X, Curth U, Drosten C et al. 2020. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368:6489409–12
    [Google Scholar]
  24. 24. 
    Yin W, Mao C, Luan X, Shen D-D, Shen Q et al. 2020. Structural basis for the inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368:64981499–504
    [Google Scholar]
  25. 25. 
    Chou T. 2007. Stochastic entry of enveloped viruses: fusion versus endocytosis. Biophys. J. 93:41116–23
    [Google Scholar]
  26. 26. 
    Wang H, Yang P, Liu K, Guo F, Zhang Y et al. 2008. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res 18:2290–301
    [Google Scholar]
  27. 27. 
    Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F 2010. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 84:2412658–64
    [Google Scholar]
  28. 28. 
    Belouzard S, Chu VC, Whittaker GR 2009. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. PNAS 106:145871–76
    [Google Scholar]
  29. 29. 
    Qian Z, Dominguez SR, Holmes KV 2013. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLOS ONE 8:10e76469
    [Google Scholar]
  30. 30. 
    Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A et al. 2013. The spike protein of the emerging Betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J. Virol. 87:105502–11
    [Google Scholar]
  31. 31. 
    Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E et al. 2011. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol. 85:94122–34
    [Google Scholar]
  32. 32. 
    Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N 2019. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol. 93:61–15
    [Google Scholar]
  33. 33. 
    Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:2271–80.e8
    [Google Scholar]
  34. 34. 
    Hoffmann M, Kleine-Weber H, Pöhlmann S 2020. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78:4779–84.e5
    [Google Scholar]
  35. 35. 
    Follis KE, York J, Nunberg JH 2006. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell–cell fusion but does not affect virion entry. Virology 350:2358–69
    [Google Scholar]
  36. 36. 
    Yuki K, Fujiogi M, Koutsogiannaki S 2020. COVID-19 pathophysiology: a review. Clin. Immunol. 215:108427
    [Google Scholar]
  37. 37. 
    Jia HP, Look DC, Shi L, Hickey M, Pewe L et al. 2005. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 79:2314614–21
    [Google Scholar]
  38. 38. 
    Towler P, Staker B, Prasad SG, Menon S, Tang J et al. 2004. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem. 279:1717996–97
    [Google Scholar]
  39. 39. 
    Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S 2017. MERS-CoV spike protein: a key target for antivirals. Expert Opin. Ther. Targets 21:2131–43
    [Google Scholar]
  40. 40. 
    Wan Y, Shang J, Graham R, Baric RS, Li F 2020. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94:7e00127–20
    [Google Scholar]
  41. 41. 
    Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M 2020. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 369:6501330–33
    [Google Scholar]
  42. 42. 
    Holm L. 2020. DALI and the persistence of protein shape. Protein Sci 29:1128–40
    [Google Scholar]
  43. 43. 
    Thompson JD, Higgins DG, Gibson TJ 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:224673–80
    [Google Scholar]
  44. 44. 
    Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–24
    [Google Scholar]
  45. 45. 
    Heinig M, Frishman D. 2004. STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32:W500–2
    [Google Scholar]
  46. 46. 
    Gui M, Song W, Zhou H, Xu J, Chen S et al. 2017. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res 27:1119–29
    [Google Scholar]
  47. 47. 
    Kirchdoerfer RN, Wang N, Pallesen J, Wrapp D, Turner HL et al. 2018. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci. Rep. 8:115701
    [Google Scholar]
  48. 48. 
    Ju B, Zhang Q, Ge J, Wang R, Sun J et al. 2020. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584:11519
    [Google Scholar]
  49. 49. 
    Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N et al. 2020. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell 181:1004–15
    [Google Scholar]
  50. 50. 
    Wang C, Li W, Drabek D, Okba NMA, van Haperen R et al. 2020. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 11:12251
    [Google Scholar]
  51. 51. 
    Harrison C. 2020. Coronavirus puts drug repurposing on the fast track. Nat. Biotechnol. 38:4379–81
    [Google Scholar]
  52. 52. 
    Guy RK, DiPaola RS, Romanelli F, Dutch RE 2020. Rapid repurposing of drugs for COVID-19. Science 368:6493829–30
    [Google Scholar]
  53. 53. 
    Jakubcová L, Hollỳ J, Varečková E 2016. The role of fusion activity of influenza A viruses in their biological properties. Acta Virol 60:2121–35
    [Google Scholar]
  54. 54. 
    Hamilton BS, Whittaker GR, Daniel S 2012. Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 4:71144–68
    [Google Scholar]
  55. 55. 
    Mair CM, Ludwig K, Herrmann A, Sieben C 2014. Receptor binding and pH stability—how influenza A virus hemagglutinin affects host-specific virus infection. Biochim. Biophys. Acta Biomembr. 1838:41153–68
    [Google Scholar]
  56. 56. 
    Shen LW, Mao HJ, Wu YL, Tanaka Y, Zhang W 2017. TMPRSS2: a potential target for treatment of influenza virus and coronavirus infections. Biochimie 142:1–10
    [Google Scholar]
  57. 57. 
    Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. PNAS 102:3311876–81
    [Google Scholar]
  58. 58. 
    Yang N, Shen HM. 2020. Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19. Int. J. Biol. Sci. 16:101724–31
    [Google Scholar]
  59. 59. 
    Chen X, Wang K, Xing Y, Tu J, Yang X et al. 2014. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity. Protein Cell 5:12912–27
    [Google Scholar]
  60. 60. 
    Gassen NC, Niemeyer D, Muth D, Corman VM, Martinelli S et al. 2019. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-coronavirus infection. Nat. Commun. 10:15770
    [Google Scholar]
  61. 61. 
    Gassen NC, Papies J, Bajaj T, Dethloff F, Emanuel J et al. 2020. Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics. bioRxiv 2020.04.15.997254. https://doi.org/10.1101/2020.04.15.997254
    [Crossref]
  62. 62. 
    Dong X, Levine B. 2013. Autophagy and viruses: adversaries or allies. ? J. Innate Immun. 5:5480–93
    [Google Scholar]
  63. 63. 
    Carmona-Gutierrez D, Bauer MA, Zimmermann A, Kainz K, Hofer SJ et al. 2020. Digesting the crisis: autophagy and coronaviruses. Microb. Cell 7:5119–28
    [Google Scholar]
  64. 64. 
    Yao X, Ye F, Zhang M, Cui C, Huang B et al. 2020. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 71:15732–39
    [Google Scholar]
  65. 65. 
    Wang M, Cao R, Zhang L, Yang X, Liu J et al. 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30:269–71
    [Google Scholar]
  66. 66. 
    Liu J, Cao R, Xu M, Wang X, Zhang H et al. 2020. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 6:16
    [Google Scholar]
  67. 67. 
    Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE et al. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2:69
    [Google Scholar]
  68. 68. 
    Gao J, Tian Z, Yang X 2020. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 14:172–73
    [Google Scholar]
  69. 69. 
    Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L et al. 2020. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 56:1105949
    [Google Scholar]
  70. 70. 
    Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN et al. 2020. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med 46:5854–87
    [Google Scholar]
  71. 71. 
    Dowall SD, Bewley K, Watson RJ, Vasan SS, Ghosh C et al. 2016. Antiviral screening of multiple compounds against Ebola virus. Viruses 8:11277
    [Google Scholar]
  72. 72. 
    Elander B, Fellenius E, Leth R, Olbe L, Wallmark B 1986. Inhibitory action of omeprazole on acid formation in gastric glands and on H+,K+-ATPase isolated from human gastric mucosa. Scand. J. Gastroenterol. 21:3268–72
    [Google Scholar]
  73. 73. 
    Long J, Wright E, Molesti E, Temperton N, Barclay W 2015. Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry. F1000Research 4:30
    [Google Scholar]
  74. 74. 
    Shin JM, Kim N. 2013. Pharmacokinetics and pharmacodynamics of the proton pump inhibitors. J. Neurogastroenterol. Motil. 19:125–35
    [Google Scholar]
  75. 75. 
    Shang J, Wan Y, Luo C, Ye G, Geng Q et al. 2020. Cell entry mechanisms of SARS-CoV-2. PNAS 117:2111727–34
    [Google Scholar]
  76. 76. 
    Huang IC, Bosch BJ, Li F, Li W, Kyoung HL et al. 2006. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J. Biol. Chem. 281:63198–203
    [Google Scholar]
  77. 77. 
    Hoffmann M, Hofmann-Winkler H, Pöhlmann S 2018. Priming time: how cellular proteases arm coronavirus spike proteins. Activation of Viruses by Host Proteases E Böttcher-Friebertshäuser, W Garten, H Klenk 71–98 Cham, Switz.: Springer
    [Google Scholar]
  78. 78. 
    Chowdhury SF, Joseph L, Kumar S, Tulsidas SR, Bhat S et al. 2008. Exploring inhibitor binding at the S′ subsites of cathepsin L. J. Med. Chem. 51:51361–68
    [Google Scholar]
  79. 79. 
    Chowdhury SF, Sivaraman J, Wang J, Devanathan G, Lachance P et al. 2002. Design of noncovalent inhibitors of human cathepsin L. From the 96-residue proregion to optimized tripeptides. J. Med. Chem. 45:245321–29
    [Google Scholar]
  80. 80. 
    Shenoy RT, Sivaraman J. 2011. Structural basis for reversible and irreversible inhibition of human cathepsin L by their respective dipeptidyl glyoxal and diazomethylketone inhibitors. J. Struct. Biol. 173:114–19
    [Google Scholar]
  81. 81. 
    Shenoy RT, Chowdhury SF, Kumar S, Joseph L, Purisima EO, Sivaraman J 2009. A combined crystallographic and molecular dynamics study of cathepsin L retro binding inhibitors. J. Med. Chem. 52:206335–46
    [Google Scholar]
  82. 82. 
    Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C et al. 2009. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11:111305–14
    [Google Scholar]
  83. 83. 
    Igarashi K, Kashiwagi K. 2010. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 42:139–51
    [Google Scholar]
  84. 84. 
    Morselli E, Mariño G, Bennetzen MV, Eisenberg T, Megalou E et al. 2011. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 192:4615–29
    [Google Scholar]
  85. 85. 
    Gupta VK, Scheunemann L, Eisenberg T, Mertel S, Bhukel A et al. 2013. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 16:101453–60
    [Google Scholar]
  86. 86. 
    Mounce BC, Olsen ME, Vignuzzi M, Connor JH 2017. Polyamines and their role in virus infection. Microbiol. Mol. Biol. Rev. 81:4e00029–17
    [Google Scholar]
  87. 87. 
    Olsen ME, Filone CM, Rozelle D, Mire CE, Agans KN et al. 2016. Polyamines and hypusination are required for ebolavirus gene expression and replication. mBio 7:4e00882–16
    [Google Scholar]
  88. 88. 
    Korovina AN, Tunitskaya VL, Khomutov MA, Simonian AR, Khomutov AR et al. 2012. Biogenic polyamines spermine and spermidine activate RNA polymerase and inhibit RNA helicase of hepatitis C virus. Biochemistry 77:101172–80
    [Google Scholar]
  89. 89. 
    Mounce BC, Poirier EZ, Passoni G, Simon-Loriere E, Cesaro T et al. 2016. Interferon-induced spermidine-spermine acetyltransferase and polyamine depletion restrict Zika and chikungunya viruses. Cell Host Microbe 20:2167–77
    [Google Scholar]
  90. 90. 
    Wang RC, Wei Y, An Z, Zou Z, Xiao G et al. 2012. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338:6109956–59
    [Google Scholar]
  91. 91. 
    Degtyarev M, De Mazière A, Orr C, Lin J, Lee BB et al. 2008. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J. Cell Biol. 183:1101–16
    [Google Scholar]
  92. 92. 
    Jurgeit A, McDowell R, Moese S, Meldrum E, Schwendener R, Greber UF 2012. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects. PLOS Pathog 8:10e10002976
    [Google Scholar]
  93. 93. 
    Jeon S, Ko M, Lee J, Choi I, Byun SY et al. 2020. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 64:7e00819–20
    [Google Scholar]
  94. 94. 
    Ditzel J, Schwartz M. 1967. Worm cure without tears: the effect of niclosamide on Taeniasis saginata in man. Acta Med. Scand. 182:5663–64
    [Google Scholar]
  95. 95. 
    World Health Organization, Stuart MC, Kouimtzi M, Hill SR 2009. WHO Model Formulary 2008 Geneva: World Health Organization
  96. 96. 
    Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O et al. 2020. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci. Alliance 3:9e202000786
    [Google Scholar]
  97. 97. 
    Lu L, Liu Q, Zhu Y, Chan KH, Qin L et al. 2014. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat. Commun. 5:3067
    [Google Scholar]
  98. 98. 
    Liu S, Xiao G, Chen Y, He Y, Niu J et al. 2004. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 363:9413938–47
    [Google Scholar]
  99. 99. 
    Bosch BJ, Martina BEE, Van Der Zee R, Lepault J, Haijema BJ et al. 2004. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. PNAS 101:228455–60
    [Google Scholar]
  100. 100. 
    Gibo J, Ito T, Kawabe K, Hisano T, Inoue M et al. 2005. Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity. Lab. Investig. 85:175–89
    [Google Scholar]
  101. 101. 
    Marotta F, Fesce E, Rezakovic I, De Chui H, Suzuki K, Idéo G 1994. Nafamostat mesilate on the course of acute pancreatitis. Int. J. Pancreatol. 16:151–59
    [Google Scholar]
  102. 102. 
    Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S 2020. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob. Agents Chemother. 64:6e00754–20
    [Google Scholar]
  103. 103. 
    Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y et al. 2016. Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob. Agents Chemother. 60:116532–39
    [Google Scholar]
  104. 104. 
    Zhirnov OP, Matrosovich TY, Matrosovich MN, Klenk H-D 2011. Aprotinin, a protease inhibitor, suppresses proteolytic activation of pandemic H1N1v influenza virus. Antivir. Chem. Chemother. 21:4169–74
    [Google Scholar]
  105. 105. 
    Meyer D, Sielaff F, Hammami M, Böttcher-Friebertshäuser E, Garten W, Steinmetzer T 2013. Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation. Biochem. J. 452:2331–43
    [Google Scholar]
  106. 106. 
    Xia S, Yan L, Xu W, Agrawal AS, Algaissi A et al. 2019. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci. Adv. 5:4eaav4580
    [Google Scholar]
  107. 107. 
    Xia S, Liu M, Wang C, Xu W, Lan Q et al. 2020. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30:4343–55
    [Google Scholar]
  108. 108. 
    Xia S, Zhu Y, Liu M, Lan Q, Xu W et al. 2020. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell. Mol. Immunol. 17:7765–67
    [Google Scholar]
  109. 109. 
    Zhu Y, Yu D, Yan H, Chong H, He Y 2020. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J. Virol. 94:14e00635–20
    [Google Scholar]
  110. 110. 
    Zhu Y, Chong H, Yu D, Guo Y, Zhou Y, He Y 2019. Design and characterization of cholesterylated peptide HIV-1/2 fusion inhibitors with extremely potent and long-lasting antiviral activity. J. Virol. 93:11e02312-18
    [Google Scholar]
  111. 111. 
    Chong H, Zhu Y, Yu D, He Y 2018. Structural and functional characterization of membrane fusion inhibitors with extremely potent activity against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus. J. Virol. 92:20e01088–18
    [Google Scholar]
  112. 112. 
    Shi J, Sivaraman J, Song J 2008. Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease. J. Virol. 82:94620–29
    [Google Scholar]
  113. 113. 
    Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R 2003. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:56261763–67
    [Google Scholar]
  114. 114. 
    Hegyi A, Ziebuhr J. 2002. Conservation of substrate specificities among coronavirus main proteases. J. Gen. Virol. 83:Part 3595–99
    [Google Scholar]
  115. 115. 
    Xue X, Yu H, Yang H, Xue F, Wu Z et al. 2008. Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J. Virol. 82:52515–27
    [Google Scholar]
  116. 116. 
    Ren Z, Yan L, Zhang N, Guo Y, Yang C et al. 2013. The newly emerged SARS-like coronavirus hCoV-EMC also has an “Achilles’ heel”: current effective inhibitor targeting a 3C-like protease. Protein Cell 4:4248–50
    [Google Scholar]
  117. 117. 
    Wang F, Chen C, Tan W, Yang K, Yang H 2016. Structure of main protease from human coronavirus NL63: insights for wide spectrum anti-coronavirus drug design. Sci. Rep. 6:22677
    [Google Scholar]
  118. 118. 
    Lee CC, Kuo CJ, Ko TP, Hsu MF, Tsui YC et al. 2009. Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds. J. Biol. Chem. 284:127646–55
    [Google Scholar]
  119. 119. 
    Hilgenfeld R. 2014. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J 281:184085–96
    [Google Scholar]
  120. 120. 
    Fehr AR, Perlman S. 2015. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282:1–23
    [Google Scholar]
  121. 121. 
    Yang H, Xie W, Xue X, Yang K, Ma J et al. 2005. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLOS Biol 3:10e324
    [Google Scholar]
  122. 122. 
    Anand K, Palm GJ, Mesters JR, Siddell SG, Ziebuhr J, Hilgenfeld R 2002. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. EMBO J 21:133213–24
    [Google Scholar]
  123. 123. 
    Kil J, Lobarinas E, Spankovich C, Griffiths SK, Antonelli PJ et al. 2017. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 390:10098969–79
    [Google Scholar]
  124. 124. 
    Masaki C, Sharpley AL, Cooper CM, Godlewska BR, Singh N et al. 2016. Effects of the potential lithium-mimetic, ebselen, on impulsivity and emotional processing. Psychopharmacology 233:142655–61
    [Google Scholar]
  125. 125. 
    Singh N, Halliday AC, Thomas JM, Kuznetsova O, Baldwin R et al. 2013. A safe lithium mimetic for bipolar disorder. Nat. Commun. 4:1332
    [Google Scholar]
  126. 126. 
    Sakamoto J, Oba K, Matsui T, Kobayashi M 2006. Efficacy of oral anticancer agents for colorectal cancer. Dis. Colon Rectum. 49:10 Suppl.S82–91
    [Google Scholar]
  127. 127. 
    Morimoto K, Koh M. 2003. Postoperative adjuvant use of carmofur for early breast cancer. Osaka City Med. J. 49:277–83
    [Google Scholar]
  128. 128. 
    Nishio S, Kishimoto T, Maekawa M, Kawakita J, Morikawa Y et al. 1987. Study on effectiveness of carmofur (Mifurol®) for urogenital carcinoma, especially bladder cancer, as a post-operative adjuvant chemotherapeutic agent. Hinyokika Kiyo 33:2295–303
    [Google Scholar]
  129. 129. 
    Gröhn P, Heinonen E, Kumpulainen E, Lansimies H, Lantto A et al. 1990. Oral carmofur in advanced gastrointestinal cancer. Am. J. Clin. Oncol. Cancer Clin. Trials 13:6477–79
    [Google Scholar]
  130. 130. 
    Zhang L, Lin D, Kusov Y, Nian Y, Ma Q et al. 2020. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. J. Med. Chem. 63:94562–78
    [Google Scholar]
  131. 131. 
    Zhu L, George S, Schmidt MF, Al-Gharabli SI, Rademann J, Hilgenfeld R 2011. Peptide aldehyde inhibitors challenge the substrate specificity of the SARS-coronavirus main protease. Antiviral Res 92:2204–12
    [Google Scholar]
  132. 132. 
    Tan J, George S, Kusov Y, Perbandt M, Anemüller S et al. 2013. 3C protease of enterovirus 68: structure-based design of Michael acceptor inhibitors and their broad-spectrum antiviral effects against picornaviruses. J. Virol. 87:84339–51
    [Google Scholar]
  133. 133. 
    te Velthuis AJW. 2014. Common and unique features of viral RNA-dependent polymerases. Cell. Mol. Life Sci. 71:224403–20
    [Google Scholar]
  134. 134. 
    Venkataraman S, Prasad BVLS, Selvarajan R 2018. RNA dependent RNA polymerases: insights from structure, function and evolution. Viruses 10:276
    [Google Scholar]
  135. 135. 
    Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ et al. 2020. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 12:541eabb5883
    [Google Scholar]
  136. 136. 
    Tchesnokov EP, Feng JY, Porter DP, Götte M 2019. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses 11:4326
    [Google Scholar]
  137. 137. 
    NIH (Natl. Inst. Health). 2020. NIH clinical trial shows remdesivir accelerates recovery from advanced COVID-19 News Release, Apr. 29. https://www.nih.gov/news-events/news-releases/nih-clinical-trial-shows-remdesivir-accelerates-recovery-advanced-covid-19
  138. 138. 
    FDA (Food Drug Adm.). 2020. Coronavirus (COVID-19) update: FDA issues emergency use authorization for potential COVID-19 treatment News Release, May 1. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-issues-emergency-use-authorization-potential-covid-19-treatment
  139. 139. 
    Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY et al. 2020. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 295:206785–97
    [Google Scholar]
  140. 140. 
    Reynard O, Nguyen X-N, Alazard-Dany N, Barateau V, Cimarelli A, Volchkov VE 2015. Identification of a new ribonucleoside inhibitor of Ebola virus replication. Viruses 7:126233–40
    [Google Scholar]
  141. 141. 
    Stuyver LJ, Whitaker T, McBrayer TR, Hernandez-Santiago BI, Lostia S et al. 2003. Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture. Antimicrob. Agents Chemother. 47:1244–54
    [Google Scholar]
  142. 142. 
    Toots M, Yoon J-J, Cox RM, Hart M, Sticher ZM et al. 2019. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci. Transl. Med. 11:515eaax5866
    [Google Scholar]
  143. 143. 
    Urakova N, Kuznetsova V, Crossman DK, Sokratian A, Guthrie DB et al. 2017. β-d-N4-hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome. J. Virol. 92:3e01965–17
    [Google Scholar]
  144. 144. 
    Pyrc K, Bosch BJ, Berkhout B, Jebbink MF, Dijkman R et al. 2006. Inhibition of human coronavirus NL63 infection at early stages of the replication cycle. Antimicrob. Agents Chemother. 50:62000–8
    [Google Scholar]
  145. 145. 
    Barnard DL, Hubbard VD, Burton J, Smee DF, Morrey JD et al. 2004. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and β-d-N4-hydroxycytidine. Antivir. Chem. Chemother. 15:115–22
    [Google Scholar]
  146. 146. 
    Agostini ML, Pruijssers AJ, Chappell JD, Gribble J, Lu X et al. 2019. Small-molecule antiviral β-d-N4-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. J. Virol. 93:24e01348–19
    [Google Scholar]
  147. 147. 
    Yoon JJ, Toots M, Lee S, Lee ME, Ludeke B et al. 2018. Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses. Antimicrob. Agents Chemother. 62:8e00766–18
    [Google Scholar]
  148. 148. 
    Smith EC, Blanc H, Vignuzzi M, Denison MR 2014. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLOS Pathog 10:7e1004342
    [Google Scholar]
  149. 149. 
    Ferron F, Subissi L, De Morais ATS, Le NTT, Sevajol M et al. 2017. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. PNAS 115:2E162–71
    [Google Scholar]
  150. 150. 
    Padron-Regalado E. 2020. Vaccines for SARS-CoV-2: lessons from other coronavirus strains. Infect. Dis. Ther. 9:2255–74
    [Google Scholar]
  151. 151. 
    Dutta NK, Mazumdar K, Gordy JT 2020. The nucleocapsid protein of SARS-CoV-2: a target for vaccine development. J. Virol. 94:13e00647–20
    [Google Scholar]
  152. 152. 
    Jiang S, Hillyer C, Du L 2020. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol 41:5355–59
    [Google Scholar]
  153. 153. 
    Chang JH, Lee IS, Kim HK, Cho YK, Park JM et al. 2009. Nafamostat for prophylaxis against post-endoscopic retrograde cholangiopancreatography pancreatitis compared with gabexate. Gut Liver 3:3205–10
    [Google Scholar]
  154. 154. 
    de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A et al. 2020. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. PNAS 117:126771–76
    [Google Scholar]
  155. 155. 
    Ameratunga R, Lehnert K, Leung E, Comoletti D, Snell R et al. 2020. Inhaled modified angiotensin converting enzyme 2 (ACE2) as a decoy to mitigate SARS-CoV-2 infection. N. Z. Med. J. 133:1515112–18
    [Google Scholar]
  156. 156. 
    Wu CJ, Jan JT, Chen CM, Hsieh HP, Hwang DR et al. 2004. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob. Agents Chemother. 48:72693–96
    [Google Scholar]
  157. 157. 
    Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S 2012. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol. 86:126537–45
    [Google Scholar]
  158. 158. 
    Kassell B, Radicevic M, Ansfield MJ, Laskowski M Sr 1965. The basic trypsin inhibitor of bovine pancreas IV. The linear sequence of the 58 amino acids. Biochem. Biophys. Res. Commun. 18:255–58
    [Google Scholar]
  159. 159. 
    Jin Z, Zhao Y, Sun Y, Zhang B, Wang H et al. 2020. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat. Struct. Mol. Biol. 27:6529–32
    [Google Scholar]
  160. 160. 
    Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE et al. 2017. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 9:396eaal3653
    [Google Scholar]
  161. 161. 
    EMA (Eur. Med. Agency). 2020. Summary on Compassionate Use Amsterdam: EMA https://www.ema.europa.eu/en/documents/other/summary-compassionate-use-remdesivir-gilead_en.pdf
/content/journals/10.1146/annurev-pharmtox-061220-093932
Loading
/content/journals/10.1146/annurev-pharmtox-061220-093932
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error